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Abstract 

An analytic method for comparing the performance of 
B+.trees and indexed sequential files is proposed. 
Preliminary results indicate that indexed sequential 
files may be more efficient than B+ trees in certain 
applications. 

1. INTRODUCTION 

A familiar problem in database and file design 
is choosing between a B+ tree and an indexed 
sequential implementation for a file. Over the past 
ten years, a variety of evidence has accumulated in 
favor of B+ trees. Support has come from surveys 
([Com79]), experience ([Ston80]), simulation studies 
([Rei76]), and analytic results ([Knu73], [Yao78]). 
Evidence in favor of indexed sequential files has 
been limited ([HeSt78]). 

Some of the primary advantages cited for the 
popularity of B+ trees are that reorganizations are 
unnecessary, algorithms are simple, and performance 
is good even under adverse conditions. Yet for the 
exception of reorganizations, indexed sequential 
files also have simple algorithms and can have good 
performance. Merely listing the.advantages and 
disadvantages of each structure is not sufficient 
to make a good decision. It would be more useful 

.to compare the performance of both structures under 
the conditions of anticipated file usage in order 
to choose that structure which performs better. 
Unfortunately, such a .comparison of B+ tree and 
indexed sequential performance has not been 
adequately addressed in the literature. 

Recent techniques for the analytic modeling of 
file evolution and file reorganization enable such 
comparisons to be made (see [Bat80a-b]). Although 
comparisons could be based on simulation studies, 
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analytic comparisons’are much less expensive. In 
this paper, some of these techniques are reviewed 
and a methodology for comparing Bt tree and indexed 
sequential file performance is proposed. 

2. ESTIMATING PERFORMANCE OF EVOLVING FILES 

The basic component of a file structure is a 
node which contains zero or more records. The 
records of a node are stored in a primary block and 
on a linear list called an overflow chain (Fig. 1). 
Nodes of B+ trees have overflow chains of’ zero 
length; nodes of indexed sequential files have 
chains of variable length. 

File structures have been identified with uni- 
form height directed trees where each vertex of a 
tree corresponds to a node ([Yao77]). The data 
level or leaf level, level 0, is where all data 
records reside; all higher levels constitute the 
cluster index of the structure (Fig. 2). Nodes that 
possess overflow records are usually confined to the 
data level. The topmost node, or root node, is main 
memory resident; all other nodes are secondary 
storage resident. 

File structures are modeled by a collection of 
parameters such as those given in Table 1. A speci- 
fic file is described by the values that are 
assigned to these parameters. This collection of 
values is called the file’s descriptor. Figures 3 
and 4 illustrate an indexed sequential and a B+ tree 
file with their descriptors. - 

File performance can be estimated by cost 
functions that accept a file descriptor as input and 
return estimates (or bounds on) the expected cost of 
executing designated file operations. For a file 
with descriptor F, some common operations and their 
expected cost functions are: 

cost function file operation 

RET(F,OK) retrieving a record given its identifier 
RET(F,Sm) retrieving all records 
INS(F) inserting a record 
DEL(F) ,. deleting a record given its identifier 
UPD(F) updating a previously retrieved record 

Expressions for these functions are given in Appen- 
dices I and II. Note that other operatio-ns, such 
as batched retrieval and updating, could ‘also be 
included in this list. 

Files evolve due to record insertions and dele- 
tions. Performance deterioration, which often 
accompanies file evolution, occurs when operations 
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become more expensive to execute.’ For example, 
expected record retrieval costs increase as over- 
flow chains become longer. 

As a file evolves, values assigned to selected 
parameters of a file descriptor will change. Spe- 
cifically, these are the file parameters of Tabie 1. 
Once it is known how a descriptor evolves, cost 
functions can be used to trace the evolution or 
deterioration of a file’s performance. 

The values assigned to file parameters are sta- 
tistics of a distribution called a node occupancy 
distribution. Node occupancy distributions take 
the form T(r) = number of data level nodes that con- 

tain r records. 1 For example, the parameters 2 and 
N have the following definitions: 

Z = number of data level nodes = C T(r) 
r 

N = number of records in file = C rxT(r) 
r 

Definitions for other file parameters are given in 
Appendix III. Owing to these relationships, the 
problem of modeling file evolution is identified 
with the problem of estimating node occupancy distri- 
but ions. 

General techniques are presented in [BatsOb] for 
estimating node occupancy distributions for hash 
based, indexed sequential, and B+ tree files, among 
others. Although it is beyond the scope of this 
paper to develop the techniques for deriving distri- 
bution equations, it is possible to summarize some 
relevant results. Let No be the initial file size 

and let s be the initial number of records stored 
in each data level node of a B+ tree or indexed 
sequential structure. (s is said to be the initial 
loading factor.) For an insertion only environment 
(i.e., no deletions), the node occupancy distribu- 
tion for an indexed sequential file is: 

P(I,r) = number of data level nodes containing 
r records after I records have been 
inserted 

No( No -’ I( .I, ) 
S 

Note: (l) is 
= 

N +1-l 
a binomial 

r( or I coefficient .j 

and for B+ trees (see [NaMi78]): 

Q(I,r) = number of data level nodes containing 
r records after I records have been 
inserted 

At B+ tree creation: 

Q(O,rl = 
{ 

No/s if r=s 

0 otherwise 

Because overflow chains are not used, the value of 
s is constrained to be between the minimum and 

1 A node occupancy distribution may be viewed as an 
unnonnalized probability distribution whose normali- 
zation constant is Z. 

maximum number of records per node: Mss<R,’ For 
other Q(I,r) : 

Q(I+l,Ml = QUM U- &I + QWW&l 
0 0 

Q(I+l,M+l) = Q(I,M+l) (l- &$ + QU,R)(& 
0 

QU+l,rl = Q(I,rl(l- No+I --% + QU,r-11(&l 
0 

index ranges: M+l < r < R, 12 0 

The above equations are valid only when the 
record capacity R of a primary block is even. For 
odd R, a node splits into two nodes with identical 
record populations. The corresponding equations are : 

QU+l,W = QU,W(l- &I + 2QU,Rl(j&) 
0 0 

Q(I+l,r) = Q(I,r)(l- &I + Q(I;r-11(&l 
0 0 

index ranges: M<rsR, 120 

No closed form solutions to these equations are . 
known. 

J’ The equations defining P(I,r) and Q(I,r) were 
developed from the same ass@ptions (specifically 
(A3)) as the cost functionstof Appendices I and II. 
Moreover, P(I,r) and Q(I,r) were validated by simu- 
lation studies. Equations that model the impact of 
insertions and deletions on node occupancy distri- 
butions are, in general, very complex. It is beyond 
the scope of this paper to present these equations, 
and for this reason we will confine our experiments 
to files that do not experience deletions. 

P(I,r) and Q(I,r) estimate node occupancy distri- 
butions after I records have been inserted. Applying 
the definitions of Appendix III to an estimated dis- 
tribution yields values for the file parameters. In 
this way, the evolution of a file descriptor is 
modeled. 

Because values of a file descriptor change with 
time, let F, denote the descriptor of a file at (the 

end of) time period t. F, describes the file at 

creation time (i.e.,‘;.before insertions and deletions 

occur). Also, let i(‘) denote the number of records 
in a file whose descriptor is F. To characterize the 
usage of a file, we .introduce the following statistics: 

I . . 1 
fret = number of times each record is retrieved 

via its identifier per time period 

fsc = number of file scans per time period 

fins = number of insertions per time period 

fdel = number of,deletions per time period 
. 

fupd = number of times each record is retrieved 
,. and updated per time period 

Let STOR(F) be the storage cost of a file with 
descriptot‘f (see Appendices I and II). If a 

2 For B+ trees, M = y 
1 J 
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descrintor remains constant over a time period, the 
cost of using the file during period t is: 

Static(ft) = (fret+fupd)xN(Ft)xRET(Ft,()NE) 

+ fscxRET(Ft,Sm) + finsxINS(Ft) 

+ fdelxDEL(Ft) + fupdxN (Ft)wD(Ft) 

+ STONFt) 

However, since file’descriptors do evolve, the usage 
cost of a file during period t is more closely 
approximated by: 

Usage-Cost (Ft) = Static(ft-1) + Static(ft) 

2 

where rt denotes the descriptor pair {Ft-l, F,). 

The primary objective of our study is to compare 
B+ tree and indexed sequential file performance. 
This will be accomplished, in part, by evaluating 
and comparing Usage Costs of the two structures. 
Before this can be zone, however, we need to know 
when an indexed sequential file should be reorgan- 
ized. Once this is known, a fair comparison can be 
made. 

3. ,A SOLUTION TO THE FILE REORGANIZATION PROBLEM 

File reorganization is the problem of determining 
when a file should be reorganized. A closely related 
problem is loading factor selection, i.e., choosing 
an initial loading factor for a file. In the follow- 
ing paragraphs, a-method for determining optimal 
reorganization points and loading factors for files 
with, fixed lifetimes will be developed. We begin 
by presenting a solution to the file reorganization 

problem. 3 

Let the lifetime of a file be T time periods. 
At the end of each period, a decision is made to 
reorganize the file or not.. The initial loading 
factor of a reorganized file is the constant s. 
: Let $(i,j) be the sum of the costs of: 1) con- 
structing the file at ‘the end of period i, 2) using 
the file during periods i+l through j, and 3) dump- 
ing the file at the end of period j. Let Fi t be 

the descriptor of a file at the end of period t, 
where the file was constructed at the end of period 
i, and let CON(F) and DUMP(F) be the costs of 
constructing and dumping a file with descriptor F 
(see Appendix I). $(i, j) is given by: 

$(i,j) = CON(Fi i) + i 
, t=i+l 

Usage-Cost(ri t), 
2 

+ DmP(Fi j) , 

3 The proposed solution for file reorganization 
presented here is similar to that in recently cir- 
culated works by Ramirez ([Ram80]) and Hatzopoulos 
and Kollias ([HaKoSO]). The approaches in these 
works are respectively based on data structures and 
index selection, quite different from our approach, 
but the method for determining reorganization 
points is similar. 

where f i t denotes the descriptor pair {Fi-t-l, 

Fi,t}. ’ 
, 

Let Cost(t) be the minimal usage and reorgani- 
z’ation cost for a file with a lifetime of t time 
periods. Clearly, 

Cost(O) = 0 

Cost(l) = $(O,l) 

To estimate Cost (2), note that the last reorgani- 
zation was either at the end of period 0 or period 
1. Choosing the situation with minimal cost yields: 

Cost(Z) = min[ Cost(O). + $(0,2), Cost(l) + $(1,2) ] 

and in general, 

Cost(t) = min [ Cost(i)+$(i,t) ] (11 
O<i<t 

By incrementing the index t, and progressively 
building upon previous results, Cost(T) is obtained. 
Recording the value of i used in each Cost(t) calcu- 
lation, for which Cost(i)+$(i,t) is minimal, deter- 
mines the times at which the file should be reorgan- 
ized. These are the optimal reorganization points 
for the file. 

The loading factor selection problem is inte- 
grated into this framework by allowing s, the loading 
factor of a reorganized file, to become an optimi- 
zation variable. $ (i, j) becomes $ (s,i, j), and (1) 
becomes : 

Cost(t) = min [ Cost(i) + mini $(s,i, j) )] (2) 
Osict S 

Recording the values of i and s used in each Cost(t) 
calculation, for which Cost(i)+$(s,i,t) is minimal, 
determines the optimal initial loading factors and 
reorganization points for the file. 

Equation (2) can be evaluated efficiently using 
dynamic programming techniques (see [RamBO],[AHU74]). 

4. EXPERIMENTAL RESULTS ON A HYPOTHETICAL FILE 

In the following paragraphs, we present results 
of a number of different computation experiments. 
These experiments are not intended to be comprehen- 
sive; their purpose is to indicate the types of 
analyses and results possible using the techniques 
described in this paper, 

Consider the indexed sequential file that is 
described by the values of Table 2. The file has 
an initial size of 20000 records, an insertion rate 
of 400 records per week, and a lifetime of 25 weeks. 
The block storage and access cost figures reflect 
current charging rates at the University of Florida’s 

main computing center. 4 Solving equation (2) for 
the optimal loading factors and reorganization 

4 It is worth noting that the computing center charges 
significantly higher storage rates for files that 
are stored V1onlinelt than for files that are stored 
“offline”. (“Online” fil.es can be accessed by inter- 
active programs; “offline” files can only be accessed 
accessed by batch programs.) We are considering an 
“online” file. 
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Descriptor Values: No=20000, R=20, M=O, 

Ri=255, Mi=l, A=.00131, S=.O5683 
Usage Statistics: fret=fupd=.S/week, 

finsJOO/week, fdel=O/week 
fsc=?/week 

File Lifetime: T=25 weeks 

Table 2. An Indexed Sequential File 

points, the optimal strategy is to construct and 
reorganize the file using the loading factor of 19 
records/node. Thus, the primary block of each data 
level node will contain one vacant record slot. 
Reorganizations occur at the end of weeks 2,4,6,8, 
10,13,16,19, and 22. With this information, and 
using the equations developed in Section 2 and 
Appendix I, the performance evolution of the 
indexed sequential file can be predicted. 

The height (L) of a B+ tree is bounded by: 

poqRi)zj + 1 SL $ lyg(&J + 2 

Occasionally, the height is well defined in that the 
upper bound equals the lower bound. Uncertainty 
arises when record insertions may cause the height 
of the tree to increase by one level; in such cases 
the upper bound and lower bound disagree. Our 
analysis of B+ trees is directed to those situations 
where insertions do not cause an increase in height. - 
Predicting the expected height of B+ trees appears 
to be a formidable task, and it is left as an open 
problem. But more on this later. 

Consider the B+ tree that is described by the 
values of Table 3. This file is identical to the 
file of Table 2; only the implementations differ. 
When the B+ tree is created, we assume that the 
initial loading factor (s) is 20, so that the 

storage utilization is 100%. 
5 

Using the equations 
developed in Section 2 and Appendix II, the perfor- 
mance evolution of the B+ tree can be predicted. 

Our comparison begins with Figure 5 where the 
expected storage volume of both structures are 
displayed. Because records are densely packed in 
an indexed sequential file, there is little free 
space. Consequently, the storage curve reflects 
the linear increase in file growth. It is inter- 
esting to note the after a reorganization, the 
storage volume increases due to the vacant slot 
allocated per primary block. As for the B+ tree, 
the storage volume quickly balloons from a storage 
utilization of 100% at week 0, to 59% at week 7, 
and finally to 73% at week 25. This follows since 
the first few insertions cause nodes to split 
(originally all nodes were full), which effectively 
halves the initial storage utilization. Because a 
significant amount of free space now exists, further 
insertions cause few splits, so the storage volume 
remains essentially constant. 

5 The initial loading factor of 100% was chosen arbi- 
trarily. Although initial loading factors do influ- 
ence the initial performance of a B+ tree, the impact 
decreases with time (see [NaMi78],[Yao78]). A pro- 
blem which is not addressed in this paper, but could 
be using the techniques that are presented, is 
determining good initial loading factors for B+ 
trees. 

Descriptor Values: No=20000, R=20, M=lO, 

Ri=255, Mi=128, A=.00131, S=.O5683 
Usage Statistics: fret=fupd=.S/week, 

fins=400/week, fdel=O/week 
fsc=7/week 

File Lifetime: T=25 weeks 

Table 3. A B+ Tree File 

In Appendix II, equations defining upper and 
lower bounds on expected B+ tree storage volume are 
presented, In our example, these bounds were so 
close that, for practical purposes, either estimate 
could be taken as the true storage volume. 

Figure 6 displays the expected number of block 
accesses needed to retrieve all records of both 
structures. Such an operation is called a scan. 
The sawtoothed curve clearly illustrates the effects 
of reorganization; after each reorganization, over- 
flow records are removed and the cost of a scan 
declines sharply. It is worth noting that at the 
end of week 13, the average length of an overflow 
chain reaches its maximum value, .35. Clearly, over- 
flow chains do not have to be long to significantly 
impact the cost of a scan. Also note that .35 is 
specific to our problem. It is not a characteristic 
of all indexed sequential files that are about to be 
reorganized. There are realistic situations (not 
considered here) where the average overflow chain 
length can be much longer. As for the B+ tree, the 
scan curve naturally reflects the storage curve of 
Figure 5. 

Figure 7 shows the expected number of block 
transfers needed to insert a record. For the indexed 
sequential structure, the first record inserted into 
a node will be stored in the vacant record slot of 
the primary block. This requires four transfers 
(three reads + one write). Subsequent insertions are 
stored in overflow and require additional transfers 
(to read and update overflow pointers). Thus, in- 
sertion into overflow is costly. For B+ trees, 
observe that the bounds on insertion performance are 
not good initially, but they quickly converge as 
the file grows. *Furthermore, the number of transfers 
needed is just slightly above the minimum of four. 
This indicates that a majority of the time, splitting 
does not occur, and when it does, it is confined to 

the data level of a B+ tree. 6 

Figure 8 displays the number of transfers needed 
to delete a record, although in the file that we are 
considering, no deletions occur. For indexed sequen- 
tial files, deletions rarely involve overflow records 
since the bulk of records reside in primary blocks. 
Consequently, deletions are efficient. For B+ trees, 
deletions are somewhat more expensive. The rise in 
the bounding curves around week 5 coincides with the 
increase of storage volume when many nodes have 
minimal occupancy; deletions from these nodes trigger 
node underflow activities. Notice again, there is 

a convergence of cost bounds. 7 

6 This result has theoretical importance. It suggests 
that only the bottom level of a file structure needs 
to be modeled in detail. 
7 The bounds remain close, even out to week 100 where 
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For the remaining operations of record retrieval 
and update, the differences observed between B+ tree 
and indexed sequential performance were negligible 
(i.e., less than 1%). Again, this result is specific 
to our problem; it need not be characteristic of all 
situations. 

At last, we compare the Usage-Costs of the B+ 
tree and indexed sequential files (Fig. 9). For 
our problem we find that an indexed sequential 
file is slightly more efficient than a B+ tree. 
The predicted difference at week 25 is about 

13%? 
In order to complete our preformance comparison, 

it is necessary to consider the cost of reorganiza- 
tions. The sum of all indexed sequential constuc- 
tion and dumping costs was slightly over $40. Such 
costs are easily amortized during the first few 

DELm(F)=4.12xA and DEL+(F)=4.2lxA. The same is true 

for insertions where INS-(F)=4.13xA and INS+(F) = 
4.26xA. 

8 Although the UsageJost for B+ trees was bounded, 
the differences between bounds were negligible. 

22 

week 

weeks of indexed sequential usage. 
The efficiency of indexed sequential files is 

due to frequent reorganizations. At no time are 
many records in overflow. Consequently, indexed 
sequential performance closely approximates the 
theoretically minimal usage cost which is achieved 
if the file is continuously reorganized (see Fig. 9 
and Appendix IV). B+ tree performance is less 
efficient due to its lower storage utilization. 

Earlier we noted that the expected height of a 
B+ tree may not be known with certainty. Notice, 
however, that a B+ tree’s height is usually greater 
than or equal to that of an indexed sequential file. 
Should it be greater, it is clear from the evidence 
just presented that indexed sequential files will 
still be preferred to B+ trees. : 

6. CONCLUSIONS ‘, 

An analytic method has been presented for com- 
paring B+ tree and indexed sequential file perfor- 
mance. The relative performance of B+ trees and 
indexed sequential files is application dependent; 
which structure is preferred varies in different 
situations. File usage, file size, record lengths, 
and block storage and access costs all have an impact 
on the final selection. In the situation that we 
examined, we noted that indexed sequential files 
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were slightly more efficient than B+ trees. Further 
experiments are necessary to assess the generality 
of these conclusions. 
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APPENDIX I. COST FUNCTIONS FOR INDEXED SEQUENTIAL 
FILES 

The cost functions in this Appendix and those in 
Appendix II are based on the assumptions: 

(Al) All records have an equal probability of 
being requested. 

(A2) All records have an equal probability of 
being deleted. 

(A3) Records that are inserted have identifiers 
that are randomly chosen from a static, 
perhaps lexicographically nonuniform, 
distribution of identifiers. 9 

The storage cost of a file is the file's storage 
volume in blocks times the storage cost per block: 

STOR(F) = (Z t p$q + >; 121 lxS 

Provided that the records of a file are already 
sorted on ascending identifiers, the cost of con- 
structing an indexed sequential file is the cost of 
writing out all blocks of the file: 

CON(F) = (Z + 
pi+] + ff; r&j JXA 

Updating a previously accessed record requires 
a block write: 

uPD(F) = A 

When each overflow record requires a separate 
access, we have:, 

RET(F,ONE) = (L + R)xA 

RET(F,,$m) = Zx(l+G)xA 

A file dump retrieves all records of a file in 
ascending identifier order: 10 

DUMP(F) = RET(F,SclYY) 

If no records have been deleted, 

INS(F) = RET(F,ONE) + (1 + 2xPfull)xA 

If deleted records are marked deleted in a 
primary block and are physically removed from an 
overflow chain, 

DEL(F) = RWF,ONE) + (1 + j&PA 

APPENDIX II. COST FUNCTIONS FOR B+ TREES 

Denoting STOR'(F) and STOR-(F) as the upper and 

9 An example of a lexicographically nonuniform distri- 
bution are the names in a phone directory. There is 
a greater probability of selecting a name beginning 
with 's' than a name beginning with 'z'. 
10 i In praftice, file dumping is often accompanied by 
file backup, i.e., copying the file on tape. Although 
file backup is not included in our model, it could be 
with minor additions to the CON and DUMP cost func- 
tions. The additional terms would account for the 
cost of reading and writing a tape file. 
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lower bound to the expected file storage cost, we APPENDIX IV. COST FUNCTIONS FOR A CONTINUOUSLY 
have: REORGANIZED FILE 

STOR+(F) = (Z + 

When record insertions and deletions do not 
alter the height of a B+ tree, bounds on the expected 
cost of record insertion and deletion are: 

INS-(F) = RET(F,ONE) + (1 + 2xPfull)xA 

INS+(F) = INS-(F) + Zx(L-2)xPfullxA 

DEL-(F) = RET(F,ONE) + (1 + Pundx(3 - Pmer))xA 

t 

0 
DEL+(F) = DEL-(F) + 

ifLs2 

PundxPmerx(3+2x(L-3))xA 
otherwise 

Other cost functions are: 

RET(F,ONE) = LxA 

RET(F,Sm) = ZxA 

UPD(F) = A 

APPENDIX III. FILE PARAMETER DEFININITIONS 

The following definitions are based on assumptions 
(Al)-(A3) and are applicable when no record deletions 
have occurred: 

N= C rxT(r) T(r) H = C min(r,R)x--Z-- 
r r 

Z= ET(r) rxT(r) Pfull = c - N r r>R 

For indexed sequential files: 

n= c (r-R)x(r-R+l)xT(r) 

rzR 2xN 

G= C (r-R)xF 
rkR 

-For B+ trees: 

Pmer = 0 

Pund = 0 

n=o Fmer = R+k-M T(r) 
r=M Z 

Let F* be the descriptor of an (imaginary) tree 
structured file with the properties: 

1) it maintains 100% storage utilization, 
2) new records are accommodated without node split- 

ting or storing records in overflow, 
3) deleted records do not leave vacant record slots, 
4) the following identities hold: Z = N/R and 

L = log 
@iI 

z +l. 

Tree structured files with such properties are said 
to be continuously. Cost functions for 

F* are: 

RET(F*,ONE) = LxA 

RET(F*,Sm) = ZxA 

INS(F*) = RET(F*) + A 

DEL(F*) = RET(F*) + A 

UPD(F*) = A 

STOR(F*) = (Z + 

G=O Pund = Mxv 
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