
B+ Trees and Indexed Sequential Files:

A Performance Comparison*

D.S. Batory
Computer and Information Sciences Department

University of Florida
Gainesville, Florida, USA

Abstract

An analytic method for comparing the performance of
B+.trees and indexed sequential files is proposed.
Preliminary results indicate that indexed sequential
files may be more efficient than B+ trees in certain
applications.

1. INTRODUCTION

A familiar problem in database and file design
is choosing between a B+ tree and an indexed
sequential implementation for a file. Over the past
ten years, a variety of evidence has accumulated in
favor of B+ trees. Support has come from surveys
([Com79]), experience ([Ston80]), simulation studies
([Rei76]), and analytic results ([Knu73], [Yao78]).
Evidence in favor of indexed sequential files has
been limited ([HeSt78]).

Some of the primary advantages cited for the
popularity of B+ trees are that reorganizations are
unnecessary, algorithms are simple, and performance
is good even under adverse conditions. Yet for the
exception of reorganizations, indexed sequential
files also have simple algorithms and can have good
performance. Merely listing the.advantages and
disadvantages of each structure is not sufficient
to make a good decision. It would be more useful

.to compare the performance of both structures under
the conditions of anticipated file usage in order
to choose that structure which performs better.
Unfortunately, such a .comparison of B+ tree and
indexed sequential performance has not been
adequately addressed in the literature.

Recent techniques for the analytic modeling of
file evolution and file reorganization enable such
comparisons to be made (see [Bat80a-b]). Although
comparisons could be based on simulation studies,

*
This work was completed while the author was at

the Department of Computer Science, University of
Toronto, Toronto, Ontario, Canada.

c

Permission to copy without fee all or part of this material is granted
provided that the copies are not made or distributed for direct
commercial advantage, the ACM copyright notice and the title of the
publication and its date appear, and notice is given that copying is by
Permission of the Association for Computing Machinery. To copy
otherwise, or to republish, requires a fee and/or specific permission.

01981 ACM O-89791-040-0 /80/0400/0030 $00.75

analytic comparisons’are much less expensive. In
this paper, some of these techniques are reviewed
and a methodology for comparing Bt tree and indexed
sequential file performance is proposed.

2. ESTIMATING PERFORMANCE OF EVOLVING FILES

The basic component of a file structure is a
node which contains zero or more records. The
records of a node are stored in a primary block and
on a linear list called an overflow chain (Fig. 1).
Nodes of B+ trees have overflow chains of’ zero
length; nodes of indexed sequential files have
chains of variable length.

File structures have been identified with uni-
form height directed trees where each vertex of a
tree corresponds to a node ([Yao77]). The data
level or leaf level, level 0, is where all data
records reside; all higher levels constitute the
cluster index of the structure (Fig. 2). Nodes that
possess overflow records are usually confined to the
data level. The topmost node, or root node, is main
memory resident; all other nodes are secondary
storage resident.

File structures are modeled by a collection of
parameters such as those given in Table 1. A speci-
fic file is described by the values that are
assigned to these parameters. This collection of
values is called the file’s descriptor. Figures 3
and 4 illustrate an indexed sequential and a B+ tree
file with their descriptors. -

File performance can be estimated by cost
functions that accept a file descriptor as input and
return estimates (or bounds on) the expected cost of
executing designated file operations. For a file
with descriptor F, some common operations and their
expected cost functions are:

cost function file operation

RET(F,OK) retrieving a record given its identifier
RET(F,Sm) retrieving all records
INS(F) inserting a record
DEL(F) ,. deleting a record given its identifier
UPD(F) updating a previously retrieved record

Expressions for these functions are given in Appen-
dices I and II. Note that other operatio-ns, such
as batched retrieval and updating, could ‘also be
included in this list.

Files evolve due to record insertions and dele-
tions. Performance deterioration, which often
accompanies file evolution, occurs when operations

30

Node A

Node B

Cluster
index

Data Level

1

\ / \ /
v v

Primary Block Overflow Blocks

Figure 1. Structure of a Node with Overflow Records

I main
memory
resident ________ --

1
level 2

level 1

-)I

.l
level 0

Legend

?

a memory resident
pointer to secondary
storage structure

cl
a secondary storage
resident node of
the cluster index

!a a data level node

Fs

R

Ri

M

Mi

design parameters

file structure: indexed sequential or B+ tree

record capacity of a data level block

record capacity of a cluster index block

minimum record occupancy of a data level node

minimum record occupancy of a cluster index
node

file parameters

number of records in file

height of file structure

expected number of data level nodes

expected number of records in a primary block
on the data level

expected number of records on an overflow
chain on the data level

expected number of overflow records accessed
when locating a single record within a data
level node

Pfull probability of inserting a record into a data

Pund

Pmer

S

A

level node whose primary block has no vacant
record slots

probability that a record deletion will cause
a data level node to underflow

probability that when a data level node under-
flows, a node merging will occur

cost parameters

storage cost of a block per unit time

transfer cost of a block

Table 1. Parameters of a File Descriptor

Figure 2. A Directed Tree Model of a File Structure

Legend

a pointer

a cluster index
record with key K

a data record
with key K

level 3

-------m--e-- main memory resident --a---__---_-___
secondary storage resident

level 2

level 1

level 0

Fs R M Ri Mi A S
indexed sequential 3 0 4 1 A S

NLZ H G 0: Pfull Pund Pmer

20 3 6 1616 416 5120 16120 0 0

Figure 3. An Indexed Sequential File

level 3

level 2

level 1

level 0

Fs RMRi Mi.. A S
B+tree 3 2 4 2.AS

N: L 2 H G f-l Pfull Pund Pmer
20 3 9 2019 0 0 6120 14120 719

Figure 4. A B+ Tree

32

become more expensive to execute.’ For example,
expected record retrieval costs increase as over-
flow chains become longer.

As a file evolves, values assigned to selected
parameters of a file descriptor will change. Spe-
cifically, these are the file parameters of Tabie 1.
Once it is known how a descriptor evolves, cost
functions can be used to trace the evolution or
deterioration of a file’s performance.

The values assigned to file parameters are sta-
tistics of a distribution called a node occupancy
distribution. Node occupancy distributions take
the form T(r) = number of data level nodes that con-

tain r records. 1 For example, the parameters 2 and
N have the following definitions:

Z = number of data level nodes = C T(r)
r

N = number of records in file = C rxT(r)
r

Definitions for other file parameters are given in
Appendix III. Owing to these relationships, the
problem of modeling file evolution is identified
with the problem of estimating node occupancy distri-
but ions.

General techniques are presented in [BatsOb] for
estimating node occupancy distributions for hash
based, indexed sequential, and B+ tree files, among
others. Although it is beyond the scope of this
paper to develop the techniques for deriving distri-
bution equations, it is possible to summarize some
relevant results. Let No be the initial file size

and let s be the initial number of records stored
in each data level node of a B+ tree or indexed
sequential structure. (s is said to be the initial
loading factor.) For an insertion only environment
(i.e., no deletions), the node occupancy distribu-
tion for an indexed sequential file is:

P(I,r) = number of data level nodes containing
r records after I records have been
inserted

No(No -’ I(.I,)
S

Note: (l) is
=

N +1-l
a binomial

r(or I coefficient .j

and for B+ trees (see [NaMi78]):

Q(I,r) = number of data level nodes containing
r records after I records have been
inserted

At B+ tree creation:

Q(O,rl =
{

No/s if r=s

0 otherwise

Because overflow chains are not used, the value of
s is constrained to be between the minimum and

1 A node occupancy distribution may be viewed as an
unnonnalized probability distribution whose normali-
zation constant is Z.

maximum number of records per node: Mss<R,’ For
other Q(I,r) :

Q(I+l,Ml = QUM U- &I + QWW&l
0 0

Q(I+l,M+l) = Q(I,M+l) (l- &$ + QU,R)(&
0

QU+l,rl = Q(I,rl(l- No+I --% + QU,r-11(&l
0

index ranges: M+l < r < R, 12 0

The above equations are valid only when the
record capacity R of a primary block is even. For
odd R, a node splits into two nodes with identical
record populations. The corresponding equations are :

QU+l,W = QU,W(l- &I + 2QU,Rl(j&)
0 0

Q(I+l,r) = Q(I,r)(l- &I + Q(I;r-11(&l
0 0

index ranges: M<rsR, 120

No closed form solutions to these equations are .
known.

J’ The equations defining P(I,r) and Q(I,r) were
developed from the same ass@ptions (specifically
(A3)) as the cost functionstof Appendices I and II.
Moreover, P(I,r) and Q(I,r) were validated by simu-
lation studies. Equations that model the impact of
insertions and deletions on node occupancy distri-
butions are, in general, very complex. It is beyond
the scope of this paper to present these equations,
and for this reason we will confine our experiments
to files that do not experience deletions.

P(I,r) and Q(I,r) estimate node occupancy distri-
butions after I records have been inserted. Applying
the definitions of Appendix III to an estimated dis-
tribution yields values for the file parameters. In
this way, the evolution of a file descriptor is
modeled.

Because values of a file descriptor change with
time, let F, denote the descriptor of a file at (the

end of) time period t. F, describes the file at

creation time (i.e.,‘;.before insertions and deletions

occur). Also, let i(‘) denote the number of records
in a file whose descriptor is F. To characterize the
usage of a file, we .introduce the following statistics:

I . . 1
fret = number of times each record is retrieved

via its identifier per time period

fsc = number of file scans per time period

fins = number of insertions per time period

fdel = number of,deletions per time period
.

fupd = number of times each record is retrieved
,. and updated per time period

Let STOR(F) be the storage cost of a file with
descriptot‘f (see Appendices I and II). If a

2 For B+ trees, M = y
1 J

33

descrintor remains constant over a time period, the
cost of using the file during period t is:

Static(ft) = (fret+fupd)xN(Ft)xRET(Ft,()NE)

+ fscxRET(Ft,Sm) + finsxINS(Ft)

+ fdelxDEL(Ft) + fupdxN (Ft)wD(Ft)

+ STONFt)

However, since file’descriptors do evolve, the usage
cost of a file during period t is more closely
approximated by:

Usage-Cost (Ft) = Static(ft-1) + Static(ft)

2

where rt denotes the descriptor pair {Ft-l, F,).

The primary objective of our study is to compare
B+ tree and indexed sequential file performance.
This will be accomplished, in part, by evaluating
and comparing Usage Costs of the two structures.
Before this can be zone, however, we need to know
when an indexed sequential file should be reorgan-
ized. Once this is known, a fair comparison can be
made.

3. ,A SOLUTION TO THE FILE REORGANIZATION PROBLEM

File reorganization is the problem of determining
when a file should be reorganized. A closely related
problem is loading factor selection, i.e., choosing
an initial loading factor for a file. In the follow-
ing paragraphs, a-method for determining optimal
reorganization points and loading factors for files
with, fixed lifetimes will be developed. We begin
by presenting a solution to the file reorganization

problem. 3

Let the lifetime of a file be T time periods.
At the end of each period, a decision is made to
reorganize the file or not.. The initial loading
factor of a reorganized file is the constant s.
: Let $(i,j) be the sum of the costs of: 1) con-
structing the file at ‘the end of period i, 2) using
the file during periods i+l through j, and 3) dump-
ing the file at the end of period j. Let Fi t be

the descriptor of a file at the end of period t,
where the file was constructed at the end of period
i, and let CON(F) and DUMP(F) be the costs of
constructing and dumping a file with descriptor F
(see Appendix I). $(i, j) is given by:

$(i,j) = CON(Fi i) + i
, t=i+l

Usage-Cost(ri t),
2

+ DmP(Fi j) ,

3 The proposed solution for file reorganization
presented here is similar to that in recently cir-
culated works by Ramirez ([Ram80]) and Hatzopoulos
and Kollias ([HaKoSO]). The approaches in these
works are respectively based on data structures and
index selection, quite different from our approach,
but the method for determining reorganization
points is similar.

where f i t denotes the descriptor pair {Fi-t-l,

Fi,t}. ’
,

Let Cost(t) be the minimal usage and reorgani-
z’ation cost for a file with a lifetime of t time
periods. Clearly,

Cost(O) = 0

Cost(l) = $(O,l)

To estimate Cost (2), note that the last reorgani-
zation was either at the end of period 0 or period
1. Choosing the situation with minimal cost yields:

Cost(Z) = min[Cost(O). + $(0,2), Cost(l) + $(1,2)]

and in general,

Cost(t) = min [Cost(i)+$(i,t)] (11
O<i<t

By incrementing the index t, and progressively
building upon previous results, Cost(T) is obtained.
Recording the value of i used in each Cost(t) calcu-
lation, for which Cost(i)+$(i,t) is minimal, deter-
mines the times at which the file should be reorgan-
ized. These are the optimal reorganization points
for the file.

The loading factor selection problem is inte-
grated into this framework by allowing s, the loading
factor of a reorganized file, to become an optimi-
zation variable. $ (i, j) becomes $ (s,i, j), and (1)
becomes :

Cost(t) = min [Cost(i) + mini $(s,i, j))] (2)
Osict S

Recording the values of i and s used in each Cost(t)
calculation, for which Cost(i)+$(s,i,t) is minimal,
determines the optimal initial loading factors and
reorganization points for the file.

Equation (2) can be evaluated efficiently using
dynamic programming techniques (see [RamBO],[AHU74]).

4. EXPERIMENTAL RESULTS ON A HYPOTHETICAL FILE

In the following paragraphs, we present results
of a number of different computation experiments.
These experiments are not intended to be comprehen-
sive; their purpose is to indicate the types of
analyses and results possible using the techniques
described in this paper,

Consider the indexed sequential file that is
described by the values of Table 2. The file has
an initial size of 20000 records, an insertion rate
of 400 records per week, and a lifetime of 25 weeks.
The block storage and access cost figures reflect
current charging rates at the University of Florida’s

main computing center. 4 Solving equation (2) for
the optimal loading factors and reorganization

4 It is worth noting that the computing center charges
significantly higher storage rates for files that
are stored V1onlinelt than for files that are stored
“offline”. (“Online” fil.es can be accessed by inter-
active programs; “offline” files can only be accessed
accessed by batch programs.) We are considering an
“online” file.

34

Descriptor Values: No=20000, R=20, M=O,

Ri=255, Mi=l, A=.00131, S=.O5683
Usage Statistics: fret=fupd=.S/week,

finsJOO/week, fdel=O/week
fsc=?/week

File Lifetime: T=25 weeks

Table 2. An Indexed Sequential File

points, the optimal strategy is to construct and
reorganize the file using the loading factor of 19
records/node. Thus, the primary block of each data
level node will contain one vacant record slot.
Reorganizations occur at the end of weeks 2,4,6,8,
10,13,16,19, and 22. With this information, and
using the equations developed in Section 2 and
Appendix I, the performance evolution of the
indexed sequential file can be predicted.

The height (L) of a B+ tree is bounded by:

poqRi)zj + 1 SL $ lyg(&J + 2

Occasionally, the height is well defined in that the
upper bound equals the lower bound. Uncertainty
arises when record insertions may cause the height
of the tree to increase by one level; in such cases
the upper bound and lower bound disagree. Our
analysis of B+ trees is directed to those situations
where insertions do not cause an increase in height. -
Predicting the expected height of B+ trees appears
to be a formidable task, and it is left as an open
problem. But more on this later.

Consider the B+ tree that is described by the
values of Table 3. This file is identical to the
file of Table 2; only the implementations differ.
When the B+ tree is created, we assume that the
initial loading factor (s) is 20, so that the

storage utilization is 100%.
5

Using the equations
developed in Section 2 and Appendix II, the perfor-
mance evolution of the B+ tree can be predicted.

Our comparison begins with Figure 5 where the
expected storage volume of both structures are
displayed. Because records are densely packed in
an indexed sequential file, there is little free
space. Consequently, the storage curve reflects
the linear increase in file growth. It is inter-
esting to note the after a reorganization, the
storage volume increases due to the vacant slot
allocated per primary block. As for the B+ tree,
the storage volume quickly balloons from a storage
utilization of 100% at week 0, to 59% at week 7,
and finally to 73% at week 25. This follows since
the first few insertions cause nodes to split
(originally all nodes were full), which effectively
halves the initial storage utilization. Because a
significant amount of free space now exists, further
insertions cause few splits, so the storage volume
remains essentially constant.

5 The initial loading factor of 100% was chosen arbi-
trarily. Although initial loading factors do influ-
ence the initial performance of a B+ tree, the impact
decreases with time (see [NaMi78],[Yao78]). A pro-
blem which is not addressed in this paper, but could
be using the techniques that are presented, is
determining good initial loading factors for B+
trees.

Descriptor Values: No=20000, R=20, M=lO,

Ri=255, Mi=128, A=.00131, S=.O5683
Usage Statistics: fret=fupd=.S/week,

fins=400/week, fdel=O/week
fsc=7/week

File Lifetime: T=25 weeks

Table 3. A B+ Tree File

In Appendix II, equations defining upper and
lower bounds on expected B+ tree storage volume are
presented, In our example, these bounds were so
close that, for practical purposes, either estimate
could be taken as the true storage volume.

Figure 6 displays the expected number of block
accesses needed to retrieve all records of both
structures. Such an operation is called a scan.
The sawtoothed curve clearly illustrates the effects
of reorganization; after each reorganization, over-
flow records are removed and the cost of a scan
declines sharply. It is worth noting that at the
end of week 13, the average length of an overflow
chain reaches its maximum value, .35. Clearly, over-
flow chains do not have to be long to significantly
impact the cost of a scan. Also note that .35 is
specific to our problem. It is not a characteristic
of all indexed sequential files that are about to be
reorganized. There are realistic situations (not
considered here) where the average overflow chain
length can be much longer. As for the B+ tree, the
scan curve naturally reflects the storage curve of
Figure 5.

Figure 7 shows the expected number of block
transfers needed to insert a record. For the indexed
sequential structure, the first record inserted into
a node will be stored in the vacant record slot of
the primary block. This requires four transfers
(three reads + one write). Subsequent insertions are
stored in overflow and require additional transfers
(to read and update overflow pointers). Thus, in-
sertion into overflow is costly. For B+ trees,
observe that the bounds on insertion performance are
not good initially, but they quickly converge as
the file grows. *Furthermore, the number of transfers
needed is just slightly above the minimum of four.
This indicates that a majority of the time, splitting
does not occur, and when it does, it is confined to

the data level of a B+ tree. 6

Figure 8 displays the number of transfers needed
to delete a record, although in the file that we are
considering, no deletions occur. For indexed sequen-
tial files, deletions rarely involve overflow records
since the bulk of records reside in primary blocks.
Consequently, deletions are efficient. For B+ trees,
deletions are somewhat more expensive. The rise in
the bounding curves around week 5 coincides with the
increase of storage volume when many nodes have
minimal occupancy; deletions from these nodes trigger
node underflow activities. Notice again, there is

a convergence of cost bounds. 7

6 This result has theoretical importance. It suggests
that only the bottom level of a file structure needs
to be modeled in detail.
7 The bounds remain close, even out to week 100 where

35

x of blocks OccuPied

2200
1

1800

..1600

1400

1200

1000

1

__--
__c--__

__--

/ /--
/

/

//

,

/I

:
I

__c---- __--
__--

,/--
/

/

//

,

/I

:

i

0
0

I I
5 5

I I I I I I
week week

10 10 15 15 20 20 25 25

indexed sequential

--m--w 0+ tree

Figure 5. Expected Storage Volume

6 of block transfers

;Ic- of blocks transferred! d1

2200 ,

1800

1600

1200

1000

indexed sequential

-VW---- B+ tree

Figure 6. Expected Sean Efficiency

+ of block transfers

5.2

5.0- . .
. .

. l

4.8- .’ l
4.6, :

.
.

I
. --\ . . f / \ .

4.4 :/
‘\\ .

\ .

week 4.0 -1 WF&ZK

0 5 10 15 20 25

indexed sequential ‘. indexed sequential

. B+ tree (upper bound) B+ tree (upper bound)

.------ B+ tree (lower bound) ------- B+ tree (lower bound)

Fiaure 7. Expected Insertion Efficiencv Figure 8. Expected deletion Efficiency

36

260

240

180

160

1 4 7 10 13 16 19

. II I I * theoretical minimum

indexed sequential

---e--e B+ tree

Figure 9. Expected Usage Cost Graphs

For the remaining operations of record retrieval
and update, the differences observed between B+ tree
and indexed sequential performance were negligible
(i.e., less than 1%). Again, this result is specific
to our problem; it need not be characteristic of all
situations.

At last, we compare the Usage-Costs of the B+
tree and indexed sequential files (Fig. 9). For
our problem we find that an indexed sequential
file is slightly more efficient than a B+ tree.
The predicted difference at week 25 is about

13%?
In order to complete our preformance comparison,

it is necessary to consider the cost of reorganiza-
tions. The sum of all indexed sequential constuc-
tion and dumping costs was slightly over $40. Such
costs are easily amortized during the first few

DELm(F)=4.12xA and DEL+(F)=4.2lxA. The same is true

for insertions where INS-(F)=4.13xA and INS+(F) =
4.26xA.

8 Although the UsageJost for B+ trees was bounded,
the differences between bounds were negligible.

22

week

weeks of indexed sequential usage.
The efficiency of indexed sequential files is

due to frequent reorganizations. At no time are
many records in overflow. Consequently, indexed
sequential performance closely approximates the
theoretically minimal usage cost which is achieved
if the file is continuously reorganized (see Fig. 9
and Appendix IV). B+ tree performance is less
efficient due to its lower storage utilization.

Earlier we noted that the expected height of a
B+ tree may not be known with certainty. Notice,
however, that a B+ tree’s height is usually greater
than or equal to that of an indexed sequential file.
Should it be greater, it is clear from the evidence
just presented that indexed sequential files will
still be preferred to B+ trees. :

6. CONCLUSIONS ‘,

An analytic method has been presented for com-
paring B+ tree and indexed sequential file perfor-
mance. The relative performance of B+ trees and
indexed sequential files is application dependent;
which structure is preferred varies in different
situations. File usage, file size, record lengths,
and block storage and access costs all have an impact
on the final selection. In the situation that we
examined, we noted that indexed sequential files

37

were slightly more efficient than B+ trees. Further
experiments are necessary to assess the generality
of these conclusions.

Acknowledgements. I thank Dr. M. Edelberg for
suggesting the topic of this paper. I also thank
Dr. K.C. Sevcik for his helpful insights and
suggestions.

REFERENCES

[AHU74] Aho, A.V., Hopcroft, J.E., and Ullman, J.D.,
The Design and Analysis of Computer Algorithms,
Addison-Wesley, Reading, Massachusetts, 1974.

[BatSOa] Batory, D.S. "Optimal File Designs and
Reorganization Points", Computer Systems
Research Group Tech. Rep. 110, University of
Toronto, 1980.

[Bat80b] Batory, D.S. "An Analytic Model of Physical
Databases", Ph.D. Th., University of Toronto,
1980.

[Corn791 Comer, D., "The Ubiquitous B-Tree", ACM
Computing Surveys 11,2 (June 79), pp. 121-138.

[HaKodO] Hatzopoulos, M. and Kollias, J., "A Dynamic
Model for the Optimal Selection of Secondary
Indices", Dept. of-Applied Mathematics, Univ.
of Athens, Athens, Greece, 1980.

[Knu73] Knuth, D.E., The Art of Computer Program-
ming, Vol 3: Sorting and Searching, Addison-
Wesley, Reading, Massachusetts, 1973.

[NaMi78] Nakamura, T. and Mizoguchi, T., "An Analysis
of Storage Utilization Factor in Block Split
Data Structuring Scheme", Proc. Very Large
Data Bases Conf., Berlin 1978, pp. 489-495.

[Rei76] Reiter, A., "Some Experiments in Directory
Organization - A Simulation Study", Proc.
Int. Symp. Computer Performance, Modeling,
Measurement, and Evaluation, (March 76),
Harvard, pp. l-6.

[HeSt78] Held, G. and Stonebraker, M., "B-Trees
Re-examined", Comm. ACM 21,2 (Feb. 78), pp.
139-142.

[Ram801 Ramirez, R.J., "Efficient Algorithms for
Selecting Efficient Data Storage Structures",
Ph.D. Th., University of Waterloo, Waterloo,
Ontario, 1980.

[Ston80] Stonebraker, M., "Retrospection on a Data-
base System", ACM Trans. Database Syst. 5,2

[Yao77](J
une 80), pp. 225-240.
Yao, S.B., "An Attribute Based Model for

Database Access Cost Analysis", ACM Trans.
Database Syst. 2,l (March 77), pp. 45-67.

[Yao78] Yao, A.C., "On Random 2-3 Trees", Acta
Informatica 9,2 (1978), pp. 159-168.

APPENDIX I. COST FUNCTIONS FOR INDEXED SEQUENTIAL
FILES

The cost functions in this Appendix and those in
Appendix II are based on the assumptions:

(Al) All records have an equal probability of
being requested.

(A2) All records have an equal probability of
being deleted.

(A3) Records that are inserted have identifiers
that are randomly chosen from a static,
perhaps lexicographically nonuniform,
distribution of identifiers. 9

The storage cost of a file is the file's storage
volume in blocks times the storage cost per block:

STOR(F) = (Z t p$q + >; 121 lxS

Provided that the records of a file are already
sorted on ascending identifiers, the cost of con-
structing an indexed sequential file is the cost of
writing out all blocks of the file:

CON(F) = (Z +
pi+] + ff; r&j JXA

Updating a previously accessed record requires
a block write:

uPD(F) = A

When each overflow record requires a separate
access, we have:,

RET(F,ONE) = (L + R)xA

RET(F,,$m) = Zx(l+G)xA

A file dump retrieves all records of a file in
ascending identifier order: 10

DUMP(F) = RET(F,SclYY)

If no records have been deleted,

INS(F) = RET(F,ONE) + (1 + 2xPfull)xA

If deleted records are marked deleted in a
primary block and are physically removed from an
overflow chain,

DEL(F) = RWF,ONE) + (1 + j&PA

APPENDIX II. COST FUNCTIONS FOR B+ TREES

Denoting STOR'(F) and STOR-(F) as the upper and

9 An example of a lexicographically nonuniform distri-
bution are the names in a phone directory. There is
a greater probability of selecting a name beginning
with 's' than a name beginning with 'z'.
10 i In praftice, file dumping is often accompanied by
file backup, i.e., copying the file on tape. Although
file backup is not included in our model, it could be
with minor additions to the CON and DUMP cost func-
tions. The additional terms would account for the
cost of reading and writing a tape file.

38

lower bound to the expected file storage cost, we APPENDIX IV. COST FUNCTIONS FOR A CONTINUOUSLY
have: REORGANIZED FILE

STOR+(F) = (Z +

When record insertions and deletions do not
alter the height of a B+ tree, bounds on the expected
cost of record insertion and deletion are:

INS-(F) = RET(F,ONE) + (1 + 2xPfull)xA

INS+(F) = INS-(F) + Zx(L-2)xPfullxA

DEL-(F) = RET(F,ONE) + (1 + Pundx(3 - Pmer))xA

t

0
DEL+(F) = DEL-(F) +

ifLs2

PundxPmerx(3+2x(L-3))xA
otherwise

Other cost functions are:

RET(F,ONE) = LxA

RET(F,Sm) = ZxA

UPD(F) = A

APPENDIX III. FILE PARAMETER DEFININITIONS

The following definitions are based on assumptions
(Al)-(A3) and are applicable when no record deletions
have occurred:

N= C rxT(r) T(r) H = C min(r,R)x--Z--
r r

Z= ET(r) rxT(r) Pfull = c - N r r>R

For indexed sequential files:

n= c (r-R)x(r-R+l)xT(r)

rzR 2xN

G= C (r-R)xF
rkR

-For B+ trees:

Pmer = 0

Pund = 0

n=o Fmer = R+k-M T(r)
r=M Z

Let F* be the descriptor of an (imaginary) tree
structured file with the properties:

1) it maintains 100% storage utilization,
2) new records are accommodated without node split-

ting or storing records in overflow,
3) deleted records do not leave vacant record slots,
4) the following identities hold: Z = N/R and

L = log
@iI

z +l.

Tree structured files with such properties are said
to be continuously. Cost functions for

F* are:

RET(F*,ONE) = LxA

RET(F*,Sm) = ZxA

INS(F*) = RET(F*) + A

DEL(F*) = RET(F*) + A

UPD(F*) = A

STOR(F*) = (Z +

G=O Pund = Mxv

39

