

Almacenamiento y Recuperación de la Información

Memorias Primarias (principales) vs Memorias Secundarias (masivas)

a.k.a.

RAM vs HD, diskette, Memoria Flash, CD, DVD...

Jair Cazarin Villanueva 125535 Jose Ignacio Paredes Tabales 124623

→ Discos son LENTOS:

RAM
120 nanosegundos

Disco Duro
30 milisegundos

Índice Libro
20 segundos

Pedirlo a la Librería 58 día

→ Un buen diseño de estructuras de archivos brindará acceso a grandes capacidades de información, sin gastar tiempo de espera por el disco

→ Objetivos:

- Idealmente obtener la información necesaria únicamente con un acceso a disco.
- Si no, encontrar lo deseado con el menor número de accesos posibles. Ej. Binary Search
- Agrupar la información de manera que encontremos todo lo que buscamos con un solo viaje a disco

→ Si los archivos se almacenaran en memoria (RAM), no existiría una disciplina para el estudio del manejo de archivos.

- → Diferencias entre memoria primaria y secundaria:
 - La primera es considerablemente más rápida.
 - La primera posee un acceso aleatorio y la segunda no.
 - La primera es demasiado cara:
 - 120 GB HD: \$95 usd
 - 256 MB RAM: \$40 usd

- → Existen otros problemas:
 - → Capacidad limitada en cuanto al espacio de almacenamiento por disco.
 - → Existe un cuello de botella en lo que se refiere a I/O para aquellos sistemas que requieren de gran performance.
 - → Acceso a disco (milisegundos) vs RAM (nanosegundos).

- → Posibles Soluciones:
 - → RAID (Redundant Arrays of Inexpensive/Independent Disks)
 - → Disk Catching

- → Random Access Memory (Memoria de Acceso Aleatorio).
- → Es una memoria volátil, es decir, pierde sus datos cuando es desconectado de la energía electrica.
- → Se utiliza normalmente como memoria temporal para almacenar resultados intermedios y datos similares no permanentes.
- → Para accesar a un registro en particular se tienen que leer registro por registro desde el inicio hasta alcanzar el registro particular que contiene el dato que se requiere.

- → Las RAM's se dividen en estáticas y dinámicas.
 - Una memoria RAM estática mantiene su contenido inalterado mientras esté alimentada.
 - Una memoria RAM dinámica se degrada con el tiempo.

- → Según los tipos de conectores que lleven los módulos, se clasifican en Módulos:
 - Módulos SIMM (Single In-line Memory Module)
 - Módulos DIMM (Dual In-line Memory Module)
 - Módulos RIMM (RAMBUS In-line Memory Module)

DRAM:

- → Dinamic Random Access Memory.
- → Bajo coste en comparación con otras tecnologías mucho más caras y complejas.
- → Necesidad de refrescar la memoria cientos de veces por segundo, ya que sólo un momento sin energía hará que todos los datos se pierdan.

→ Consumen una gran cantidad de energía y requieren de un control constante.

DRAM:

- → Algunas tecnologías que cabe destacar:
 - → DRAM(Dinamic RAM).
 - → FPM-RAM(Fast Page RAM).
 - → EDO-RAM(Extended Data Output RAM).
 - → SDRAM(Sinchronous RAM).
 - → DDR RAM(Double Data Rate RAM).
 - → RDRAM(Rambus DRAM).
 - → ESDRAM (Enhanced SDRAM).

SRAM:

- → Static Random Access Memory
- → No precisa de tanta electricidad como la anterior para su refresco y movimiento de las direcciones de memoria.
- → Tiene un elevado precio.
- → De momento se reserva para ser utilizada en la memoria caché de procesadores y placas base.

Tag RAM:

→ Almacena las direcciones de memoria de cada uno de los datos de la DRAM almacenados en la memoria caché del sistema

- → Agiliza el proceso de la siguiente forma:
 - Si el procesador requiere un dato y encuentra su dirección en la Tag RAM, va a buscarlo inmediatamente a la caché

VRAM:

- → Es la memoria que utiliza nuestro controlador gráfico para poder manejar toda la información visual que le manda la CPU del sistema.
- → Incluida dentro de la categoría de Peripheral RAM.

→ Es accesible de forma simultánea por dos dispositivos.

MRAM: Magnetic RAM

- → MRAM es una tecnología de memoria (RAM) que usa "electron spin" para almacenar información.
- → Combinanddo la densidad del DRAM con la velocidad del SRAM y la falta de volatilidad de las memorias FLASH o de los Discos Duros, y todo esto consumiendo muy poca cantidad de energía.

Como funciona?

MRAM normalmente funciona construyendo un minusculo campo magnetico en las intersecciones de una pequeña rejilla de nanoscopicos carriles de energía. Cuando la corriente procura viajar a través de un carril de la energía que esté oponiendo la polarización de uno de los bits del campo magnético, se atenúa su flujo actual y el valor del bit almacenado por el campo es detectado por este flujo actual debilitado.

Compañias involucradas:

- → Anelva
- → Cypress
- → Despath
- → IBM
- → Infineon
- → Spintron

Que esperamos de MRAM

MRAM ha estado en desarrollo durante mucho tiempo. En principios de 2005, Cypress y Freescale han comenzado a muestrear los módulos pequeños de MRAM. En el 2005 pudo ser enviado a los clientes, esto significa que aparecerá problabemente en el 2006.

Esto quiere decir que podrá alcanzar la densidades requeridas para comentir contra FLASH en celulares y otros dispositivos móviles para el 2007.

Ligas de interés:

- → http://www.mram-info.com/
- → http://www.cypress.com/
- → http://en.wikipedia.org/wiki/RAM
- → http://es.wikipedia.org/wiki/RAM
- → http://google.com

Libros:

- → Lenguaje Ensamblador y Programación para PC IBM y Compatibles.
- → Modern Information Retrieval