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Foreword

by Jim Gray
Microsoft Research

Precise clocks were developed so that seafarers could find their longitude. Precise
temporal data techniques were recently developed to help database designers record
and reason about temporal information. It is paradoxical that we are only now com-
ing to understand how to think about time and represent it in formal systems. After
all, time is the fourth dimension; it is at the core of existence. Yet, it is only recently
that we have come to understand the fundamental concepts of instants, intervals,
periods, sequenced changes, valid time, transaction time, and a bitemporal view of
information.

Richard Snodgrass and his colleagues have explored temporal data concepts over
the last two decades. They now have a fairly complete solution to the problems.
Indeed the concepts are now being added to the SQL language standard. This book
summarizes their work and presents it in a very accessible and useful way.

Temporal databases, viewed from this modern perspective, are surprisingly sim-
ple and powerful. The book gives examples of 85-line SQL programs that collapse
to 3-line programs when the new concepts are applied. It introduces the concepts
using concrete examples and conventional SQL. I found this mix of theory and
practice very instructive and very easy to follow.

The book explains that temporal databases can be designed in two steps. First,
the static database can be designed. Then, in a second pass, each table and con-
straint is given its temporal attributes. This makes design much more tractable.
This approach is made all the more attractive by the fact that the temporal SQL
language extensions are just modifiers to standard queries and updates—this very
elegant approach makes temporal issues orthogonal to the other language issues.

I highly recommend this book to anyone interested in temporal data—either
designing and building databases that record information over time, or just under-
standing the concepts that underlie representing temporal information. This book
does an excellent job of organizing and summarizing this important area.






Foreword

by Jim Melton
Oracle Corporation

It’s about time—time that a book like this was written and time that the SQL
community got the benefits of the careful analysis and thought put into the subject.

Rick Snodgrass is one of the relatively few researchers in the field of temporal
databases and has proved himself to be one of the more important of those few,
in part because he insists on applying the theoretical knowledge gained from his
research to practical applications and to real products.

Snodgrass proposed in 1992 that temporal extensions to SQL be developed by
the temporal database community. In response to this proposal, a virtual commit-
tee was formed to design extensions to the 1992 edition of the SQL standard (ANSI
X3.135.-1992 and ISO/IEC 9075:1992); those extensions, known as TSQL2, were
developed during 1993 by this committee meeting only via email. In late 1993,
Snodgrass first presented this work to the group responsible for the American Na-
tional Standard for Database Language SQL, ANSI Technical Committee X3H2 (now
known as NCITS H2).

In response to Snodgrass’s presentation, X3H2 proposed to the International Or-
ganization for Standardization (ISO) that the project to extend the standard for
SQL be enhanced by adding a subproject for temporal extensions to the language.
This proposal was accepted in 1994, and an initial document for ISO/IEC 9075-7,
known as SQL/Temporal, was started. Over the next two years, a series of propos-
als from Snodgrass and others were considered by the ISO group responsible for
SQL (ISO/IEC JTC1/SC21/WG3, later ISO/IEC JTC1/SC32/WG3), but progress was
slowed considerably by the need to focus on what has recently been published as
SQL:1999. Work will undoubtedly resume on progressing SQL/Temporal in 1999
for publication early in the next millennium, and Snodgrass will no doubt play a
significant role in its standardization.



FOREWORD BY JIM MELTON

The book you hold has been a long time in the making, not only because the
subject matter can seem overwhelmingly complex if not presented carefully, but
also because of the great number of examples that Snodgrass has taken from real
application systems and translated into standard SQL and its proposed extensions.
(Of course, not all of the examples can be used in all SQL products today; some of
them are directed toward specific vendors’ systems, while others depend on future
extensions to the language.) The result of that care and extensive use of examples
is great clarity and focus, yielding ready comprehension to readers willing to give
the book the attention it deserves. I recommend this book very highly to all SQL
practitioners, especially those with an interest in the temporal semantics of data.
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Preface

This is how it goes.

We develop a database application, and initially the project proceeds smoothly
enough. There are alternatives to weigh during the schema design, problems to con-
tend with while writing the SQL code, and constant reconfiguration and interaction
with other programs and legacy data, but all in all the project is under control. Then
we decide that one of the tables needs another DATE column, recording when the
row was valid. (After all, we added a birth date column a few weeks ago, with no
surprises.) So we rework the part of the application that maintains that table, notic-
ing that the code is getting more complicated. During testing, we discover that the
primary key no longer is sufficient. We add the DATE column to the primary key,
acknowledging that this is only a stopgap measure, and hope that the input data
will be well formed, as there isn’t time to write code that checks those constraints
properly. In the back of our mind is the lingering doubt that perhaps referential
integrity checking isn't working quite right either.

We soon realize that we need another DATE column to record when the row
was no longer valid. In doing so we encounter a raft of off-by-one bugs, in which
some less-than comparisons should have been ‘<=', and other places where we need
to add “+ '1' DAY”. We think we've found all the code locations that need to be
changed, but we're not sure. And we now know for a fact that the primary and
foreign keys are wrong, but we don’t know how to even approach that mess.

The code to modify the database is becoming increasingly convoluted. Each
modification has to at least consider changing the DATE columns, but it isn’t at
all clear how to approach such changes in a systematic fashion. And even the most
trivial queries, such as “Who was Aaron’s manager when he worked on the Capital
account?”, which before we could code in our sleep, now become painful to even
contemplate writing in SQL.

Around this time, users start complaining that reports aren’t consistent, that
copies of the end-of-the-year summary have different numbers in them. Looking
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into this anomaly, we finally figure out that the reports were run at different times,
and the data had been changed in the meantime. We then realize that there is no
way to correlate the end-of-the-year report with the cash flow report, unless they
are run at the same time. Users are adopting an irreverent view of these reports: if
you wait a few days, maybe the numbers will fix themselves.

To address the inconsistencies in the reports, someone suggests a quick fix: add
another DATE column. The development group responds with astonishment and
chagrin. How can we possibly get the code working with another DATE column,
when we all know how much work resulted from adding the previous column?
In fact, some in the group despair of ever getting the code as is, with just two
DATE columns, working correctly—there are just too many arbitrary decisions, each
layered on other equally ill-motivated quick fixes.

Looking back on the history of the development process, everyone has a vague
idea that the problems started when that pesky DATE column was first added. How
could one column flummox the whole system? And why do some columns, such
as the birth date column, slide in smoothly, and other DATE columns cause no end
of problems?

A PARADIGM SHIFT

Thomas Kuhn, in his insightful and highly influential book, The Structure of Scien-
tific Revolutions [64], argued that science does not proceed in a linear, monotonic ac-
cumulation of knowledge, but rather exhibits intellectually jarring discontinuities,
as radical ideas become the established world view, replacing the now-discredited
prior conceptual foundation.

Two decades of research into temporal databases have unequivocally shown that
a time-varying table, containing certain kinds of DATE columns, is a completely
different animal than its cousin, the table without such columns. Effectively de-
signing, querying, and modifying time-varying tables requires a different set of
approaches and techniques than the traditional ones taught in database courses
and training seminars. Developers are naturally unaware of these research results
(and researchers are often clueless as to the realities of real-world applications de-
velopment). As such, developers often reinvent concepts and techniques with little
knowledge of the elegant conceptual framework that has evolved and recently con-
solidated, and researchers continue to conceal this framework with overly formal
prose, never bothering to make the connection with existing tools at hand.

This book is an attempt to recast the insights from some 1600 papers in the
research literature into terms usable by those brave SQL application coders working
in the trenches. These concepts are integrated with the state-of-the-art approaches
utilized by forward-thinking developers, as showcased in the case studies that form
the bulk of the book. The result is, to use Kuhn's phrase, a paradigm shift in how
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we think about time-varying data. This shift impacts how such tables are specified,
how they are maintained, and how they are queried.

PREREQUISITES

I assume you are comfortable with the SQL query language. This book is not a
primer on that language, though I do cover the temporal data types and tempo-
ral constructs of SQL-92 in depth. There are many excellent books that serve as
introductions to SQL.

It helps if you have implemented an application involving time-varying data, if
only to realize firsthand how difficult and confusing such a project can be, and thus
to appreciate the degree to which the approach presented here helps clear out the
undergrowth and achieve an elegant and unfettered design. One chapter assumes
familiarity with the entity-relationship model; the rest of the book focuses solely
on the relational model.

The conceptual tools introduced here are in a specific and fundamental way ex-
tensions of existing strategies, so everything you've learned until now (well, almost
everything) will be useful in this brave new world. The hardest part, for which I'll
provide careful guidance, is to jettison the notion that this DATE column “is just
another column.” Operating under the old assumptions unhappily doesn’t work, as
project after project after project has shown. Paradigm shifts are always scary, but
the benefits are there for those willing to make the jump.

WHAT TO READ

The best way to understand the principles of time-varying applications and their
expression in SQL is to work through a series of tangible examples. By examining
the design issues that arise and the kinds of constraints, queries, and modifications
that we wish to express in implementing these specific applications, you will gain
an appreciation of the abstract principles at play. For this reason, the bulk of this
book is comprised of case studies.

Each case study sets the stage with a discussion of the application domain, which
includes oil field records, cattle location information, and cadastral data. The rel-
evant tables are introduced, followed by a discussion of the design, querying, and
modification of these (time-varying) tables. While the applications and the people
mentioned in the case studies all exist, the specific SQL examples have been tailored
to bring out the issues under discussion.

The case studies were easy to locate. It seems that most database applications
involve time-varying data. Indeed, applications that are inherently not temporal
are about as prevalent as the proverbial hen’s teeth. In fact, the only places you
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encounter nontemporal examples are in books and seminars, a phenomenon that
unintentionally emphasizes the inherent complexity of time-varying applications.

To understand the fundamental concepts, you are encouraged to read all the
chapters, even if you aren’t an oil field engineer or a veterinarian. Each case study
brings out a new category of temporal data, with its unique characteristics and de-
mands. In fact, by studying other fields, you are relieved of the minutiae of your
current environment. By studying a foreign language or culture, a deeper under-
standing of your own language or culture often follows as an additional, or even
sometimes primary, benefit. After you have read the book, a productive approach
to address a new set of requirements is to ask, To which case study is the application
under development most closely related? Then the relevant code fragments can be
customized to the problem at hand.

A few sections are marked with an asterisk to indicate advanced material. Feel
free to skip these sections on a first, or even second, reading.

CASE STUDIES

Befitting the book’s categorization as nonfiction, the people and their situations
are as described herein. The specifics of their solutions to the problems presented
by time-varying data have been adapted to better illustrate general approaches that
I wish to emphasize. Most of the SQL code was written by use for the book, but it is
reminiscent of that appearing in the actual applications. In the discussion, I have
attempted to not oversimplify. Much of the complexity inherent in these applica-
tions is cleverly hidden in the details, and any realistic solution must ultimately
confront the enterprise in all its glory and intricacy.

CD-ROM

The included CD-ROM contains the code fragments implemented in a variety of
commercial systems, including IBM DB2 Universal Database (UDB), Ingres, Inform-
ix—Universal Server, Microsoft Access, Microsoft SQL Server, Sybase SQLServer, Ora-
cle8 Server, and UniSQL. While these code fragments have been tested, the author
and the publisher make no claims as to the suitability or correctness of these code
fragments.

Also included are versions of some of the systems discussed in Chapter 12.

ERRORS

I would appreciate hearing about any errors that you find in the book, as well as re-
ceiving any other constructive suggestions you may have. (I'd especially like to hear
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of better ways to write individual code fragments.) Please email your comments to
the author at snodgrass@mkp.com.
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Introduction

shell came right back and hit you.” Thus Ernest Rutherford described his aston-

ishment at the result of his undergraduate student’s experiment in 1911. The
experiment was a simple one: expose thin foils of gold to « particles and watch for
appreciable scattering. The then-current model of matter was that it was a “bunch
of electrons and some nondescript smeared out jelly of positive charge.” The «
particle weighs some 8000 times more than an electron, yet was unexpectedly de-
flected by the jelly. This observation led to a radical change in our conception of
matter, resulting in the Rutherford atom, a tight nucleus surrounded by orbiting
electrons.

The scattering of particles and waves such as X rays provides much information
on the inner structure of matter. Diffraction patterns are stunningly beautiful in
their regularity, reflecting in a highly indirect fashion the ordering of atoms of the
crystalline solids (such as TaSe,, shown in Figure 1.1) exposed to the beam. These
patterns can be analyzed to understand this geometric structure and other proper-
ties. Indeed, much of what is known about the structure of solids is due to analysis
of diffraction patterns. Such a study was critical, for example, in understanding the
spiral staircase of DNA’s double helix.

The diffraction patterns are emphatically not magnifications of the crystalline
structure; rather, the various distances and angles of the blips can be translated
back via sophisticated calculations to the unseen lining up of atoms stuck in a
three-dimensional gridlock. Only by understanding the phenomenon of diffraction
of wave motion, and the impact of a periodic array of barriers on the impinging
wave, can physicists accurately orient the atoms and piece together the underlying
pattern.

An SQL table containing dates and times also exhibits a pleasing regularity, with
dates in one column recurring in other rows in another column, and the dates in
many rows marching forward almost in lockstep. This regularity is indeed sugges-

I t was “as if you fired a 15-inch naval shell at a piece of tissue paper and the



CHAPTER ONE: INTRODUCTION

1.1

Figure 1.1 Electron diffraction pattern of TaSe,. (Image reprinted, by permission,
from Structural and Chemical Analysis of Materials, Figure 11.5(b), by ).P. Eberhart.
© 1991 John Wiley & Sons, Ltd.)

tive of an inner structure, which SQL so effectively masks. Only by understanding
the ways in which time-varying behavior can be modeled, and by studying the
mapping of this information into tabular form, can an SQL table in a time-varying
application be effectively designed, queried, and maintained.

A TRIAD OF TRIPLES

It is human nature to differentiate, to tease apart, to contrast. Identifying dichot-
omies, partitioning into two mutually exclusive groups, seems to be a fundamental
strategy for contending with diversity. We favor black and white, this and that, us
and them, over shades of grey, a spectrum of possibilities, a global community. We
stereotype ourselves and others and all things by membership in identified groups:
plant or animal, minority or majority, right or wrong. Logic and libraries emphasize
the distinction between true (nonfiction) and false (fiction). Much of the prevalence
of computers in today’s society derives from the clarifying simplicity of strings of
just two values, O and 1, encoding everything from names to the relative strength
of a chess configuration.

As prevalent as this binary structure is, a collection of three items of similar im-
port seems to resonate even deeper. While a division into two parts is appealing
in its reductionism and simplicity, a trichotomy is attractive precisely because it is
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not either-or. A triad cannot be reduced to black and white, but is forever resigned
to contain ambiguity and complexity. Three-level logics embrace the value of “un-
known.” The Greeks viewed the world as comprising the earth, the sea, and the
sky (heaven). Christians rejoice in the Trinity; they also speak of earth, heaven, and
hell. In Buddhism, there are the three roots of evil: lust, hatred, and delusion. Many
religions differentiate the mind, the body, and the soul. Pythagoras celebrated the
triangle, the simplest geometric figure. We perceive three spatial dimensions. Rain-
bows are combinations of three primary colors. Many governments are partitioned
into three branches, for a similar reason that a stool has three legs. The harmonic
basis of Western music is a chord of three tones consisting of a root with its third
and fifth. A literary trilogy carries with it a satisfying completeness.

In this book we examine how to implement a time-varying application in the
SQL structured query language. We focus on three sets of orthogonal concepts:

e Temporal data types
e Kinds of time
e Temporal statements

These concepts are encountered in every time-varying application. If SQL ade-
quately supported these concepts, our task, and yours in actually developing the
application, would have been much easier: just use SQL in the appropriate fash-
ion to bring forth the desired behavior. Despite the near universality of time and
the time-varying nature of the enterprise being modeled—a static and unmalleable
configuration is rare and uninteresting—SQL quite frankly does a lousy job in cap-
turing those aspects that are changing in time, or in providing constructs to ef-
fectively model, query, or modify such information. Instead, you, the application
developer, are saddled with the task of transforming these concepts into something
that SQL can deal with. This book will emphasize the best way to think about time-
varying data and will show with many examples how to map these concepts into a
temporally unfriendly SQL.

Each of these concepts itself consists of three orthogonal elements. There are
three fundamental temporal data types:

e Instant: something happened at an instant of time (e.g., “now,” which happens
to be June 29, 1998, 4:06:39 P.M., when I am writing this, or sometime, perhaps
much later, when you are reading this)

e Interval: a length of time (e.g., three months)

e Period: an anchored duration of time (e.g., the fall semester, August 24 through
December 18, 1998)

SQL-92 includes support for instants and intervals, though in places it confounds
the two. Most DBMS products, though, only support instants, with intervals being
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simulated with integers or floating-point numerics. Periods are always left to the
application developer to simulate using supplied data types.

There are three fundamental kinds of time. We'll define more precisely and
illustrate these terms shortly, in the next chapter.

o User-defined time: an uninterpreted time value
e Valid time: when a fact was true in the modeled reality
e Transaction time: when a fact was stored in the database

These kinds of time are orthogonal: a table can be associated with none, one, two,
or even all three kinds of time. Understanding each kind of time and determining
which is present in an application is absolutely critical. We will characterize each
in detail. SQL-92 has rudimentary support only for user-defined time; the language
provides no help whatsoever with the other two types of time. That is left for you
to manage, manually, in your application. We'll see exactly how to do so.

There are three basic kinds of time-oriented statements:

e Current: now
e Sequenced: at each instant of time
e Nonsequenced: ignoring time

The trichotomy applies equally well to queries, modification statements, views, and
integrity constraints. The most useful is sequenced, for which SQL-92 provides
absolutely no help. In fact, getting SQL to express a sequenced statement is of-
ten quite painful, yet that is usually what is required by the application. We will
show exactly how to write all three kinds of statements. SQL-92 provides some sup-
port for nonsequenced statements; current statements are again entirely up to the
programmer.

So, the several hundred pages of this book attempt to convey three sets of three
orthogonal concepts, most of which SQL is woefully ignorant. Those notions for-
eign to SQL must be transformed from their clean, crisp manifestation into an of-
ten baroque expression in SQL. To add to the challenge, no DBMS supports the SQL
standard in its entirety; instead, there are infuriating inconsistencies and substitu-
tions each vendor has chosen to impose on its users. We help you navigate these
treacherous waters, and avoid the ever-present shoals.

THE SQL STANDARD

SQL is actually a series of standards. SQL-86 included no temporal data types, even
though some commercial implementations in the late 1980s did support such data
types. SQL-89 added support for referential integrity; no temporal data types were
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added. Several temporal data types were introduced in SQL-92: DATE, TIME, TIME-
STAMP, and INTERVAL. SQL3 is currently in draft form (and has been so for several
years; the path from draft to final accepted standard is a ponderous one). Portions of
SQL3 are expected to be approved as a standard in late 1999. Part 7, SQL/Temporal,
introduced a new constructor, PERIOD. In this book, “SQL” refers to SQL-92, and
“SQL/Temporal” refers to this draft part of SQL3. We emphasize facilities currently
available in database products, but also mention features on the horizon.

CONVENTIONS

In the case studies, for each kind of query (modification, asser-

“At least one” queries can be tion, constraint, view), the general principle behind the query is
easily stated using an additional ~ discussed. For some complex queries, pseudocode may be pro-
correlation name in the FROM vided. Following the pseudocode, a particular query is given as a

clause.

code fragment. Notable features of the query are then examined.

Code fragments are often referenced later in the discussion. The
references are abbreviated as, for example, CF-1.1. Important points are emphasized
as pull quotes (those pieces of information set off from text and extending into the
page margins).

As an illustration of the stylistic conventions used throughout this book, con-
sider (conventional) queries of the form “... at least one ...”—for example, “Which
manager makes less than at least one of their subordinates?” This query must find a
suitable subordinate for each manager listed. Such queries can be written with an
EXISTS or IN subquery.

Code Fragment 1.1 Which managers make less than at least one of their subordinates?

SELECT DISTINCT EID
FROM Employee AS M
WHERE EXISTS ( SELECT *
FROM Employee AS E
WHERE E.Mgr = M.EID AND E.Salary > M.Salary )

While this query in some ways parallels the English version, the effect can be
more easily obtained by augmenting the FROM clause and the WHERE clause.

“At least one” queries

Mention the table providing the sought-after entity in the FROM clause.
Reference that table in the WHERE clause to locate the entity.

Here, the sought-after entity is a subordinate (in the Employee table).
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Which managers make less than at least one of their subordinates
(without using EXISTS)?

Code Fragment 1.2

SELECT DISTINCT M.EID
FROM Employee AS M, Employee AS E
WHERE E.Mgr = M.EID AND E.Salary > M.Salary

The nested correlation name has been moved up to the main FROM clause, result-
ing in a more succinct query, a process termed “decorrelation.”

A stylized image of an escapement (the critical component of a mechanical clock)
is displayed on the opening page of each chapter in this book. Such clocks have
an escape wheel connected to a weight (such as in a grandfather clock) or a coiled
spring (such as in a wristwatch). The escape wheel, which is connected by gears to
the hands of the clock, would spin continuously if not retarded by the escapement,
which periodically stops and releases the escape wheel.

Over the last 500 years, horologists have devised all manner of ingenious escape-
ments. Examples include Arnold’s chronometer escapement, Bond’s gravity escape-
ment, Brocot’s pin pallet escapement, Congreve’s extreme detached escapement,
the Debaufre escapement, Froment’s electrical escapement, Graham's dead-beat es-
capement, Grimthorpe’s gravity escapement (used in Big Ben), Harrison's grasshop-
per escapement, and the very early verge and foliot escapement, some of which are
illustrated in the chapter openers.

Interspersed throughout the case studies will be brief sidebars on a multitude of

calendars and on the fascinating alchemy

of art, science, and engineering that char-
acterizes the development of increasingly
Calendars are mankind’s way of contending with

accurate clocks through the ages. The clock
descriptions are accompanied by a stylized
“sun” icon, the calendar descriptions by a
“moon” icon.

Finally, each chapter ends with a sec-
tion on implementation considerations,
identifying ways in which commercial sys-
tems deviate from the standard and pro-
viding adaptations of the chapter’s code
fragments that will run on these systems.

years and lunar months composed of a noninte-
gral number of days. As Stephen Jay Gould so elo-
quently writes “If God were Pythagoras in Galileo’s
universe, calendrics would never have become an
intellectual subject at all. The relevant cycles for
natural timekeeping would all be nice, crisp, easy
multiples of each other....But God, thank good-
ness, includes both Loki and Odin, the comedian

and the scholar; the jester and the saint. God did
not fashion a very regular universe after all. And we
poor sods of his image are therefore condemned
to struggle with calendrical questions till the cows
come home.” [35, p. 134]

A final section, Readings, provides point-
ers that elaborate on the material in that
chapter and in the clock and calendar side-
bars, indicating the correspondence to the
sidebars with the sun and moon icons,
respectively.
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Man’s first subdiurnal clock was most likely his
shadow: when it started getting longer, the day
was half over. The next advance was to substi-
tute a gnomon, or staff of known length whose
shadow can be measured (gnomon is a Greek word
for “pointer”). Obelisks at town centers, which pro-

vide a more accurate designation of noon, by virtue
of their height, were used in Egypt by around
1450 B.C.E. for the measurement of time and the
construction of calendars, thereby signaling the
beginning of the science of sundials, or gnomonics.

In the third century B.C.E., a Chaldean priest by

the name of Berossos hollowed out a half-sphere in
a rectangular block of stone, positioned a gnomon
in the center, and inscribed lines dividing the arc of
the shadow into 12 hours, in accordance with the
12 constellations crossed successively by the sun,
the zodiac (Figure 1.2). This hemispherium was the
first sundial to measure hours. Berossos then real-
ized that the bottom half of the sphere was never
used, so he removed this useless portion, resulting
in the lighter and thus more portable hemicyclium
(Figure 1.3).

Figure 1.2 Berossos’'s hemispherium. (From
Rohr, R. R. )., Sundials: History, Theory, and
Practice. Dover Publications, NY, 1996.)

Figure 1.3 Berossos’s hemicyclium. (From
Rohr, R. R. )., Sundials: History, Theory, and
Practice. Dover Publications, NY, 1996.)

1.4 IMPLEMENTATION CONSIDERATIONS

The SQL code for the fragments is almost entirely in standard SQL-92 (any excep-
tions will be clearly noted). Unfortunately, due to the noncompliance of all exist-
ing DBMSs, a few of these fragments run on no existing platform. Hence, each case
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study concludes with a discussion of how the general approach can be applied to
various specific DBMSs, including IBM DB2 Universal Database (UDB), Informix—
Universal Server, Microsoft Access and Microsoft SQL Server, Sybase SQLServer,
Oracle8 Server, and UniSQL. Each of these products supports a different variant
of SQL, introducing limitations that must be worked around and extensions that
can be exploited. Each also implements the various constructs in SQL differently,
so an approach that is impractical on one product may be the preferred one on
another product.

The included CD-ROM contains the code fragments implemented on one or
more DBMSs. The specific versions on which the fragments were tested were IBM
DB2 UDB; Informix-Universal Server 9.12; Microsoft Access 95, Access 97, and Ac-
cess 2000; Microsoft SQL Server 6.5 and 7.0; Sybase SQLServer 10; Oracle8 Server;
and UniSQL. However, because vendors work very hard to ensure their products are
upward compatible, these fragments can be expected to continue to apply in future
versions of these systems.

The descriptions of the specific DBMSs parallel each other, so each can be read
independently of the rest. Indeed, it is expected that you will be using only one
DBMS; the material on the other products may be safely skipped.

READINGS

The official designation of SQL-86 is American National Standards Institute (ANSI)
X3.135-1986 and International Organization for Standardization (ISO) 9075-1987,
“Database Language SQL.” This standard, at 110 pages, is relatively brief. SQL-89
is ANSI X3.135-1989 and ISO/IEC 9075:1989; this language added referential in-
tegrity. In addition, ANSI published X3.168-1989, “Database languages—
Embedded SQL,” which made specifications for embedding SQL in conventional
programming languages normative (required); ISO chose not to publish an anal-
ogous standard. SQL-92, which does have normative embedding, is ANSI X3.135-
1992 and ISO/IEC 9075:1992, “Database languages SQL” [44]. Melton and Simon
provide a comprehensive, readable presentation of SQL-92, including a thorough
explanation of the SQL standardization process (Jim Melton is the editor of the SQL
standards) [71]. The standard itself is a precise, though soporific 580 pages.

In 1995 ISO standardized ISO/IEC 9075-3:1995, “Database languages—SQL-
Part 3: Call-Level Interface”; the next year, ISO/IEC 9075-4:1996, “Database langua-
ges—SQL-Part 4: Persistent Stored Modules,” appeared. These were originally con-
sidered parts of the draft SQL3 specification, but were standardized before the core
part of that language. There is also a 150-page “Database language SQL—Technical
Corrigendum 3” that provides (mostly minor) corrections and disambiguations to
SQL-92, Part 3, and Part 4 [19].
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SQL3 is an evolving document, with 10 parts, two of which have achieved stan-
dardization, as just mentioned. The core portions of the language, SQL/Framework
(Part 1), SQL/Foundation (Part 2), SQL/CLI (Call Level Interface: Part 3), SQL/PSM
(Persistent Stored Modules: Part 4), and SQL/Bindings (Host Level Bindings: Part 5)
are nearing the FDIS ballot stage, when the SQL committees of the member coun-
tries will vote on the question of whether the specification is ready to be an inter-
national standard. SQL/Temporal (Part 7) will not go into balloting until the next
millennium. SQL/Foundation by itself is 850 pages; together all 10 parts of this
specification exceed a back-straining 2000 pages.

A page maintained by Keith Hare (www.jcc.com/sql_stnd.htm) is a central source
of information about the SQL standard. The information available there includes
the current status of the standard, information about the standards committees and
the standards process, and pointers to other standards pages. Eisenberg and Melton
provide a crisply written overview of database standards [29].

Ernest Rutherford, whose model of the atom constituted an essential step to-
ward our current understanding of matter, did not receive the Nobel Prize for that
contribution, only because he had already received this ultimate recognition some
three years earlier in 1908, at the ripe old age of 37, for his work with radioactive
elements and X rays. The context of these experiments is ably described by Abra-
ham Pais (who provides the second quote in the first paragraph of this chapter) in
his superb biography of the Danish physicist Neils Bohr [77, p. 123]. Bohr refined
and extended Rutherford’s model to arrive at our current understanding (which
is often called the “Bohr atom”), attaining the Nobel Prize in 1922, also at the
age of 37. Rutherford’s undergraduate student, Henry G. ]J. Moseley, subsequently
used Rutherford’s model, Bohr's theory, and his own X-ray diffraction studies to
understand the periodic table of the elements in terms of atomic numbers.

Stephen Jay Gould has written a delightful and highly recommended mono-
graph entitled Questioning the Millennium: A Rationalist’s Guide to a Precisely Arbitrary
Countdown. “If we regard millennial passion in particular, and calendrical fascina-
tion in general, as driven by the pleasure of ordering and the joy of understanding,
then this strange little subject...becomes a wonderful microcosm for everything
that makes human beings so distinctive, so potentially noble, and often so actually
funny” [35, pp. 157-158].

René Rohr’s Sundials: History, Theory, and Practice provides just that: a fascinating
2500-year chronology, a readable explication of the mathematics behind sundial
design, and sage advice on positioning the gnomon and drawing the arcs [80].
Along the way, 51 photographs and over 100 figures illustrate the myriad forms
sundials have taken over this period.
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ing the complexities of the actual implementa-
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T hey started getting sick in early June of 1997. Some just had a bad stom-
achache; others had severe cramping and were passing blood. They suffered
from a potentially lethal strain of the bacterium Escherichia coli (O157:H7).
By mid-August some dozen-odd cases, all in Colorado, were traced back to a process-
ing plant in Columbus, Nebraska. The plant’s operator, Hudson Foods, eventually
recalled 25 million pounds of frozen hamburger to attempt to stem the outbreak.

That particular plant processes about 400,000 pounds of hamburger daily. Ironi-
cally, this plant had received high marks for its cleanliness and adherence to federal
food-processing standards. What led to the recall of about one-fifth of the plant’s
annual output was the lack of a database that could track the patties back to the
slaughterhouses that supply carcasses to the Columbus plant. It is believed that the
meat was contaminated in one of these slaughterhouses, but without such tracking,
all were suspect.

Put simply, the lack of an adequate time-varying database cost Hudson Foods
$25 million.

Dr. Brad De Groot is a veterinarian working in Clay Center, Nebraska, about
60 miles southeast of Columbus. He is interested in improving the health main-
tenance of cows on their way to your freezer. He hopes to establish the temporal
relationships between putative risk factor exposure (e.g., a previously healthy cow
sharing a pen with a sick animal) and subsequent health events (e.g., the healthy
cow later succumbs to a disease). These relationships can lead to an understanding
of how disease is transferred to and among cattle, and ultimately to better detec-
tion and prevention regimes. As input to this epidemiologic study, Brad is collecting
data from commercial feed yard record-keeping systems to extract the movement of
some 55,000 head of cattle through the myriad pens of large feedlots in Nebraska.
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VALID-TIME STATE TABLES

It's present everywhere, but occupies no space.
We can measure it, but we can'’t see it, touch it,
get rid of it, or put it in a container.

Everyone knows what it is and uses it every day,
but no one has been able to define it.

We can spend it, save it, waste it, or kill it,

but we can’t destroy it or even change it,

and there’s never any more or less of it.

—Jespersen and Fitz-Randolph, From Sundials to Atomic Clocks

In a feed yard, cattle are grouped into “lots,” with subsets of lots moved from pen
to pen. One of Brad’s tables, the LOT_LOC table, records how many cattle from each
lot reside in each pen of each feed yard. The full schema for this table has nine
columns; we'll just consider a few of them.

Brad wishes to capture the history of which cattle were coresident, to study how
disease moves from cow to cow. He adds two columns, FROM_DATE and T0_DATE, to
this table:

LOT_LOCCLOT_ID_NUM, PEN_ID, HD_CNT, FROM_DATE, TO_DATE)

These two columns will enable many interesting queries to be expressed (some of
considerable intricacy), while enormously complicating previously innocuous con-
structs such as primary and foreign keys. These columns render the table a “valid-
time state table”: it records information valid at some time in the modeled reality,
and it records states, that is, facts that are true over a period of time. The FROM_DATE
and TO_DATE columns delimit the “period of validity” of the information in the row.
The “temporal granularity” of this table is a day.

The first three columns are integer columns. The last two columns are of type
DATE. SQL supports three kinds of instants, DATE, TIME, and TIMESTAMP, which
differ in their range of values (e.g., DATEs range over 9999 years, whereas TIMEs
range over only 24 hours) and their temporal granularity (a day for DATE and a
second for default TIMEs). Chapter 3 covers these and the INTERVAL data types in
all their glory (and grubbiness).

The last two columns denote the starting instant (actually, the starting day) of
the period of validity of the row and the terminating instant of the period of va-
lidity. Unfortunately, SQL-92 does not support periods, so the period of validity
must be implemented with two delimiting instants. Chapter 4 lists the various ways
periods can be implemented with the data types that SQL does provide, and the
operations (predicates and constructors) that may be applied to periods.

Table 2.1 records the movement of three lots of cattle in the feed yard. In this
table we see that 17 head of cattle were in pen 1 for 11 days, moving inauspiciously
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Table 2.1 The LOT_LOC table.

LOT_-ID_-NUM ~ PEN.ID HD_CNT FROM_DATE TO_DATE
137 1 17 1998-02-07 1998-02-18
219 1 43 1998-02-25 1998-03-01
219 1 20 1998-03-01 1998-03-14
219 2 23 1998-03-01 1998-03-14
219 2 43 1998-03-14 9999-12-31
374 1 14 1998-02-20 9999-12-31

off the feed yard on February 18 (SQL-92 DATE literals are expressed as year-month-
day). Also, 14 head of cattle from lot 374 are still in pen 1 (we use “forever” to
denote currently valid rows), and 23 head of cattle from lot 219 were moved from
pen 1 to pen 2 on March 1, with the remaining 20 head of cattle in that lot moved
to pen 2 on March 14, where they still reside.

Without the timestamp columns (FROM_DATE and TO.DATE), the primary key of
LOT-LOC is the pair (LOT_NUM_ID, PEN_ID), which can be informally expressed as “the
(lot identifier, pen identifier) pair is unique to a single row.” With the timestamp
columns, this can be generalized to “at any point in time, the (lot identifier, pen
identifier) pair is unique to a single row.” It is unfortunate that SQL's PRIMARY
KEY construct is inadequate for valid-time state tables; expressing this manifest
constraint in SQL-92 requires a complex assertion, as will be shown in Chapter 5,
which covers all manner of definitional requirements of valid-time state tables.

Queries

Queries over conventional tables ask, “What is?” Queries over time-varying tables
can be placed in three broad classes. For each conventional (nontemporal) query
over a table without these two DATE columns, there exist “current” (“What is
now?”), “sequenced” (“What was, and when?”), and “nonsequenced” (“What was,
at any time?”) variants over the corresponding valid-time state table.

Consider the nontemporal query “How many head of cattle from lot 219 in feed
yard 1 are in each pen?” The current analog over the LOT_LOC valid-time state table
is “How many head of cattle from lot 219 are (currently) in each pen?” For such a
query, we only are concerned with currently valid rows, and we need only to add a
predicate requesting such rows. This query returns the following result, stating that
all the cattle in the lot are currently in a single pen:

PEN_ID  HD_CNT

2 43
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The sequenced variant is “Give the history of how many head of cattle from lot
219 were in each pen.” The result (Table 2.2) provides the requested history. We see
that lot 219 moved around a bit.

The nonsequenced variant is “How many head of cattle from lot 219 were, at
some time, in each pen?” Here we don’t care when the data was valid. Note that
the query doesn’t ask for totals; it is interested in whenever a portion of the re-
quested lot was in a pen. Table 2.3 shows the result. Nonsequenced queries are
often awkward to express in English, but can sometimes be useful.

As another example, consider the nontemporal query “Which lots are coresident
in a pen?” Such a query could be a first step in determining exposure to putative
risks. Indeed, the entire epidemiologic investigation revolves around such queries,
which turn out to be notoriously difficult to express in SQL-92.

The current version, “Which lots are currently coresident in a pen?”, will return
the empty table when evaluated on Table 2.1, as none of the lots are currently
coresident (lots 219 and 374 are currently in the feed yard, but in different pens).

The nonsequenced variant is “Which lots were in the same pen, perhaps at
different times?” The result is Table 2.4: all three lots had once been in pen 1.

Note however that at no time were any cattle from lot 137 coresident with ei-
ther of the other two lots. To determine coresidency, the sequenced variant is used:
“Give the history of lots being coresident in a pen.” This requires the cattle to actu-
ally be in the pen together, at the same time. The result of this query on Table 2.1
is the following:

L1 L2  PEN.ID FROM_DATE TO_DATE

219 374 1 1998-02-25 1998-03-01

As we will see in Chapter 6, current and nonsequenced queries are relatively
easy to express in SQL, but sequenced queries, which are prevalent, are surprisingly
arduous. That chapter provides many examples to illustrate how such queries are
phrased in SQL.

Modifications

Modifications (that is, insertions, deletions, and updates) comprise the bulk of
many applications and are challenging when applied to time-varying data. We'll
illustrate modifications on the LOT table, which captures the gender of the cattle in
each lot. Surprisingly (especially to the cattle!), the gender attribute is time-varying.
As an aside on terminology, a “bull” is a male bovine animal (the term also denotes
a male moose). A “cow” is a female bovine animal (or a female whale). A “calf” is
the young of a cow (or a young elephant). A “heifer” is a cow that has not yet borne
a calf (or a young female turtle). “Cattle” are collected bovine animals.
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Table 2.2 The history of lot 219.

PEN_ID  HD_CNT FROM.DATE TO_DATE
1 43 1998-02-25 1998-03-01
1 20 1998-03-01 1998-03-14
2 23 1998-03-01 1998-03-14
2 43 1998-03-14 9999-12-31

Table 2.3 Result of a nonsequenced query.
PEN_ID  HD.CNT

43
20
23
43

[N T R

Table 2.4 Result of another nonsequenced query.

L1 L2 PEN_ID

137 219 1
137 374 1
219 374 1

A “steer” is a castrated male of the cattle family. To steer an automobile or a
committee is emphatically different from steering a calf. Cows and heifers are not
steered, they are “spayed,” or generically, neutered, rendering them a “neutered
cow.” There is no single term for neutered cow paralleling the term “steer,” perhaps
because spaying is a more invasive surgical procedure than steering, or perhaps
because those doing the naming are cowboys.

Bulls are steered to reduce injuries to themselves (bulls are quite aggressive ani-
mals) as well as to enhance meat quality. Basically, all that fighting reduces glycogen
in the muscle fibers, which increases the water content of the meat, which results in
less meat per pound. Heifers are spayed only if they will feed in open fields, because
calving in the feed yard is expensive and dangerous to the cow.

Figure 2.1 illustrates the transitions in gender that are possible, all of which are
irreversible. (And you thought that this book was going to be about databases!)

Capturing the (time-varying) gender of cattle is important in epidemiological
studies, for the gender can affect disease transfer to and between cattle. Hence, in
Brad’s feed yard database schema, LOT is a valid-time state table.
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Bull calf > Bull
Steer
Heifer calf > Cow

Neutered cow

Figure 2.1 Gender transitions.

A slice of the LOT table is shown in Table 2.5 (in this excerpt, we've omitted
several columns not relevant to this discussion). The GNDR_CODE is an integer code.
For expository purposes, we will use single letters, with c indicating the lot consists
of bull calves, h indicating the lot are heifers, and s indicating the lot are steers. The
FROM_DATE and TO_DATE in concert specify the time period over which the values of
all the other columns of the row were valid.

In this table, on March 23, 1998, a rather momentous event occurred for the
cattle in lot 101: they were steered. Lot 234 consists of calves; a TO_DATE of forever
denotes a row that is currently valid. Lot 234 arrived in the feed yard on February
17; lot 799 arrived on March 12.

Brad collects data from the feed yard to populate his database. In doing so
he makes a series of modifications to his tables, including the LOT table. As with
queries, there are three general classes of modifications: current, sequenced, and
nonsequenced.

“Lot 433 arrives today” is a current insertion. “Lot 101 leaves the feed yard to-
day” is a current deletion. The two modifications in concert result in Table 2.6. All
information on lot 234 after today has been deleted. (As this is being written on
January 13, 1999, “today” is shown in SQL as 1999-01-13, exposing the nonlinear
fashion in which this book evolved.)

“The cattle in lot 799 are being steered today” is a current update, with the result
shown in Table 2.7.

A current modification applies from “now” to “forever.” A sequenced modifi-
cation generalizes this to apply over a specified period, termed the “period of appli-
cability.” This period could be in the past, in the future, or overlap “now.”

“Lot 426, a collection of heifers, was on the feed yard from March 26 to April
14" is a sequenced insertion. “Lot 234 will be absent from the feed yard for the first
three weeks of October, when the steering will take place” is a sequenced deletion.
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Table 2.5 The LOT table.

LOT_-ID_-NUM  GNDR_CODE FROM_DATE TO_DATE

101 c 1998-01-01 1998-03-23
101 S 1998-03-23 9999-12-31
234 c 1998-02-17 9999-12-31
799 c 1998-03-12 9999-12-31

Table 2.6 Result of a current insertion and deletion.

LOT_ID_.NUM  GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-01 1998-03-23
101 S 1998-03-23 9999-12-31
433 c 1999-01-13  9999-12-31
234 c 1998-02-17 1999-01-13
799 c 1998-03-13 9999-12-31

Table 2.7 Lot 799 was steered today.

LOT_-ID_-NUM  GNDR_CODE FROM_DATE TO_DATE
101 c 1998-01-01 1998-03-23
101 S 1998-03-23 9999-12-31
433 c 1999-01-13 9999-12-31
234 c 1998-02-17 1999-01-13
799 c 1998-03-12 1999-01-13
799 S 1999-01-13  9999-12-31

A sequenced update is the temporal analog of a nontemporal update, with a
specified period of applicability. “Lot 799 was steered only for the month of March”
is a sequenced update. (Something magical happened on April 1. The idea here is
to show how to implement sequenced updates in general, and not just on cattle.)

As with queries, a nonsequenced modification treats the timestamps identically
to the other columns and often mentions the period of validity of the rows to be
deleted. An example is “Delete the records of lot 234 that have duration greater
than three months.”

Most modifications will be first expressed as changes to the enterprise being mod-
eled (some fact becomes true, or will be true sometime in the future; some aspect
changes, now or in the future; some fact is no longer true). Such modifications
are either current or sequenced modifications. Nonsequenced modifications, while
generally easier to express in SQL, are rare.



18 CHAPTER TWO : FUNDAMENTAL CONCEPTS

Chapter 7 shows that current and nonsequenced modifications are not that hard
to express in SQL, but sequenced modifications, which are often the most useful, are
doggedly obstinate, almost to the point of intractability. In that chapter we provide
abundant guidance on the care and feeding of modifications of time-varying tables.

2.2 TRANSACTION-TIME STATE TABLES

The LOT_LOC and LOT tables capture the history of reality. The first row of Table 2.6
says that had we checked the cattle in lot 101 anytime during the first three months

of 1998, we would have seen that they were calves.
Brad’s database also includes the LOT_CONTAINS table, with the following schema
(again, we omit mention of some of the columns):

LOT_CONTAINS (LOT_ID_NUM, BKP_ID, A_NAME)

The primary key of this table is LOT_-ID_NUM, so at any time, this value uniquely
identifies one row, which records the backup identifier and application name for
that lot.

Brad copies the files from the feed yard system, then later processes the infor-
mation. The LOT_CONTAINS table stores for each lot the backup file from which the
current information on that pen was extracted. Because this data tends to be dirty,
containing inconsistencies and omissions, Brad would like to track the information
in the LOT_CONTAINS table. In particular, he would like to reconstruct its state at any
date in the past. He adds two columns, a START_DATE indicating when that row was
first inserted into the table, and a STOP_DATE indicating when that row was updated
or deleted. We should emphasize that rows are logically deleted, because physically

deleting old rows would prevent past states
from being reconstructed. A table that can
e Tropical Year . .
be reconstructed as of a previous date is
termed a “transaction-time state table,” as
it captures the transactions applied to the
table.

As Table 2.8 shows, a row concerning
lot 101 was first inserted on January 1,
1998. The BKP_ID was incorrect, and so
was changed on February S from 17 to
18. A row concerning lot 433 was inserted
on January 13 and is still considered to
be correct (as signaled by a STOP_DATE of
“forever”).

The earth orbits around the sun, requiring a tropical
year to return to the same point in space, which
has been measured to take 365.2422 days. The fact
that the tropical year is not an exact multiple of
days, or even a simple fractional multiple of days,
such as 365%, has caused all manner of difficulty in
designing calendars. Calendars are expected to be
synchronized with both the rising of the sun and
the seasons, and sometimes with the waxing and
waning of the moon.
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Table 2.8 The LOT_.CONTAINS table.

LOT_-ID_-NUM  BKP_ID ANAME  START_DATE STOP_DATE

101 17 "ADE" 1998-01-01 1998-02-05
101 18 "ADE" 1998-02-05 9999-12-31
433 23 "SMP’ 1998-01-19 9999-12-31

While Tables 2.5 and 2.8 both have two DATE columns, the interpretation of
these columns is dramatically divergent. Valid-time tables capture a history of real-
ity, while transaction-time tables capture a history of the changing state of a table.
We cannot ask the LOT table what its state was three days ago, but we can ask the
LOT_-CONTAINS table that question. Similarly, we cannot ask the LOT_-CONTAINS table
what was true in reality three days ago, but we can ask the LOT table that ques-
tion. While any row of the LOT table may change, as we correct mistakes about
the captured history, the LOT_CONTAINS table grows monotonically, with old rows
remaining unchanged in perpetuity.

The most relevant query on a transaction-time state table is to reconstruct a past
state. “Provide the state of the LOT_.CONTAINS table on January 12, 1998” yields the
following result:

LOT_ID_NUM  BKP_ID  A_NAME

101 17 "ADE"’

Note that the BKP_ID for lot 101 was (erroneously) thought to be 17 on that Monday,
and lot 433 hadn’t yet arrived.

Now we ask, “Provide the state of the LOT_.CONTAINS table on February 12, 1998,”
with the following result:

LOT_ID_NUM  BKP_ID  A_NAME

101 18 "ADE"’
433 23 "SMP

The BKP_ID for lot 101 is now the correct value of 18.

Only current modifications are permitted on transaction-time state tables, as past
states cannot be changed. Modifications must permit subsequent reconstructions.
The modification “Correct the backup identifier for lot 433 to 37” produces the
result shown in Table 2.9.

Chapters 8 and 9 discuss transaction-time tables in detail, emphasizing various
representations, some requiring only one timestamp column.
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2.3

Table 2.9 The corrected backup identifier.

LOT_ID_.NUM  BKP_.ID A_NAME  START.DATE STOP_DATE

101 17 "ADE" 1998-01-01 1998-02-05
101 18 "ADE" 1998-02-05 9999-12-31
433 23 'SMP! 1998-01-19 1999-01-13
433 37 'SMP! 1999-01-13  9999-12-31

Table 2.10 The LOT bitemporal table.

LOT. GNDR-

ID.NUM  CODE FROM_DATE TO_DATE START_DATE STOP_DATE
101 c 1998-01-01 9999-12-31 1998-01-03 1998-03-19
234 c 1998-02-17 9999-12-31 1998-02-17 9999-12-31
799 c 1998-03-12 9999-12-31 1998-03-12 9999-12-31
101 c 1998-01-01 1998-03-23 1998-03-19 9999-12-31
101 S 1998-03-23 9999-12-31 1998-03-19 9999-12-31

BITEMPORAL TABLES

Valid time, capturing the history of a changing reality, and transaction time, cap-
turing the sequence of states of a changing table, are orthogonal, and can thus
be separately utilized or applied in concert. A table supporting both is termed a
“bitemporal table.”

The LOT table is critical to Brad’s epidemiological analysis, so he also tracks the
changes made to this table. This table already supports valid time; he adds two
columns, START_DATE and STOP_DATE, to capture transaction time.

Table 2.10 has four timestamps, befitting its bitemporal nature. There is a wealth
of information in such tables, if care is taken in reading them. Let’s examine this
table row by row.

e Row I: On January 3 (the START_DATE), the fact that lot 101, a group of calves,
arrived in the feed yard two days previously, on January 1 (the FROM_DATE), is
recorded. The valid time for this fact is January 1 to forever (the TO.DATE), in-
dicating that they are expected to remain calves. We'll return to the STOP_DATE
when we discuss the fourth row.

e Row 2: On February 17 (the START_DATE), the fact that lot 234, also a group of
calves, arrived in the feed yard that day (the FROM_DATE) is recorded. A STOP_DATE
of forever indicates that the fact is still considered to be correct.

e Row 3: On March 12, the fact that lot 799, a group of calves, arrived in the feed
yard that day is recorded.
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Table 2.11 The history as known on March 15.

LOT_ID_.NUM  GNDR_CODE FROM_DATE TO-DATE
101 c 1998-01-01 9999-12-31
234 c 1998-02-17 9999-12-31
799 c 1998-03-12 9999-12-31

Table 2.12 The history as known on April 1.

LOT_-ID_-NUM  GNDR_CODE FROM_DATE TO_DATE
234 c 1998-02-17 9999-12-31
799 c 1998-03-12 9999-12-31
101 S 1998-03-23 9999-12-31

e Row 4: On Thursday, March 19, unbeknownst to the cattle in lot 101, these cattle
were scheduled to be steered early the next week, on Monday, March 23. So we
logically update the first row by setting its STOP_DATE to the current date, insert
row 4, indicating that lot 101 consisted of calves from January 1 to March 23,
and insert row 5.

e Row 5: On Thursday, March 19, the fact that lot 101 is a collection of steers from
March 23 to forever was recorded, and that fact is still considered correct.

Since this table supports transaction time, we can reconstruct its state in the past.
“Provide the history of the LOT table as best known on March 15, 1998” (the Ides
of March, beware!) would generate the result shown in Table 2.11. As of March 15,
we hadn’t yet scheduled lot 101’s steering. “Provide the history as best known on
April 1”7 yields a different result (Table 2.12).

Interactions between valid and transaction time are especially interesting, as in
“When were steerings scheduled (as opposed to being recorded after the fact)?”
which would identify one such steering:

LOT_ID_.NUM  When_Scheduled When_Recorded

101 1998-03-23 1998-03-19

As bitemporal tables include transaction time, all modifications are transaction-
time current. However, we can still provide the period of applicability for
modifications, as in “Lot 234 will be absent from the feed yard for the first three
weeks of October.”

Chapter 10 explores the glorious expressiveness of bitemporal tables, as well as
the intricacies of expressing queries and modifications on such tables.
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2.4 SUMMARY

This chapter has introduced what we want to do with time-varying tables and has
provided a glimpse of how to do them: add one or more timestamp columns. Chap-
ters 3 through 10 furnish the intellectual tools to code applications in SQL over
temporal tables.

On the inside front cover, a Concept Map provides guideposts for our journey
through the triad of triples. In this map, the sections that explicate each concept
are listed in italics, following the concept.

The three temporal data types—instants, intervals, and periods—are covered
first. Valid-time state tables are the focus of Chapters 5-7. Chapter 5 considers how
such tables may be specified in the schema; integrity constraints are used heavily,
as the existing SQL constructs of UNIQUE, PRIMARY KEY, and FOREIGN KEY are
inadequate for time-varying tables.

The three kinds of queries—current, sequenced, and nonsequenced—are the topic
of Chapter 6; the analogous kinds of modifications are examined in Chapter 7.

Chapters 8 and 9 consider transaction-time tables, emphasizing the critical dis-
tinction between valid time and transaction time (SQL unfortunately completely
blurs this distinction). Chapter 8 considers instant-stamped tables, and Chapter 9
considers period-stamped tables.

Chapter 10 introduces bitemporal tables, supporting both valid and transaction
time. Again, we delve into the intricacies of defining, querying, and modifying

these tables.

We then return to Brad’s feed yard ap-

“ plication in Chapter 11, as a thorough
review of these strategies. Finally, Chap-
ter 12 indicates where future versions of
SQL are headed vis-a-vis temporal support
and shows that constructs proposed for
SQL3 offer a dramatic reduction in both
the number of lines of SQL code and the
mental gymnastics required, thereby end-
ing this exploration on an optimistic note.
We now have sufficient background to
understand the metaphor of the cover il-
lustration. The sphere on the cover is ma-
chined in such a way that it projects shad-
ows of three different clock faces. The
sphere represents a fact in a bitemporal
table, say, an employee table. The shadow

A day is demarcated by a physical change, the
peaking of the sun in the sky, indicating noon. Not
so for an hour; it is a purely arbitrary division. The
ancients studied the stars closely and knew that
the sun crossed 12 constellations: Aquarius, Pisces,
Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra,
Scorpio, Sagittarius, and Capricorn. This sequence
is called the zodiac, from the Greek word zodios,
meaning “figure of an animal.” The Chaldeans thus
divided the day (that is, the time between sunrise
and sunset) into 12 portions, or hours. However,
because the daylight is shorter in winter than in
summer, these were considered horae temporariae,
or “temporary hours.”
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2.5

on the left shows the time 10:25 A.M., indicating that the fact became true in re-
ality (the valid FROM_TIME) in midmorning. The shadow on the right shows the
time 12:35 p.M., indicating that the fact was stored in the database (the transaction
START_TIME) about a half hour after noon. Part of the fact is the time of birth (a
user-defined time) of 6:05 .M. We see that a particular fact in the database may
include a user-defined time and may be associated with both a valid time and a
transaction time.

READINGS

Other terms have been applied to the valid-time, transaction-time, and bitemporal
tables introduced in this chapter. They have been called temporal tables. The term
time-varying has been used, but this is a misnomer, as all tables in practice vary
over time, as rows are added, removed, and changed. The term time-oriented tables
is also not quite precise; just what does it mean to be “time-oriented”? (For that
reason, the title of this book is unfortunate. To be honest, I originally preferred
Developing Temporal Database Applications in SQL, but felt that title might confuse
people who did not know the technical definition of “temporal,” which no longer
characterizes you, gentle reader.) Such tables have also been called historical tables,
but this implies that they record information only about the past. Valid-time tables
often store information about the future, for example, in planning or scheduling
applications. The accepted terminology then is to refer to such tables as temporal
tables, or more specifically as, say, a valid-time table.

The official definition of a temporal database is “a database that supports some
aspect of time, not counting user-defined time” [49]. The intuition here is that
adding a user-defined time column such as birth date to an employee table does
not render it temporal, especially since the birth date of an employee is presumably
fixed and applies to that employee forever. The presence of a DATE column will not
a priori render the database a temporal database; rather, the database must record
the time-varying nature of the information managed by the enterprise.

It is perhaps surprising that the discipline of temporal databases is a very active
area within database research. There have been some 1600 (!) papers written about
this topic over a 20-year period. The number of papers has been rising exponen-
tially; several hundred now appear each year. Many are included in the most recent
bibliography, which has pointers to six prior bibliographies over the past 17 years
[105]. Three brief surveys [56, 76, 103] provide entry into this research field. The
most complete exposition, albeit somewhat dated by now, is Tansel et al. [102]; a
more recent text provides an updated summary [107].

The cover illustration was inspired in part by the cover of Hofstadter's Gddel,
Escher, Bach [40], which showed two pieces of wood carved to project shadows of
the letters G, E, and B on the three planes.
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At the core of a temporal application are tem-
poral values, indicating when something hap-
pened. There are three basic temporal types.
Instants and intervals are covered in this chap-
ter; periods, which enjoy much less support in
most versions of SQL, are the topic of the next
chapter.

We examine in depth the variants of in-

stants and intervals (SQL-92 supports five in-

stant variants and two interval variants) and
the operations permitted on these types. The
highly idiosyncratic temporal facilities of preva-
lent DBMSs are compared in detail with the
SQL-92 standard. The language facilities sup-
porting temporal values are similar in one way
to assembly language facilities: you can (gener-
ally) do what you want, but it is often far from

easy.



Instants and Intervals

tache, a graduate of the University of Texas, an oil man. His speech has an easy

cadence, peppered with humor. He is an engineer for GeoQuest, a data man-
agement company owned by Schlumberger, a Paris-based instrumentation com-
pany. (This name is of Germanic origin, but is pronounced as a French word.)

The oil and gas business is a dynamic, worldwide industry, with its practition-
ers transferred far and wide, and often. September of 1995 found Jim working in
Dubai, U.A.E., 8000 miles from his home base in Houston, Texas, working with the
Arabian Oil Company (AOC) to systematize its records on wells and oil and gas
production and distribution. Several of his clients are in Al Khafji, a company town
immediately south of the Saudi border with Kuwait. Al Khatji saw action in the Gulf
War, with the AOC workers leaving scant hours before the town was invaded.

Jim helped design the database underlying GeoQuest’s FINDER product. FINDER
implements the industrial standard Public Petroleum Data Model (PPDM) via some
300 tables on the Oracle DBMS.

The enterprise (here, wells, production, land, lithography, and seismic data) must
be modeled using the available data types, such as numerics, character strings, and
dates. Character strings record the names of things, numerics record the values that
have been measured or noted, and dates record the when of things.

As this book considers the time-varying nature of data, we focus here on the date
columns. FINDER utilizes all manner of dates. Many tables have Start_Date and
End_Date columns, denoting a period of time; we will examine this usage in detail
in the next chapter. Other tables have Start_Date and Next_Event_Date columns,
recording a succession of events.

FINDER also uses other approaches to capture time-varying data. The Fac_Daily.-
Prod table tracks daily production of a facility. Each row of this table records a
month’s worth of production. The PRODUCTION_YEAR column (of type NUMBER(4,0))
and MONTH column (of type VARCHAR(3)) denote the particular month, and 31
columns, DAY1 through DAY31, of type NUMBER(12,4), provide the daily production.

J im Barnett is the quintessential Texan: barrel-chested, sporting a thick mus-



26

CHAPTER THREE : INSTANTS AND INTERVALS

Duration data is also present in the FINDER schema. In the Well_Core_Hdr table,
the Dry_Time column (of type NUMBER(7,2)) and the Dry_Time_Unit (of type VAR-
CHAR(12)) in concert capture the drying time of the chemical analysis of a well core
(a sample extracted from a known depth from the well).

Jim found that addressing the AOC requirements involved adding even more
date columns. To most tables he added the following columns: Created_By, Create.
Date, Updated.By, and Last.Update, to track more carefully who effected a
change and when the change was made. Other temporal columns were needed by
particular tables, such as the Sample_Date, Dispatch_Date, and Return_Date columns
of the Wel1_Core_Sample table.

SQL defines several temporal types for use in columns. Any respectable DBMS
provides similar data types, though few compliant with the standard. SQL also
provides useful predicates, constructors, and functions for manipulating time val-
ues. Again, DBMSs include somewhat similar, though usually incompatible, opera-
tors. This chapter summarizes the temporal support that SQL and prevalent DBMSs
provide, and shows how to use these facilities to perform common tasks.

Jim’s task was made easier (or perhaps more difficult) by the fact that Oracle
supports but one temporal data type, DATE, of a fixed granularity, to a second.
This often shifted the decision from which temporal type was best to which other
available type, for example, NUMBER, should be used.

As in all data modeling, the first question that must be asked is, What is the
semantics, that is, the meaning, of the enterprise to be captured? In this sense, the
Dry_Time column of the Well1_Core_Hdr table is of a fundamentally different nature
than the Core_Date column of that table, even if both are to a precision of seconds.
And both are fundamentally different than the Start_Date and End_Date columns.
How these columns are typed and correctly manipulated in SQL depends critically
on determining their underlying semantics. In this and the next chapter, we exam-
ine the different temporal semantics that are available, and explore how Jim made
these distinctions when specifying the AOC extensions to the FINDER data model.

3.1 INSTANTS
An instant is an anchored location on the time line. [ am writing
Aninstant is an anchored this on the instant of 2:38 p.M., January 14, 1997, two days af-
location on the time line. An ter HAL's birth. (From 2001: A Space Odyssey: “I am a HAL 9000
SQL-92 datetime denotes an computer, production number 3. I became operational at the
instant. HAL plant in Urbana, Illinois, on January 12, 1997.”) An instant

occurs but once, and then is forever in the past.
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This data type is most fundamental. Other types can be implemented by, or
simulated to some degree with, instants; indeed, most DBMSs provide no other
temporal data types.

SQL terms instants datetimes and provides three specific forms and two varia-
tions.

3.1.1 The DATE Type

An SQL-92 DATE stores the year, month, and day values of an instant. The year
value must be in the range 0001 C.E. (Common Era, formerly called A.D.) through
9999 C.E. Note that a DATE value cannot denote B.C.E. (Before the Common Era,
formerly called B.C.) dates. While the SQL designers point to some technical is-
sues in justifying this design decision (such as there being no year O C.E., or year O
B.C.E.), its true rationale may lie in initial use of relational products primarily in ad-
ministrative data processing rather than in scientific applications. Both uses could
have been accommodated much better by centering this 10,000-year range at, say,
1 C.E., rather than favoring the years 5000 C.E. through 9999 C.E. over B.C.E. dates.

The month value is limited to the values 1 through 12, denoting the 12 Gre-
gorian months. The day value is limited to the values 1 through 31, although the
month and year value can apply additional restrictions limiting the maximum to
28, 29, or 30. For example, February 29, 1996, is legal, as is February 29, 2000, but
February 29, 1900, is not. None of these fields can be negative. This notation is

derived from the ISO 8601 standard.

Date literals consist of the year as four
digits, followed by a hyphen, followed by
the month as two digits, followed by a
hyphen, followed by the day as two dig-
its, in descending granularity (thereby pre-
sumably allowing less-than comparisons to
be implemented via lexicographic compar-
under instruction by Pope St. John I, the con- isons). HAL's birth date is then DATE ' 1997 -
cept of zero had not been invented. That epic 01-12'. Note that this literal requires 10
event would have to wait several centuries, first characters. The length of a DATE is spec-
ified as 10 positions, which is defined as
“the number of characters from the char-
self, then for farsighted Pope Sylvester I, reign- acter set SQL_TEXT that it would take to rep-
ing over the last millennial transition from 999 resent any value” in the DATE type. SQL
does not prescribe what internal format an
implementation employs for such values.

There is no 0 A.D.; 1 A.D. follows 1 B.C. The rea-
son for this seeming anomaly is that when the
bifurcation into B.C. and A.D. was proposed, by
a sixth-century monk named Dionysius Exiguus,

for Arabic mathematicians to devise the notion
of zero as a placeholder and as a value unto it-

to 1003, to advocate this concept in Western
usage.
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3.1.2

The TIMESTAMP Type

Should the user desire a finer precision than day, the TIMESTAMP data type is avail-
able in SQL. This variation stores the year, month, and day, as in DATE, along with
the hour, minute, and second, and a number of fractional digits of the second. The
default is six fractional digits, corresponding to microseconds. None of the fields
may be negative.

The timestamp’s precision, or number of fractional digits, can be specified in
parentheses when this data type is used; the precision defaults to 6. A precision
of 3 (i.e., TIMESTAMP(3)), indicates a granularity of milliseconds; a precision of 0,
seconds; a precision of 15, femtoseconds. The maximum precision is defined by the
implementation; a negative precision is not allowed. Twenty-four hour clock time
is used, so the hour value ranges from O to 23. The minute value ranges from O to
59, and the second value from O to 61 (more on this shortly).

SQL uses Coordinated Universal Time (UTC), based on atomic clocks.

The time portion of a timestamp literal is denoted in descending granularity:
hour, minute, second, each two digits and separated with colons, followed by a
period and fractional digits, if the precision is greater than zero. Hence the present
time, as near as 1 can tell from my watch, is TIMESTAMP '1997-01-15
11:35:29.123456". The length of a TIMESTAMP value is 26 positions (the length
includes the period character); the length of TIMESTAMP(0) is 19 positions.

The TIME Type

Will there really be a morning?

Is there such a thing as day?

Oh, some scholar! Oh, some sailor!
Oh, some wise man from the skies!
Please to tell a little pilgrim

Where the place called morning lies!

—Emily Dickinson, “Will there really be a morning?”

The SQL TIME data type stores the hour, minute, and second,

The SQL-92 datetime types and a number of optional fractional digits of the second. The
DATE, TIME, and TIMESTAMP default is no fractional digits, corresponding to integral seconds;
differ in the fields (year, month, ~ @ nonzero precision is denoted, as with TIMESTAMDP, in paren-

day, hour, minute, and second) theses.

they contain.

TIME literals are as one would expect: in descending granu-
larity, separated with colons (e.g., TIME '11:35:29"). The length
of a TIME value is eight positions; if the precision is nonzero,

then it is nine positions (for the decimal point) plus the precision. Unlike DATE
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and TIMESTAMP values, TIME values include a zero element: ‘00:00:00’.

As we will see in Section 3.7, and as hinted in Emily Dickinson’s poem, TIME
is not really an instant data type at all; it is a funny kind of interval (to be dis-
cussed below), representing a number (between O and 86,400) of seconds (along
with optional fractional seconds).

3.1.4 Time Zone Variants

Greenwich Mean Time ensures that the sun, on those days it is visible, is directly
overhead Greenwich, England, each noon. Locales distant from England, shift UTC
by a certain number of hours and minutes so that the sun is approximately over-
head locally at noon. Mountain Standard Time subtracts 7 hours from UTC. We
would expect 24 time zones, each corresponding to 60 minutes of longitude, but as
with all things political, there are many exceptions. Nepal’s time zone is 15 minutes
off from India’s as an expression of independence. Many locales also change the off-
set, advancing their clocks by one hour in the summer and turning them back in
the winter, at specified days. Arizona, unlike the other states in the Mountain Time
Zone, does not adopt this adjustment, called daylight saving time, presumably as
an expression of independence from the federal government. The Navajo Indian
reservation, located within Arizona, does use daylight saving time, perhaps to be
different than Arizona. And the Hopi Indian reservation, which is completely sur-
rounded by the Navajo Indian reservation, does not adopt daylight saving time,
perhaps to differentiate themselves from the Navajos. So you can drive a few hours
in Arizona and go in and out of daylight saving time four times.

Each SQL session has an associated default offset from UTC

The time zone can be stored that is used in that session. This offset can range from -12:59
with SQL-92 TIME and to +13:00 (the reason for the additional hour on each side is
TIMESTAMP values. daylight saving time). The offset is assumed for TIME and TIME-

STAMP values manipulated within the SQL session. Hence, time
literals denote the local time, whereas times are stored as UTC time (with no time
zone, i.e., Greenwich Mean Time).

The TIME WITH TIME ZONE data type includes with the stored value an explicit
offset from UTC. This is written as a sign (the hyphen character for a minus sign,
or the plus character) followed by the offset hour as two digits, a colon, and the
offset minute as two digits (e.g., TIME '11:08:27-07:00"). This added information
requires an additional six positions: four digits, a hyphen, and a colon. Fractional
seconds appear before the time zone (e.g., TIME '11:08:27.123456-07:00").

The TIMESTAMP WITH TIME ZONE data type is also available. Without frac-
tional digits, the length of this type is 25 positions, more with fractional dig-
its. An example is TIMESTAMP '1997-01-15 11:35:29.123456-07:00', requiring 32
positions.
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3.2

INTERVALS

...and an ocean tumbled by with a private boat for Max
and he sailed off through night and day

and in and out of weeks

and almost over a year

to where the wild things are.

—Maurice Sendak, Where the Wild Things Are

And which of you by being anxious can add one cubit to his span of life?

—Matthew 6:27

An interval is an unanchored contiguous portion of the time line.

An interval is an unanchored, An interval is relative; an instant is absolute. An interval can be
directional duration of thetime  added to an instant, yielding another instant. Intervals cannot

line.

3.2.1

be added to spatial points, nor spatial intervals (such as cubits)
to temporal intervals, except as (often highly effective) literary
devices, as the above quotes illustrate.

The distance between two instants is an interval. Unlike instants, intervals have
direction. An interval can be positive ormggatioe-gznesiagvalshifipto ihe doiiprexr
to the past. Whereas the other SQL types require but a

Intervals are less prominent in the f§WNRERs &@Q@@@riﬁ@@ni@ﬁ&miemﬁ‘o@&
signaled with “duration” or “interval” ifhf@@iﬁa@éﬂ}ﬁstel‘@@}j@ﬁff}bﬁmgﬁhea&@w
Durtn column in Well.Test_Period and tehanphie détdity ded lptwnitaeth@savill
Survey.Hdr table, or by mentioning the Bmgideuingiwhisérsomalzigg was happen-
ing, as in the Time_String_.In_Hole columpQyf Meﬂ@ﬂﬂidtgg_§@§y_}ﬁ@ﬁﬁblmt%§
interval columns are more obscure, suc}hmﬂuﬁgﬂt@m e aelunye oireain Ise
Flowback table (other columns having @namgedith Ehagqmﬁﬁ&@@p@%imfggﬁél
e.g., Start_Time). It appears that in the }}Iﬁimglgﬂm%yg{g;ammﬁ@y@oﬁs
we'll see, while SQL has an interval typesidezele8 Reivaledoes BR T seRRerhikisHYDSS
relying on the designer to differentiate iaggast,lﬁ(ﬁ@gpﬂﬁfﬁyy@is JEceHIR! vakactions

of a second. This distinction is due to vary-

The INTERVAL Type ing month lengths in the Gregorian calen-
dar. The individual units (months, hours,

Solid stone is Jﬁ%&@@oﬂ%ﬂ)"‘éﬁ@r’temed granules, so an
Sand and water, and ﬁllggwgyr},gﬁ?gﬁgggfeﬁgﬁed) integer number

—Beth Nielsen Cl@cfp&liaﬂ,u’lﬁﬁid and Water”

Intervals have a qualifier that Intervals are combinations of the fields year, month, day,
specifies the leading field, an hour, minute, and second, though not all combinations are
optional trailing field, and an

optional precision for the

leading and trailing fields.
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A sundial, or more ostentatiously, a heliochronome-
ter, in contrast to most other clocks, does not mea-
sure an interval of time; rather, it indicates a given
instant of time. A sundial can be moved to an-
other longitude and remain accurate; a mechani-
cal watch must be reset when moved—hence the
presence of multiple time zones on many modern
watches.

Sundials, when adjusted for the correct latitude,
are exceedingly accurate, measuring true solar time
(see page 95), at least when the sky is not cloudy.
There is no drift with a sundial, unlike mechanical
clocks.

3.2.2

allowed, as we will see. Intervals have a qualifier associated with
them that specifies the leading field, an optional trailing field,
and an optional precision for the leading and trailing fields. If
no trailing field is present, the interval contains only the leading
field.

Year-Month Intervals

For year-month intervals, the only fields available are year and month. Such
an interval can contain only years (INTERVAL YEAR), only months (INTERVAL
MONTH), or both (INTERVAL YEAR TO MONTH). For the leading or only field, a pre-
cision, specifying the maximum number of digits, is permitted (INTERVAL YEAR(p),
INTERVAL MONTH(p), INTERVAL YEAR(p) to MONTH); the precision defaults to two
digits and must be positive. Nonleading fields can have up to two digits.
Year-month literals are denoted with the year (e.g., INTERVAL

Year-monthintervals containa '3’ YEAR), the month (e.g., INTERVAL '7' MONTH), or the year
year, a month, or both fields. followed by a hyphen followed by the month (e.g., INTERVAL

"3-7' YEAR TO MONTH, for three years and seven months). Note
that the fields must be specified in literals, but the precision need not be. If years
and months are present, then the number of months must be between 1 and 12.
The length, in positions, of a year-month interval is the precision of the year field
if alone, the precision of the month field if alone, or the precision of the year field
plus three, for the hyphen and two digits of the month, if both are present.
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3.23

The hyphen in intervals is not a minus sign; it serves instead to separate field
values. An interval literal can have a sign preceding the quoted portion. A positive
interval literal is indicated by the absence of a sign or by a plus sign (e.g., INTERVAL
"3-4" YEAR TO MONTH = INTERVAL +'3-4" YEAR TO MONTH). A negative interval literal
is indicated with a minus sign (a hyphen) preceding the string portion of the lit-
eral (e.g., INTERVAL -'3-7"' YEAR TO MONTH, for three years and seven months going
back into the past). The one exception is the zero element, for which positive and
negative literals denote the same value: INTERVAL +'0-0" YEAR TO MONTH = INTERVAL
"0-0" YEAR TO MONTH = INTERVAL -'0-0" YEAR TO MONTH.

We note in passing that the Technical Corrigendum 3, currently in draft form,
permits a sign to also appear within the quoted portion. In fact, two signs can be
present, with the normal mathematical interpretation—for example, double nega-
tion results in a positive literal. Hence, INTERVAL +'3-4" YEAR TO MONTH = INTERVAL
"+3-4" YEAR TO MONTH = INTERVAL +'+3-4" YEAR TO MONTH = INTERVAL -'-3-4" YEAR
TO MONTH = INTERVAL "3-4" YEAR TO MONTH.

Day-Time Intervals

The gods confound the man who first found out
How to distinguish hours. Confound him, to,
Who in this place set up a sundial,

To cut and hack my days so wretchedly

Into small pieces!

—Plautus (quoted by David S. Landes), Boeotia

Day-time intervals may contain up to four fields: day, hour, minute, and sec-
ond, with optional fractional seconds. All fields between the leading and trail-
ing fields are included. Hence, INTERVAL DAY TO SECOND contains

Day-time intervals contain day, ~ four fields, while INTERVAL DAY TO HOUR contains two fields, and
hour, minute, and second fields, ~ INTERVAL DAY (or, equivalently, INTERVAL DAY TO DAY) contains
in any contiguous sequence. only one field. As with year-month intervals, we can specity a

precision for the leading field, which defaults to two digits. Ex-
amples include INTERVAL DAY (4) TO HOUR, which can represent up to 9999 days,
and up to 24 hours; INTERVAL HOUR(3) TO SECOND, which can represent up to
approximately 40 days; and INTERVAL MINUTE(4) TO SECOND, which can represent
almost a week (within a few minutes), to the granularity of seconds.

Day-time interval types and literals are even more complex when seconds are
involved because the standard wished to accommodate fractional seconds (no other
field can have a fractional value). If the leading (i.e., only) field is SECOND, then it
can have a precision, which defaults to two digits (e.g., INTERVAL SECOND(8), which
can represent three years). (A bit of trivia: there are = x 10’ seconds in a year, to
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an accuracy of greater than 1 in 100.) If the trailing (or only) field is SECOND, it
can also have a fractional precision, which defaults to six (e.g., INTERVAL DAY(3) TO
SECOND(3), which represents a count of milliseconds). A single SECOND field can
thus have two precisions, separated with a comma (e.g., INTERVAL SECOND(5,3),
which can represent milliseconds up to a little more than a day). Such intervals
require nine positions, including the period.

Day-time literals are just what you might expect, making the correspondence
with timestamp literals (e.g., INTERVAL '1 23:45:12"' DAY TO SECOND). In all cases,
the length in positions of an interval type is identical to the number of characters
required by any literal of that type.

3.3 PREDICATES

For such a diverse set of types (DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE,
TIMESTAMP WITH TIME ZONE, and two variants of INTERVAL: year-month and
day-time), SQL-92 supports only four classes of temporal predicates: equality, less-
than, is null, and overlaps.

There are several variants of the equality predicate; these variants apply to all the
data types. When applied to two expressions, ‘=" determines whether the values of
these expressions are identical. When applied to a value and a set of values (of the
same type), =ANY determines if the left-hand value is identical to at least one of the
values in the right-hand set. =SOME and IN are nonorthogonal equivalents. MATCH
also relies on equality testing. The queries in CF-3.1 are identical in meaning.

Code Fragment 3.1 Seven ways to ask for information on those born on January 1, 1970.

SELECT * FROM Employee

WHERE BirthDate = DATE '1970-01-01"

SELECT * FROM Employee

WHERE BirthDate =ANY (VALUES ((DATE '1970-01-01")))

SELECT * FROM Employee
WHERE BirthDate =ALL (VALUES ((DATE '1970-01-01")))

SELECT * FROM Employee
WHERE BirthDate =SOME (VALUES ((DATE '1970-01-01"')))

continued on page 34
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continued from page 33

SELECT * FROM Employee
WHERE BirthDate IN (VALUES ((DATE "1970-01-01")))

SELECT * FROM Employee
WHERE NOT BirthDate NOT IN (VALUES ((DATE '"1970-01-01"')))

SELECT * FROM Employee
WHERE BirthDate MATCH (VALUES ((DATE '1970-01-01")))

Here, VALUES constructs a table with one row consisting of one column. More
variations are possible using the UNIQUE and PARTIAL reserved words available
with MATCH. (We mention MATCH for completeness. This construct, particularly
with its options, is intended for determining whether or not candidate rows would
satisty referential integrity constraints.)

In all of the above examples, the two values being compared are of a specific type
(DATE). Two datetimes can be compared if they are comparable, which is defined as
having the same fields. Intervals are compared by first converting to a common
base granularity, then converting to integers, then doing the integer comparison.
So INTERVAL "3-7' YEAR TO MONTH can be compared to INTERVAL '43' MONTH (and in
fact these two intervals are equal), while neither of these intervals can be compared
with INTERVAL '23" DAY, as the two intervals are incomparable.

Since every SQL-92 data type, including the temporal types, is ordered, less-than
is defined on them all. The operators ‘<’, ‘<=', ©>’, *>=', and ‘<>’ comprise the avail-
able combinations. Each combination is a disjunction, OR-ing the two possibilities,
so ‘<=" means “less than or equal to.” The last, ‘<>’, means “less than or greater
than,” or equivalently, “not equal to.”

Code Fragment 3.2 Four more ways to ask for information on those born on January 1,

1970.

SELECT * FROM Employee
WHERE NOT BirthDate <> DATE '1970-01-01'

SELECT * FROM Employee
WHERE NOT BirthDate <>ANY (VALUES ((DATE "1970-01-01")))

SELECT * FROM Employee
WHERE NOT BirthDate <>ALL (VALUES ((DATE '1970-01-01")))

SELECT * FROM Employee
WHERE NOT BirthDate <>SOME (VALUES ((DATE '1970-01-01")))

There are yet other ways to test for equality of temporal values in SQL; the following
discussion will provide more than a dozen.
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The BETWEEN construct is a useful form of inequality. The predicate
value; BETWEEN value, AND values

is equivalent to

value, <= wvalue; AND value; <= values

Note that the BETWEEN predicate is ordered, in that value, < values is required.

Code Fragment 3.3 Two more ways to ask for information on those born on January 1,
1970.

SELECT * FROM EmpTloyee
WHERE BirthDate BETWEEN DATE '1970-01-01" AND DATE '1970-01-01"'

SELECT * FROM Employee
WHERE NOT BirthDate NOT BETWEEN
DATE '1970-01-01" AND DATE '1970-01-01"

These exploit the fact that equality is allowed on both sides of the BETWEEN.

As with other data types, the value of any temporal column can be NULL. And
as with other data types, predicates on null temporal values have the value un-
known, except for value 1S NULL, which returns true when the value is null and false
otherwise, and value 1S NOT NULL, which naturally returns true if the value is not
null.

The final temporal predicate, OVERLAPS, differs from the rest, in that it only
applies to temporal values, and then only to values of particular temporal types. As
we'll see in Chapter 4, OVERLAPS is a way to get periods in the back door.

The format of this predicate is

period information, OVERLAPS period information,

Either period information is constructed either via

( start time, duration)

or

( start time, end time)

where start time and end time are instants, that is, SQL datetimes, and dura-
tion is an interval that can be added to start time (we'll cover adding intervals to
datetimes in more detail in the next section). These two forms can be mixed and
matched at will.

The predicate returns true if period information; overlaps period informa-
tiony, that is, if they share at least one instant, or, equivalently, if the start of
period informationy is less than the end of period information, and the start
of period informationy is less than the end of period informationy (try itl). By
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using a zero duration, or identical start and end instants, we can construct periods
of one granule, as the following illustrate.

Code Fragment 3.4 Yet four more ways to ask for information on those born on January
1,1970.

SELECT * FROM Employee
WHERE (BirthDate, INTERVAL 'O' DAY)
OVERLAPS (DATE "1970-01-01", INTERVAL '0' DAY)

SELECT * FROM Employee
WHERE (BirthDate, BirthDate)
OVERLAPS (DATE "1970-01-01', INTERVAL 'O"' DAY)

SELECT * FROM Employee
WHERE (BirthDate, INTERVAL '0O' DAY)
OVERLAPS (DATE '1970-01-01', DATE '1970-01-01")

SELECT * FROM Employee
WHERE (BirthDate, BirthDate)
OVERLAPS (DATE '1970-01-01', DATE '1970-01-01")

NULL can be used in either position within a period information; often the
predicate will return true (or false) anyway.

Code Fragment 3.5 Three more ways to ask for information on those born on January 1,
1970.

SELECT * FROM Employee
WHERE (BirthDate, NULL)
OVERLAPS (DATE '1970-01-01", INTERVAL '0O'" DAY)

SELECT * FROM Employee
WHERE (BirthDate, NULL)
OVERLAPS (DATE '1970-01-01", NULL)

SELECT * FROM Employee

WHERE (BirthDate, NULL)
OVERLAPS (NULL, DATE '1970-01-01")

3.4 CONSTRUCTORS

A temporal constructor is an expression that returns a temporal value. (Some
might consider a predicate to be a boolean constructor, but we find it helpful to
differentiate predicates and other constructors.)
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The Gregorian Calendar

The Gregorian calendar was necessitated by the
fact that a year is not an integral number of days.
The tropical year is roughly 365.242191 days, or
equivalently, 365 days, 5 hours, 48 minutes, and
45.96768 seconds. (“Nature, apparently, can make
a gorgeous hexagon, but she cannot (or did not
deign to) make a year with a nice even number
of days or lunations” [35, p. 137].) The Julian cal-
endar starts off with 12 months of various lengths
that add up to 365 days. It then makes a correc-
tion of imposing a leap day every fourth year, as
a sequence of 365, 365, 365, 366 days, averaging
out at 365.25 days per year. This is pretty close:
it makes the year about 11 minutes and 154 sec-
onds longer than it actually is. But 11 minutes a
year can add up, and the civil calendar got more
and more out of step from the solar calendar. By
1581, the vernal equinox was on April 2, rather
than the accepted March 21. So Pope Gregory

3.4.1 Datetime Constructors

XIll appointed a committee, with the Jesuit math-
ematician Christopher Clavius as chair. His com-
mittee came up with two solutions, both imposed
by Pope Gregory in a papal bull issued on Febru-
ary 24, 1582. First, to get the civil and solar cal-
endars back in sync, 10 days, October 5 through
14, 1582, were simply dropped—they never ex-
isted! Second, the definition of leap years (a year
divisible by 4) was amended to not include a cen-
tury year (multiple of 100), but to still include years
divisible by 400. So, every 25th leap year was re-
moved, but every 100th was restored. 1900 is not
a leap year, but 2000 is, a fact still misunderstood
by some software packages. This yields the Gre-
gorian year to be 365.2425 days long, depart-
ing from the solar calendar by some 25.96 sec-
onds: pretty darned close! At this rate, a discrep-
ancy of one day accumulates every 2800 years
or so.

SQL provides seven constructors returning datetimes (DATE, TIME, TIMESTAMP,
TIME WITH TIME ZONE, and TIMESTAMP WITH TIME ZONE). We discuss each in
turn, after providing an example.

e DATE '1996-02-24" + INTERVAL '7' DAY This expression evaluates to DATE
'1996-03-02', as 1996 was a leap year. The instant is shifted forward (or back,
for negative intervals) by the length of the interval. For expressions involving an
interval and a datetime, the interval must contain only fields that are also con-
tained in the datetime. DATE '1996-02-24" + INTERVAL '12:30' HOUR TO MINUTE
is thus disallowed, as is DATE '1996-02-24"' + INTERVAL '2 12" DAY TO HOUR.

e INTERVAL '7" DAY + DATE '1996-02-24' This expression also evaluates to DATE
'1996-03-02", as addition of intervals and datetimes is commutative.

e DATE '1996-03-02' - INTERVAL '7' DAY This expression evaluates to DATE
'1996-02-24"' and is not commutative.

e TIMESTAMP '1996-02-24 12:34:56' AT LOCAL This expression assumes that
the value is expressed in terms of GMT and applies the local time zone offset
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to get the local time. As Tucson, Arizona is always at Mountain Standard Time
(MST), seven hours behind Greenwich, this evaluates to TIMESTAMP '1996-02-
24 19:34:56". As another example, TIMESTAMP "1996-02-24 12:34:56+02:00"' AT
LOCAL takes the Danish TIMESTAMP WITH TIME ZONE, specifically, at Mean
European Time with daylight saving (MET DST), normalizes it to UTC (i.e.,
10:34:56), then applies the Tucson, Arizona time zone offset, yielding TIMESTAMP
'1996-02-24 03:34:56". This construct may not be applied to DATE values. If
we use a value without specifying an AT clause, AT LOCAL is assumed.
TIMESTAMP "1996-02-24 12:34:56' AT TIME ZONE INTERVAL '-7:00" HOUR TO
MINUTE The expression allows the user to specify a particular time zone offset,
which must be an hour to minute interval. It returns TIMESTAMP '1996-02-24
19:34:56". As with the previous example, this construct may not be applied to
DATE values.

CURRENT_DATE returns the current date (the date of the current instant).
CURRENT_TIME and CURRENT_TIMESTAMP function analogously. All such so-called
datetime value functions within a statement are effectively performed simul-
taneously. Such functions appearing in two separate statements are allowed to
return different results.

CAST('1996-02-24" AS DATE) The CAST function converts a value in a source
data type (here, CHARACTER) to the specified target data type. When the target
data type (here, DATE) is a temporal type, then the cast may be regarded as
a temporal constructor. In this case, the function returns DATE '1996-02-24".
While only character strings may be cast to (and from) datetimes in SQL-92,
products often extend this to integers and other types.

The following types can be converted to a datetime value.

e CHARACTER A character string can be converted to a DATE, TIME, or TIME-

STAMP value. The string must be identical to a literal of the datetime type. The
example above converts a character string to a DATE. CAST('12:34:56"' T0O TIME)
is another example.

e TIME A time value may be converted to a TIME or TIMESTAMP value, the lat-

ter filling in the year, month, and day with the value of CURRENT_DATE. If the
target type has a time zone, then these fields are set to the current time zone
of the session. This is being written on Wednesday, July 23, 1997. CAST(TIME
"12:34:56"' AS TIMESTAMP WITH TIME ZONE) results in TIMESTAMP '1997-07-23
12:34:56-07:00". If the target has a smaller precision than the source, the addi-
tional digits are discarded. If the target has a greater precision than the source,
the needed digits are set to 0. Hence, CAST(TIME "12:34:56.123" AS TIME(6))
results in TIME '12:34:56.123000"; casting this value to TIME(1) results in TIME
'12:34:56.1".
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3.4.2

TIMESTAMP A timestamp value may be converted to a DATE, TIME, or TIME-
STAMP value, by extracting the requested fields and adjusting, if necessary,
the precision. Hence, CAST(TIMESTAMP '1997-07-23 12:34:56.123" AS TIME(6))
results in TIME '12:34:56.123000'; casting this value to DATE results in DATE
'1997-07-23".

DATE A date value may be converted into a DATE by simply copying the value
or into a TIMESTAMP by setting the hour, minute, and second to 0. CAST(DATE
"1997-01-01" AS TIMESTAMP(4)) yields '1997-01-01 00:00:00.0000".

Note that when a TIME value is cast to a TIMESTAMP, the current date provides the
missing fields, but when a DATE value is cast to a TIMESTAMP, the missing fields
are set to zero.

Interval Constructors

SQL provides a variety of constructors that return year-month or day-time intervals.
We summarize all but the cast function, which warrants closer scrutiny.

INTERVAL '3' DAY + INTERVAL '4' DAY evaluates to INTERVAL '7' DAY. The
result is at a precision so that information is not lost and contains the fields
of both arguments. Hence, INTERVAL '3' DAY + INTERVAL '4' HOUR yields IN-
TERVAL '3 4" DAY TO HOUR, and INTERVAL '3' DAY + INTERVAL '8 4' DAY TO
HOUR yields INTERVAL '11 4" DAY TO HOUR. The SQL-92 semantics treats INTERVAL
'3' DAY as exactly 3 days (72 hours).

INTERVAL '3" DAY - INTERVAL '4' DAY yields INTERVAL -'1' DAY. As with
addition, subtraction results in the union of the fields, to the necessary preci-
sion. INTERVAL '3' DAY - INTERVAL -'8 4' DAY T0 HOUR results in INTERVAL '11
4" DAY TO HOUR.

(DATE '1997-01-01" - DATE '1996-01-01') DAY yields INTERVAL '366' DAY, as
1996 was a leap year. Note that both the parentheses and a qualifier must be
specified; this provides the granularity of the result. The subtraction is done at
the least significant field of the qualifier, then the interval is converted to an
interval of that field as the end field, with a start field chosen to not lose any
information. So (DATE '1997-01-01" - DATE '1996-01-01') YEAR TO MONTH will
convert both to months (23,952 and 23,940, respectively, though it turns out the
origin doesn’t matter), then the difference is taken, resulting in INTERVAL '12'
MONTH, then the result is converted to the requested qualifier, or INTERVAL '1-0'
YEAR TO MONTH.

INTERVAL '4' DAY * 3 yields INTERVAL '12' DAY. Multiplication is symmetric;
this result is also obtained from 3 * INTERVAL '4' DAY. Multiple fields can
be accommodated; the interval is first converted to a scalar at the smallest
field, then converted back after the multiplication. INTERVAL '12:30"' HOUR TO
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MINUTE * 3 yields 750 minutes times 3, or 2250 minutes, or INTERVAL '37:30'
HOUR TO MINUTE.

INTERVAL "4" DAY / 2 yields INTERVAL '2' DAY. This is similar to multiplication,
though it is not symmetric. Hence, 2 / INTERVAL "4’ DAY is not permitted.

- INTERVAL '4' DAY yields, naturally, INTERVAL -'4' DAY. Unary plus is also
provided: + INTERVAL '4' DAY yields itself.

The final constructor is CAST. Datetimes cannot be cast to intervals, nor intervals

to datetimes. In fact, year-month intervals cannot be cast to day-time intervals, nor
vice versa. The only casts that result in year-month intervals are from three sources:

CHARACTER As with datetimes, a character string may also be cast to a year-
month interval, assuming the character string would have been acceptable as
a literal. CAST('2" AS INTERVAL MONTH) works, but CAST('3-7"' AS INTERVAL
MONTH) does not.

year-month interval The source interval is first converted to a scalar in units
of the least significant field of the target type. For CAST(INTERVAL '8-7' YEAR
TO MONTH AS INTERVAL MONTH(?2)), the source value would be converted to 103
months. This value is then normalized (a term not defined in the standard) to
conform to the target type. If the precision is not sufficient, as here, an excep-
tion is raised. As another example, CAST(INTERVAL '3' YEAR AS INTERVAL YEAR TO
MONTH), the source value would be converted to 36 months, then normalized to
3 years and O months, resulting in INTERVAL '3-0" YEAR TO MONTH.

exact numeric Here, the target interval must contain a single field, YEAR or
MONTH. The source value is interpreted as a number of such units. CAST(103
AS INTERVAL MONTH) would evaluate to INTERVAL '103' MONTH; CAST(103 AS
INTERVAL MONTH(2)) would raise an overflow exception.

Similarly, the only casts that result in day-time intervals are as follows:

e CHARACTER CAST('2 12:34' AS INTERVAL DAY TO MINUTE) works, but

CAST('12:34" AS INTERVAL DAY TO MINUTE) does not.

day-time interval As before, the source interval is first converted to a scalar in
units of the least significant field of the target type. For CAST('85 23:59:60"' AS
INTERVAL HOUR TO SECOND), the source value is converted to 7,434,060 seconds.
This value is then normalized to conform to the target type, resulting in IN-
TERVAL '2065:00:00" HOUR TO SECOND. Had a target type of INTERVAL HOUR(3) TO
SECOND been specified, an overflow exception would have been raised.

exact numeric Here, the target interval must contain a single field, DAY, HOUR,
MINUTE, or SECOND. The source value is interpreted as a number of such
units. To convert an exact numeric to a multifield interval, two casts are re-
quired. CAST(CAST(7434060 AS INTERVAL SECOND) AS INTERVAL DAY TO SECOND)
would evaluate to our original value INTERVAL "86 00:00:00" DAY TO SECOND.
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3.4.3 Other Constructors

Temporal values can also participate in casts to other types. We list these here for
completeness:

e CAST(DATE '1997-01-01" AS CHARACTER) returns the character string '1997-01-
01'. All temporal types can be cast to fixed- or variable-length character strings.

e CAST(INTERVAL '743060"' SECOND AS INTEGER) returns the value 743,060. The
source interval must have a single field. Intervals with multiple fields can be
converted to exact numerics via two casts; for example, CAST(CAST(INTERVAL
'2064:60:60" HOUR TO SECOND AS INTERVAL SECOND) AS INTEGER) yields the
same value.

Finally, individual fields can be extracted from datetimes and intervals:

EXTRACT(YEAR FROM DATE '1970-01-01") returns the integer value 1970.
EXTRACT(MINUTE FROM INTERVAL '12:34:56' HOUR TO SECOND) returns 34.
EXTRACT(TIMEZONE_HOUR FROM TIME '12:34:56-07:00") returns -7.
EXTRACT(TIMEZONE_MINUTE FROM TIME '12:34:56-07:00"') returns O.

The last two exemplify new reserved words that were required to obtain these
additional fields from datetimes with time zones.

Code Fragment 3.6 Yet another four ways to ask for information on those born on
January 1, 1970.

SELECT * FROM Employee
WHERE CAST(BirthDate AS CHAR) = '1970-01-01'

SELECT * FROM Employee
WHERE CAST(BirthDate AS CHAR) LIKE '1970-01-01'

SELECT * FROM Employee
WHERE CAST((DATE '1971-01-01"' - BirthDate) DAY AS INT) = 365
AND CAST((DATE '1971-01-01" - BirthDate) YEAR AS INT) =1

SELECT * FROM Employee

WHERE EXTRACT(YEAR FROM BirthDate) = 1970
AND EXTRACT(MONTH FROM BirthDate) =1
AND EXTRACT(DAY FROM BirthDate) =1

The resulting data type (fields and precision) varies among the operators. Table
3.1 summarizes the cases. Here, d denotes a datetime value, 7 an interval value, and
n a numeric (exact or approximate) value. Union (U) is shorthand for combining
the fields of both operands. This table lists all the constructors involving temporal
values.
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Table 3.1 Result type of SQL-92 expressions involving temporal values.

Expression Result type
d+1 type of d
i+d type of d
d-i type of d
d AT LOCAL type of d
d AT TIME ZONE i type of d
CAST(typeq AS types) typer

EXTRACT(field FROM d)
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

n (exact numeric)
DATE

TIME

TIMESTAMP

i1+ 177

i1- 172

(d-d) qual

i*n
n*i
i1/ 17
i/n
+ 7

-

type of 71U type of 7>
type of 71U type of 7>
qual

type of i

type of i

n (integer)

type of i

type of i

type of i

EXTRACT(field FROM i)  n (exact numeric)

3.5 IMPLEMENTATION CONSIDERATIONS

Although temporal types have been in the SQL standard since 1992 and were de-
fined in the mid-1980s, it is surprising, and unfortunate, that unlike other portions
of SQL, the types and their predicates and constructors are not supported by most
DBMSs. Instead, each vendor has defined an incompatible and idiosyncratic set of

No vendor supports SOL-92 at

the Full SQL level of
conformance. All products

include idiosyncrasies in their
temporal support that render
porting to other DBMSs difficult.

temporal types and operators, replete with inconsistencies and
seemingly arbitrary design decisions. Temporal types are among
the most variable features of commercial DBMSs. Coupled with
this is the often poor documentation available from the ven-
dors of temporal features of their products. Determining the op-
erations supported on temporal type(s) can be a frustrating ex-
ercise, with the information, if present at all, spread across the
documentation. The following is an attempt to gather in one
place the information about temporal support in a few promi-

nent DBMSs. We make no claim for comprehensiveness, but then, neither do most
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3.5.1

vendors. Interestingly, only Informix—Universal Server supports a type that provides
partial support for intervals; all of the other DBMSs require intervals to be simulated
with integers, fixed-point, or floating-point numbers.

IBM DB2 Universal Database

We start with IBM DB2 Universal Database (UDB), as it is closest to the SQL-92
standard in its support of temporal data types.

IBM DB2 UDB supports the DATE, TIME, and TIMESTAMP instant types, with a
few deviations from SQL-92. The TIME type has a fixed precision of 0, indicating
a granularity of seconds. The TIMESTAMP type has a fixed precision of 6, indicat-
ing a granularity of microseconds. Time zone information is not included in DB2
instant values; however, the current time zone is available in the CURRENT TIME-
ZONE register. Instant literals are specified as a conversion function of the name of
the data type operating on a character string, for example, DATE('1997-01-15") or
CAST('1997-01-15" AS DATE), which is preferred, because DATE( ) could be a user-
defined function. Timestamp literals replace the space between the day and hour
with a dash, for example, TIMESTAMP('1997-01-15-11.35.29.123456").

There is no INTERVAL data type in DB2 UDB. Instead, DB2 UDB supports
specialized versions of the DECIMAL data type, termed durations.

e A date duration, in the format YYYYMMDD, is a DECIMAL(8,0) number represent-
ing an interval of days, with a range of 10,000 years.

e A time duration, in the format HHMMSS., is a DECIMAL(6,0) number representing
an interval of seconds, with a range of one day. Note that the decimal point is
required in a time duration.

e A timestamp duration, in the format YYYYMMDD.HHMMSSZZ777Z, is a DECI-
MAL(20,6) number representing an interval of microseconds, with a range of
10,000 years.

These values can be stored in DECIMAL columns and represented by DECIMAL
constants. Hence, “DATE('1997-11-08") + 00010101.” adds one year, one month,
and one day to the indicated instant, resulting in the date 1998-12-09.

DB2 UDB also supports a kind of highly restricted interval literal, termed a labeled
duration, which is a numeric expression followed by a time unit (singular or plural).
Labeled durations can only be used in an addition or subtraction with an instant
type. An example is DATE('1997-11-08") + 1 MONTH. The available units are YEAR,
MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND, and plural versions of
these keywords.

The function TIMESTAMPDIFF takes two parameters, a code specifying the granu-
larity (e.g., 256 denotes years, 16 denotes days), and a character string that is the
result of subtracting two timestamps and converting the result to character form.
Note that there are many datetime functions provided.
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3.5.2

Table 3.2 shows how the facilities in SQL-92 can be simulated, to some degree,
in IBM DB2 UDB. In the SQL-92 column, d denotes a datetime value, 7 an interval
value, and n a numeric (exact or approximate) value. In the IBM DB2 UDB column,
d denotes a datetime value, 7 denotes a DB2 timestamp duration, and 7type is an
integer denoting an interval type.

Informix-Universal Server

Informix-Universal Server supports two instant types, DATE and DATETIME, and
an interval type, INTERVAL. Time zones are not supported. An Informix DATE is
stored internally as an integer denoting the number of dates since December 31,
1899; for example, day 1 is January 1, 1900. DATEs occupy four bytes, so the max-
imum date is sometime after 5 million C.E. Informix DATE literals are inconsis-
tent with SQL-92; in Informix, the month is first, followed by the day, followed
by the year, all separated with dashes, with the entire string delimited with double
quotes. However, an Informix DATE literal only supports two digits, for example,
DATE("10/01/98"), with the year 00 being 1900. To denote the years after 1999,
you have to add an INTERVAL explicitly. Hence, to designate January 1, 2000, you
have to use something like DATE("12/01/99") + INTERVAL(0-1) YEAR TO MONTH or
DATE("01/01/99") + INTERVAL(1-0) YEAR TO MONTH.

The Informix DATETIME type is equivalent to TIMESTAMP in SQL-92 and can
have a user-specified precision, such as YEAR TO MONTH or YEAR TO SECOND. SQL-92’s
TIME type is identical to Informix’s DATETIME HOUR TO SECOND. Fractional seconds
are denoted with FRACTION(n). SQL-92’s TIMESTAMP type is then equivalent to
Informix’s DATETIME YEAR TO FRACTION(6). Interestingly, Informix DATETIME lit-
erals are consistent with SQL-92 (except that Informix DATETIME literals don't
use quotes) but are inconsistent with Informix DATEs. Specifically, in an Informix
DATETIME literal, the year comes first, as a four-digit number, followed by the
month and day, then hour, minute, and second, without quotes (!). At this sec-
ond, my watch reads DATETIME(1998-04-08 12:13:52), about time for lunch; my
calendar reads DATE("04/08/98").

Informix-Universal Server supplies utilities such as DATE, MDY (month/day/
year), YEAR, and WEEKDAY for formatting and converting dates. The current DATE
is given by TODAY; the current DATETIME is given by CURRENT. The EXTEND
function can be used to alter the precision of instants. This function extracts the
year and month from the corresponding values of CURRENT; the minutes and the
seconds are set to zero if not provided. Hence, EXTEND(DATETIME(16 19) DAY TO
HOUR, YEAR TO SECOND) returns DATETIME(1997-01-01 19:00:00). It can also be used
to convert strings into instant types. The standard predicates are also available on
instants.

As in SQL-92, an Informix INTERVAL must be either a year-month interval or a
day-time interval. Note that intervals can be added to instants (yielding an instant),
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Table 3.2 SQL-92 operations in IBM DB2 UDB.

SQL-92

IBM DB2 UDB Equivalent

Types:

DATE

TIME

TIMESTAMP

TIME WITH TIME ZONE
TIMESTAMP WITH TIME ZONE
INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND

DATE

TIME (precision fixed at 0)

TIMESTAMP (precision fixed at 6)

no equivalent

no equivalent

A date duration(DECIMAL(8, 0)) with a
0 DAY field

A timestamp duration with 0 YEAR,
MONTH, and MICROSECOND fields,
negative values not available

Literals:

DATE '1997-01-01"

TIME '12:34:56"

TIMESTAMP '1997-01-01
12:34:56"

INTERVAL '3-4" YEAR TO MO

DATE('1997-01-01")
TIME('12:34:56")
TIMESTAMP('1997-01-01-
12.34.56.000000")
NTH 40 MONTHS,
00030400 (only in an expression)

(dy, 1) OVERLAPS (d,, d3)

INTERVAL '1 23:45:12" DAY TO 00000001234512.000000,
SECOND 171912 SECONDS (only in an
expression)
Predicates:
d1 = d2 d] = dz
dy < dy dy < dy
dy <> dy di <> d»
dq BETWEEN dy AND d3 dq BETWEEN dy AND d3
f] = fz f1 = fz
1< 12 1< 12
i1 <> 13 71 <> 12
7 BETWEEN 7, AND 73 71 BETWEEN 7, AND 73
d IS NULL d IS NULL
7 IS NULL 7 IS NULL

di < d3 AND dp < (dq + 1)

Datetime Constructors:

d+ 1

7 +d

d- i

dAT i

d AT LOCAL
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

d+1

i+d

d- 1

d+1

d + CURRENT TIMEZONE
CURRENT DATE
CURRENT TIME
CURRENT TIMESTAMP
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Table 3.2 (continued)

SQL-92

IBM DB2 UDB Equivalent

Interval Constructors:
71+ 17
f] - fz
(dy - dy) qual
(dqy - d) MONTH

not possible

not possible

TIMESTAMPDIFF(itype. CHAR(dq - d2))
TIMESTAMPDIFF (64, CHAR(dq - d3))

i*n not possible

n*i not possible

i1/ 7y not possible

i/n not possible

+ 1 li

-1 not possible
Other Operators:

CAST(d AS DATE)
CAST(d AS TIME)
CAST(d AS TIMESTAMP)

CAST(7 AS INTERVAL YEAR
TO MONTH)

CAST(7 AS INTERVAL DAY
TO SECOND)

CAST(d AS CHAR)

CAST (7 AS CHAR)

CAST(7 AS INTEGER)
7 is YEAR TO DAY

7 is DAY TO HOUR
7 is DAY TO MINUTE

i is DAY TO SECOND

EXTRACT (DAY FROM d)
EXTRACT (DAY FROM 1)
EXTRACT (HOUR FROM 7))

CAST(d AS DATE)
CAST(d AS TIME)
CAST(d AS TIMESTAMP)
not possible

not possible

CHAR(d)
not possible

JULTAN_DAY (DATE('001-01-01") + 1)
- JULTAN_DAY (DATE('001-01-01-00))

24 * DAY (7) + HOURCT)

1440 * DAY (7) + 60 * HOUR(7)
+ MINUTE(T)

86400 * DAY (7) + 3600 * HOUR(7)
+ 60 * MINUTE(7) + SECOND(7)

DAY (d)
DAY (7)
HOURC(7)

Operators not in SQL-92:
convert d to Julian day

JULTANDAY (d)

but instants can’t be added to intervals, the reason being that the resulting type

must be an interval.

Table 3.3 shows how the facilities in SQL-92 can be simulated, to some degree,
in Informix-Universal Server.
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Table 3.3 SQL-92 operations in Informix-Universal Server.

SQL-92

Informix—Universal Server Equivalent

Types:
DATE
TIME
TIMESTAMP
TIME WITH
TIMESTAMP WITH TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

DATE

DATETIME HOUR TO SECOND
DATETIME YEAR TO FRACTION(6)
no equivalent

no equivalent

INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

Literals:
DATE '1997-01-01"
TIME '12:34:56"
TIMESTAMP "1997-01-01 12:34:56"

INTERVAL '3-4" YEAR TO MONTH
INTERVAL "1 23:45:12" DAY TO SECOND

DATE("01/01/97")
DATETIME(12:34:56) HOUR TO SECOND

DATETIME(1997-01-01-12:34:56)
YEAR TO SECOND

INTERVAL(3-4) YEAR TO MONTH
INTERVAL(1 23:45:12) DAY TO SECOND

Predicates:
dy =dsy
di < dy
dy <> dy
di BETWEEN d» AND d3
71=19
1< 1
i1 <> 13
71 BETWEEN 7, AND 73
d IS NULL
7 IS NULL
(dy, 1) OVERLAPS (d2, d3)

dy =dsy

di < dy

dy <> dy

di BETWEEN dp AND d3
71=19

1< 1

i1 <> 13

71 BETWEEN 7, AND 73
d IS NULL

7 IS NULL

di < d3 AND dy < (dq + 1)

Datetime Constructors:
d+1i
7 +d
d-i
dAT 7
d AT LOCAL
CURRENT_DATE
CURRENT_TIME
CURRENT_TIMESTAMP

a+1

a+1

d-i

not supported

not supported

TODAY

CURRENT HOUR TO SECOND
CURRENT
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3.53

Table 3.3 (continued)

SQL-92

Informix—Universal Server Equivalent

Interval Constructors:

71+ 17 i1+ 177
f] - fz f1 - fz
(dy - dy) qual dq1 - d; (if both have the same precision)
(dqy - dz) MONTH not supported
7*n 7*n
n*i 7*n
i1/ 7y not possible
i/n not possible
+ 7 + 7
-7 -

Other Operators:
CAST(d AS DATE) DATE(d)

CAST(d AS TIME)

CAST(d AS TIMESTAMP)

CAST(7 AS INTERVAL YEAR TO MONTH)
CAST(7 AS INTERVAL DAY TO SECOND)

EXTEND(DATE(d), HOUR TO SECOND)
EXTEND(d, YEAR TO SECOND)
INTERVAL(7) YEAR TO MONTH
INTERVAL(7) DAY TO SECOND

CAST(d AS CHAR) not possible

CAST (7 AS CHAR) not possible

CAST (7 AS INTEGER) not supported

EXTRACT (DAY FROM d) DAY (d) (returns an integer)
EXTRACT (DAY FROM 7) not possible

EXTRACT(HOUR FROM 1) not possible

Operators not in SQL-92:
extract weekday from d (where d is WEEKDAY (d)
DATE)
Microsoft Access

While SQL-92 supplies six temporal types (DATE, TIME, TIMESTAMP, TIME WITH
TIME ZONE, TIMESTAMP WITH TIME ZONE, and INTERVAL), Microsoft Access
supplies just one, Date/Time, which is similar to SQL-92’s TIMESTAMP type. Ac-
cess Date/Time values are stored as an IEEE 8-byte floating-point number, with the
integral portion denoting days since December 30, 1899, and the fractional portion
denoting fractions of a day, to a precision of eight decimal places, or equivalently, a
granularity of slightly less than one millisecond. The range is restricted to 1 C.E. to
9999 C.E.; dates before 1899 are represented with negative values.

Literals are delimited with ‘##', for example, #5/10/964#, which uses the “U.S. for-
mat” (month, day, year), even on international versions of Microsoft Windows.
To have the format depend on the locale, use DateValue. For example,
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The Hijri Calendar

The Hijri is an Islamic calendar based on lunar cy-
cles, with one year consisting of 12 (purely lu-
nar) months. It was first introduced in 638 C.E. by
Umar ibn Al-Khattab. The first day of this calendar,
Muharram 1 (New Year), 1 A.H. (“Anno Hegirae”)
corresponds to June 16, 622 C.E.

Since the Islamic calendar is purely lunar, as op-
posed to solar or lunar-solar, the Hijri year is shorter
than the Gregorian year by about 11 days. Also
contrary to most calendars, months in the Hijri year

cur in different seasons. For example, the Hajj and
Ramadan can take place in the summer as well as
the winter. It is only over a roughly 33-year cy-
cle that lunar months resynchronize with the solar
year.

Interestingly, the start of a Hijri month is defined
not by an astronomical new moon, but rather by
an actual sighting of the crescent moon at a par-
ticular locale. This implies that a month will start at
different Gregorian times in different locales, and

are not related to seasons, which are themselves indeed the start is affected by weather conditions

tied to the solar cycle. Important Muslim festivals, and various optical factors of the atmosphere.

which always fall in the same Hijri month, may oc-

DateValue('5/10/96") when evaluated in the U.S. will return the same date as
DateValue('10/5/96") when evaluated in the U.K.

In an effort to address the year 2000 problem, Access 2000 has a special interpre-
tation of two-digit years. #1/1/004# through #12/31/294 are interpreted as the dates
January 1, 2000, through December 31, 2029. #1/1/30# through #12/31/994 are in-
terpreted as the dates January 1, 1930, through December 31, 1999. Of course, this
just moves the year 2000 problem ahead 30 years, as well as invalidating previous
data from the first third of this century. More detail may be found in Section 3.6.5.

The format of a literal is specified in a format property setting. Custom for-
mats may be specified using some thirty-odd multicharacter symbols, such as “ww,”
which specifies a number between 1 and 53 denoting the week of the year. The
format routine allows a format to be used once, for example, format("1/10/99",
"dd/mm/yy"). Predefined formats, set in the properties, may also be used within this
function, for example, format("1/10/99", "short date"). The Windows 95 system
settings (in “Regional Settings”) dictate the initial values for these format proper-
ties. The CDate( ) function takes a string and attempts to convert it into a date,
using context to determine which fields are where in the string.

The equality and inequality predicates are available for Access Date/Times.
OVERLAP is not available.

Extraction of fields is accomplished through a variety of functions, such as Day( )
and Second( ). There is also an extraction function, DatePart( ), for example,
DatePart("yyyy", [OrderDate]) would return a four-digit year.
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Intervals are simulated with two functions, DateAdd and DateDiff. DateAdd takes
a string expression specifying the interval granularity ("yyyy" denotes year, "q"
denotes quarter, "m" denotes month, "y" denotes day of year, "d" denotes day,
"w" denotes weekday, "ww" denotes week, "h" denotes hour, "m" denotes minute,
and "s" denotes second), a numeric expression (positive or negative) denoting the
number of granules, and a date to be shifted. As an example, DateAdd("d", 7,
##2/24/964) yields the date March 2, 1996. Analogously, DateDiff takes the pa-
rameters of a string expression denoting the granularity, as well as two days, and
returns a long integer specifying the number of time intervals between these dates.
For example, DateDiff("d", #3/2/964#, #2/26/96#) evaluates to the value 7.

The weekday granularity depends on which day is considered the first day of
the week. Several of the functions, including DateDiff, take an optional parameter
specifying a particular day (1 = Sunday through 7 = Saturday, with Sunday being
the default). The week granularity depends on which week is considered the first
week of the year. Several of the functions take an optional parameter specifying
this detail (1 = start with the week in which January 1 occurs, 2 = start with the first
week that has at least four days in the year, 3 = start with the first full week of the
year, with 1 being the default).

Table 3.4 shows how the facilities in SQL-92 can be simulated, to some degree, in
Access. In the Access column, d denotes an Access Date/Time value and j denotes
an Access FLOAT, indicating a (fractional) count of Julian days.

Microsoft SQL Server

Microsoft SQL Server supplies two temporal data types, DATETIME and SMALL-
DATETIME, with precisions of 1/300 second and 1 minute, respectively. The range
of these two types is January 1, 1753 to December 31, 9999 for the DATETIME type,
and from January 1, 1900 to June 6, 2079 for the SMALLDATETIME type. A DATE-
TIME requires eight bytes, four bytes for the number of days since the base date
and four bytes for the time of day. A SMALLDATETIME requires only four bytes,
two bytes for the number of days since the base date and two bytes for the number
of minutes since midnight.

Intervals can be represented as SQL Server integers, of an integral number of
granules in the required granularity.

Table 3.5 shows how the facilities in SQL-92 can be simulated, to some degree,
in Microsoft SQL Server. In the SQL-92 column, d denotes a datetime value, ‘7’
an interval value, and n a numeric (exact or approximate) value. In the Microsoft
column, d denotes an SQL Server DATETIME value, and 7 denotes an SQL Server
integer representing an integral number of seconds.

Microsoft SQL Server automatically handles certain data type conversions; in
such cases, the convert function is optional. For example, when a character ex-
pression is compared with a DATETIME expression, the character expression is
implicitly converted to a DATETIME.
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Table 3.4 SQL-92 operations in Microsoft Access 2000.

SQL-92 Microsoft Access 2000 Equivalent
Types:
DATE Date/Time, ignoring the hour, minute,
and second fields
TIME Date/Time, ignoring the century, year,
month, and day fields
TIMESTAMP Date/Time
TIME WITH TIME ZONE no equivalent
TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH INTEGER (months)
INTERVAL DAY TO SECOND INTEGER (seconds) or FLOAT (days)
Literals:
DATE '1997-01-01" DateValue('1997-01-01") or
#1997-01-014#
TIME "12:34:56" TimeValue('12:34:56", "HH:MI:SS")
or {12 :34:564
TIMESTAMP '1997-01-01 12:34:56" Format("1997-01-01 12:34:56",

"YYYY-MM-DD HH:NN:SS") or
#1997-01-01 12:34:56%

INTERVAL "3-4" YEAR TO MONTH 40 (months)

INTERVAL "1 23:45:12" DAY TO SECOND 171912 (seconds) or 1.9897222
(Julian days)

Predicates:

d1 = d2 d1 = d2

dy < dy dy < dy

dy <> dy dy <> dy

dy BETWEEN dy AND d3 dy BETWEEN dy AND d3

T1=13 J1=1J2

11 < 12 J1 < J2

i1 <> 12 J1 <> 1J2

7 BETWEEN 7, AND 73 J1 BETWEEN j, AND Jjs

d IS NULL d IS NULL

7 IS NULL J IS NULL

(dy, 7) OVERLAPS (dy, d3) dy < d3 AND dy < DateAdd("m", j, dy)
Datetime Constructors:

d+1i DateAdd("d".d, j)

i+d DateAdd("d",d, j)

d-i DateAdd("d".d, -Jj)

dAT i1 time zones not supported

d AT LOCAL time zones not supported

CURRENT_DATE Date() The time part is set to O

CURRENT_TIME Time() The date part is set to O

(i.e., December 31, 1899)
CURRENT_TIMESTAMP Now ()
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Table 3.4 (continued)

SQL-92

Microsoft Access 2000 Equivalent

Interval Constructors:

i1+ 12 J1+J2

i1 - 12 J1 - J2

(d -d) qual d1 - d, (result is a fractional number
of days)

d - d MONTH DateDiff("m", dp, dy) (resultis an
integral number of months)

i*n J*n

n*i n*j

i1/ 15 Trunc(jq / Jj2)

i/n Trunc(j / n)

+ 7 J

- 7' _j

Other Operators:

CAST(d AS DATE)

CAST(d AS TIME)

CAST(d AS TIMESTAMP)
dis a DATE
disaTIME
CAST(7 AS INTERVAL YEAR TO MONTH)
CAST(7 AS INTERVAL DAY TO SECOND)
CAST(d AS CHAR)
CAST(7 AS CHAR)
CAST(7 AS INTEGER)
i is DAY
7 is HOUR
7 iSMINUTE
7 is SECOND
EXTRACT (DAY FROM d)
EXTRACT (DAY FROM 7)
EXTRACT (HOUR FROM 7))

DateValue(d) or Format(d,
"YYYY-MM-DD")

TimeValue(d) or Format(d,
"HH:MT:SS")

d

not possible
not possible
not possible
Cstr(d)
Cstr(Jj)

CLng(J)
Clng(j * 24)
Clng(g * 1440)
Clng(g * 86400)
Day(d)

Day(J)

Hour(Jj)
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Table 3.5 SQL-92 operations in Microsoft SQL Server.

SQL-92

Microsoft SQL Server Equivalent

Types:
DATE

TIME

TIMESTAMP

TIME WITH TIME ZONE
TIMESTAMP WITH TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

DATETIME or SMALLDATETIME, ignoring the

hour, minute, and second fields

DATETIME or SMALLDATETIME, ignoring the

century, year, month, and day fields
DATETIME (to second granularity)

no equivalent
no equivalent

int (integral number of months)
int (integral number of seconds)

Literals:
DATE '1997-01-01"

TIME "12:34:56"

TIMESTAMP '1997-01-01 12:34:56"

INTERVAL "3-4" YEAR TO MONTH
INTERVAL "1 23:45:12" DAY TO

convert(datetime,
"1997-01-01", 102)

"12:34:56" or convert(datetime,

"12:34:56")

"1997-01-01 12:34:56" or

convert(datetime,

"1997-01-01 12:34:56") or

convert(datetime,

"1997-01-01 12:34:56", 102)

40 (months)
171812 (seconds)

SECOND
Predicates:

dy =dy dy =dp

dy < dy dy < dy

di <> dy d1 <> d»

di BETWEEN dy AND ds di BETWEEN dp AND ds
71=19 i1=19

1< 12 1< 1y

1 <> 12 1 <> 12

1 BETWEEN 7, AND 73 71 BETWEEN 7, AND 73
d IS NULL d IS NULL

7 IS NULL 7 IS NULL

(dqy, 1) OVERLAPS (dy, d3)

dq < d3 AND d, < dateadd(second,7,dq)

Datetime Constructors:
d+i
i+d
d-i
dAT 71
d AT LOCAL

dateadd(second, 7, d)
dateadd(second, 7, d)
dateadd(second, -7, d)

not supported
not supported
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Table 3.5 (continued)

SQL-92 Microsoft SQL Server Equivalent

Datetime Constructors, cont.:

CURRENT_DATE convert (datetime,
(convert(char(3),
datename(month,getdate())) + " "
+ convert(char(2),
datename(day,getdate())) +","
+ convert(char(4),
datename(year,getdate()))))

CURRENT_TIME convert (datetime,
convert(char(2),
datename(hour,getdate())) + ":"
+ convert(char(2),
datename(minute,getdate())) + ":"
+ convert(char(2),
datename(second,getdate())))

CURRENT_TIMESTAMP getdate()
Interval Constructors:
i1+ 15 i1+ 72
i1 - 72 11 - 12
(dy - dy) qual datediff(qual, di, dp) (resultisan

integral number at the indicated
granularity)

(dy - dp) MONTH datediff(month, dq, d)
7*n 7*n
n*i n*i
v/ 15 convert(int, iq/ 73)
i/n convert(int, 7 / n)
+ 7 7
-7 -7
Other Operators:
CAST(d AS DATE) convert (datetime,

(convert(char(3),
datename(month,d)) +" "
+ convert(char(2),
datename(day,d)) +","
+ convert(char(4),
datename(year,d))))
CAST(d AS TIME) convert (datetime,
convert(char(2),
datename(hour,d)) + ":"
+ convert(char(2),
datename(minute,d)) + ":"
+ convert(char(2),
datename(second,d)))
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3.5.5

3.5.6

Table 3.5 (continued)

SQL-92 Microsoft SQL Server Equivalent

Other Operators, cont.:
CAST(d AS TIMESTAMP)

dis a DATE d

disa TIME convert (datetime,
(convert(char(3),
datename(month,getdate())) +" "
+ convert(char(2),
datename(day,getdate())) +","
+ convert(char(4),
datename(year,getdate())) +
+ convert(char(2),
datename(hour,d)) +":"
+ convert(char(2),
datename(minute,d)) + ":"
+ convert(char(2),
datename(second,d))))

CAST(7 AS INTERVAL YEAR TO MONTH) not possible
CAST (7 AS INTERVAL DAY TO SECOND) not possible

CAST(d AS CHAR) convert(char, d)
CAST(7 AS CHAR) convert(char, 7)
CAST(7 AS INTEGER) i already an integer
EXTRACT (DAY FROM d) datename(day,d) (returns a string)
EXTRACT (DAY FROM 7)) convert(int, 7/86400)
EXTRACT (HOUR FROM 7)) convert(int, 7/3600)
Sybase SQLServer

Support for time in Sybase SQLServer is essentially identical to that of Microsoft SQL
Server because they started from the same code base. For details, see the discussion
on that system, in Section 3.5.4.

Table 3.6 shows how the facilities in SQL-92 can be simulated, to some degree, in
Sybase SQLServer. In the SQL-92 column, ¢ denotes a datetime value, 7 an interval
value, and n a numeric (exact or approximate) value. In the Sybase SQLServer col-
umn, d denotes an SQLServer DATETIME value, and 7 denotes an SQLServer integer
representing an integral number of seconds.

Oracle8 Server

As with Access, Oracle8 Server provides but one temporal type, here called DATE.
An Oracle DATE comprises seven fields, century, year, month, day, hour, minute,
and second, each as one byte. Oracle8 Server can store dates from January 1, 4712
B.C.E. (Julian Day 1) to December 31, 4712 C.E., while disallowing the nonexistent
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Table 3.6 SQL-92 operations in Sybase SQLServer.

SQL-92

Sybase SQLServer Equivalent

Types:
DATE

TIME

TIMESTAMP

TIME WITH TIME ZONE
TIMESTAMP WITH TIME ZONE
INTERVAL YEAR TO MONTH
INTERVAL DAY TO SECOND

DATETIME or SMALLDATETIME, ignoring the
hour, minute, and second fields

DATETIME or SMALLDATETIME, ignoring the
century, year, month, and day fields

DATETIME (to second granularity)
no equivalent
no equivalent
int (integral number of months)
int (integral number of seconds)

Literals:
DATE '1997-01-01"
TIME '12:34:56"

TIMESTAMP '1997-01-01 12:34:56"

INTERVAL '3-4" YEAR TO MONTH
INTERVAL "1 23:45:12" DAY TO

convert(datetime, "1997-01-01", 105)
convert(datetime, "12:34:56")

convert(datetime,
"1997-01-0112:34:56",105)

40 (months)
171812 (seconds)

SECOND
Predicates:

dy =dsy di =d>

di < da di < da

dy <> dy di <> d»

di BETWEEN d» AND d3 dy, <= dq AND dq <= d3
7'1 = fz f] = 7'2

1< 12 1< 12

i1 <> 13 71 <> 12

71 BETWEEN 7, AND 73 79 <=17 AND 77 <= 173
d IS NULL d IS NULL

7 IS NULL 7 IS NULL

(dqy, 1) OVERLAPS (dy, d3)

dqy < d3 AND d, < dateadd(second, 7,dy)

Datetime Constructors:
d+1i
i+d
d-i
dAT 7
d AT LOCAL
CURRENT_DATE

dateadd(second,7,d)

dateadd(second,7,d)

dateadd(second,-7,d)

not supported

not supported

convert (datetime,
(convert(char(3),
datename(month,getdate())) +" "
+ convert(char(2),
datename(day,getdate())) +","
+ convert(char(4),
datename(year,getdate()))))
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Table 3.6 (continued)

SQL-92

Sybase SQLServer Equivalent

Datetime Constructors, cont.:

CURRENT_TIME

CURRENT_TIMESTAMP

convert (datetime, convert(char(2),
datename(hour,getdate())) + ":"
+ convert(char(2),
datename(minute,getdate())) +
+ convert(char(2),
datename(second,getdate())))

getdate()

Interval Constructors:
i1+ 172
f] - fz
(dy - dy) qual

(dy - dp) MONTH

i1+ 177

i1- 172

datediff(qual, di, dp) (resultis an
integral number at the indicated
granularity)

datediff(month, di, d3)

7*n 7*n
n*i n*i
i1/ 17 convert(int, 77/ 1)
i/n convert(int, 7 / n)
+ 7 7
-7 -7

Other Operators:

CAST(d AS DATE)

CAST(d AS TIME)

CAST(d AS TIMESTAMP)

dis a DATE

convert (datetime,
(convert(char(3),
datename(month,d)) +" "
+ convert(char(2),
datename(day,d)) +","
+ convert(char(4),
datename(year,d))))

convert (datetime,
convert(char(2),
datename(hour,d))+":"
+ convert(char(2),
datename(minute,d)) +
+ convert(char(2),
datename(second,d)))
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Table 3.6 (continued)

SQL-92 Sybase SQLServer Equivalent

Other Operators, cont.:
CAST(d AS TIMESTAMP)

disaTIME convert (datetime,
(convert(char(3),
datename(month,getdate())) + " "
+ convert(char(2),
datename(day,getdate())) +","
+ convert(char(4),
datename(year,getdate())) +" "
+ convert(char(2),
datename(hour,d)) +":"
+ convert(char(2),
datename(minute,d)) + ":"
+ convert(char(2),
datename(second,d))))

CAST(7 AS INTERVAL YEAR TO MONTH) not possible
CAST(7 AS INTERVAL DAY TO SECOND) not possible

CAST(d AS CHAR) convert(char, d)

CAST(7 AS CHAR) convert(char, 7)

CAST(7 AS INTEGER) i already an integer

EXTRACT (DAY FROM d) datename(day,d) (returns a string)
EXTRACT (DAY FROM 7)) convert(int, 7/86400)

EXTRACT (HOUR FROM 7)) convert(int, 7/3600)

year 0000. It is thus superior to SQL's TIMESTAMP type in permitting B.C.E. dates,
but is inferior in not permitting fractions of a second and in stopping about halfway
to the year 9999.

SQL-92's INTERVAL DAY can be simulated using Oracle NUMBER, which pro-
vides a day count. Smaller granularities can be partially simulated with fractional
days. NUMBER(12,5) is sufficient for seconds; NUMBER(18,11) will support micro-
seconds. Both support the full range of 4700 years. It is not possible to simulate SQL-
92 year-month intervals, though subtraction to the months granularity is possible
via MONTHS_BETWEEN. NEXT_DAY gives the date of the next day of the week (specified
as a character string such as 'Monday') after a specified date value.

The predicates that Oracle8 Server supports on DATEs are ‘=', ‘<’, ‘<=, ', >=/,
‘<>', and BETWEEN. These are based on the seven-byte internal representation
of dates. For not equals, Oracle8 Server also allows ‘!=’, *~ =’, and ‘~=" (on some
systems).

Oracle dates can be converted to character strings via the TO.CHAR function,
which takes as a second argument the format desired. SQL-92's CAST(value AS
CHARACTER) may thus be simulated with TO_CHAR (value, 'YYYY-MM-DD HH24:MI:SS")
(HH24 requests military time, that is, a 24-hour clock). This format string is quite
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flexible, with over 30 options available. As an example, TO_CHAR(value, 'DY Month
DD, YYYY") will produce a string looking like 'THU July 24, 1997'. A third pa-
rameter to this function specifies other aspects of the output, such as the lan-
guage, for example, TO_CHAR(BirthDate, 'Month DD, YYYY, HH12:MI A.M.", "NLS_
DATE_LANGUAGE = American').

The TO.CHAR function can also extract individual fields; for example,
TO.CHAR(BirthDate, 'MM') returns the month. Finally, the Julian day number can
be computed via TO_.CHAR(BirthDate, 'J'), returning an integer (2,440,588, for
January 1, 1970).

The TO_DATE function produces a date value from a character string, via a format
string, for example, TO_DATE('January 15, 1989, 11:00 A.M.", "Month DD, YYYY,
HH12:MI A.M."). This function can also convert an integer (containing the Julian
number) to a date, for example, TO_DATE(2440588, 'J'). The Julian number iden-
tifies a particular day, so the hour, minute, and second fields are set to 0. There
seems to be no way to extract fractional days from an Oracle DATE, nor convert
fractional days to a DATE value. However, an Oracle (fractional) NUMBER, repre-
senting a day-time interval, can be added (or subtracted) from a DATE, yielding a
DATE.

Oracle8 Server provides a variety of other date functions. ADD_MONTHS adds an
integer number of months to a DATE value. By using a negative integer, months can
be subtracted. GREATEST picks the latest date from a list of dates; LEAST is analogous.
LAST_DAY returns the date of the last day of the month that the provided date is in.

The NEW_TIME function allows you to shift a DATE from one specified time zone
to another. The source and target time zones are three-character strings; only a few
time zones are supported. There seems to be no way within Oracle8 Server to find
out your own time zone.

The TRUNC function removes the hour, minute, and second fields from a DATE
value, resulting in a day starting at midnight. TRUNC also accepts an optional
string parameter, specifying a field below which truncation should occur; for ex-
ample, TRUNC(BirthDate, 'HH24') would zero out the minute and second fields.
An analogous ROUND function is also available for DATEs.

Finally, the current date and time is returned by SYSDATE.

Table 3.7 shows how the facilities in SQL-92 can be simulated, to some degree,
in Oracle8 Server. In the SQL-92 column, d denotes a datetime value, 7 an interval
value, and n a numeric (exact or approximate) value. In the Oracle8 Server column,
d denotes an Oracle DATE value and j denotes an Oracle NUMBER representing
Julian days.

So, how did Jim Barnett represent instants and intervals in the FINDER schema?
Well, for the most part he used Oracle DATEs. In fact, in the resulting schema one
of every five columns is a DATE column. The fundamental distinction between in-
stants and intervals is hidden in the Oracle schema; column names and comments
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Table 3.7 SQL-92 operations in Oracle8 Server.

SQL-92 Oracle8 Server Equivalent
Types:
DATE DATE, ignoring the hour, minute, and
second fields
TIME DATE, ignoring the century, year, month,
and day fields
TIMESTAMP DATE (to second granularity)
TIME WITH TIME ZONE no equivalent
TIMESTAMP WITH TIME ZONE no equivalent
INTERVAL YEAR TO MONTH no equivalent
INTERVAL DAY TO SECOND NUMBER(12, 5)
Literals:
DATE '1997-01-01" TO_DATE('1997-01-01", "YYYY-MM-DD")
TIME '12:34:56" TODATE('12:34:56", "HH24:MI:SS")
TIMESTAMP '1997-01-01 12:34:56" TODATE('1997-01-0112:34:56",
"YYYY-MM-DD HH24:MI:SS")
INTERVAL "3-4" YEAR TO MONTH not possible
INTERVAL '1 23:45:12" DAY TO TONUMBER(SUBSTR('1 23:45:12",
SECOND 1,LENGTH('1 23:45:12"')-9))
+ TO_NUMBER(SUBSTR('1 23:45:12",
LENGTH('"1 23:45:12")-7,2))/24
+ TONUMBER(SUBSTR('1 23:45:12",
LENGTH('"1 23:45:12")-4,2))/1440
+ TONUMBER(SUBSTR('1 23:45:12",
LENGTH('"1 23:45:12")-1,2))/86400
(result is a fractional Julian day)
Predicates:
d1 = d2 d] = dz
dy < dy dy < dy
dy <> dy di <> dy
di BETWEEN d» AND d3 dq BETWEEN d, AND d3
i1=1>2 J1=1J2
1< 12 J1 < J2
i1 <> 1) J1 <> J2
77 BETWEEN 7, AND 73 J1 BETWEEN j, AND Jj3
d IS NULL d IS NULL
7 IS NULL J IS NULL
(dq, 7) OVERLAPS (d3, d4) dy < dg AND d3 < (dq +J)
Datetime Constructors:
d+ 1 d+ j., ADD_MONTHS(d, J)
i+d J + d, ADD.MONTHS(d, Jj)
d-i d - j., ADD_MONTHS(d, -J)
dAT 7 not supported

d AT LOCAL not supported
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Table 3.7 (continued)

SQL-92

Oracle8 Server Equivalent

Datetime Constructors, cont.:

CURRENT_DATE TRUNC(SYSDATE)

CURRENT_TIME TO_DATE(
TO_CHAR(SYSDATE, "HH24:MI:SS'),
'"HH24:MI:SS")

CURRENT_TIMESTAMP SYSDATE

Interval Constructors:
i1+ 12 Ji1+J2
i1 - 12 J1-J2

(dy - dy) qual

(dy - dp) MONTH

dy - d, (result is a (fractional) Julian
number)

MONTHS_BETWEEN(dq, dp) (resultis a
(fractional) number of months)

7*n J*n
n*i n*j
i1/ iy Ji/J2
i/ n J/n
+ i +j
- 7 - J
Other Operators:
CAST(d AS DATE) TRUNC(d)
CAST(d AS TIME) TO_DATE(TO_CHAR(d, '"HH24:MI:SS"),
"HH24:MI:SS")
CAST(d AS TIMESTAMP)
dis a DATE TRUNC(d)
disa  TIME TRUNC(SYSDATE)+(d-TRUNC(d))
CAST(7 AS INTERVAL YEAR TO MONTH) not possible
CAST(7 AS INTERVAL DAY TO SECOND) J
CAST(d AS CHAR) TO_CHAR(d,

CAST( 7 AS CHAR)

CAST(7 AS INTEGER)

i is DAY

7 is HOUR

7 is MINUTE

i is SECOND
EXTRACT (DAY FROM d)
EXTRACT (DAY FROM 7))
EXTRACT (HOUR FROM 7))

"YYYY-MM-DD* || * HH24:MI:SS")
TRUNC(Jj, 0) || TO_CHAR(J

+ TO_DATE(1, "J"), ' HH24:MI:SS")

TRUNC(Jj, 0)
TRUNC(J *24,0)
TRUNC(J * 1440, 0)
TRUNC(J * 86400, 0)

(

(

(J

TRUNC(d, 'DD") - TRUNC(d,'MM") + 1
TRUNC(J.0)
TRUNC(j*24, 0) - (TRUNC(j,0)*24)
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3.5.7

Table 3.7 (continued)

SQL-92 Oracle8 Server Equivalent

Operators not in SQL-92:

convert d to Julian day TO_CHAR(d, 'J")

convert Julian day n to DATE n+ TODATE(L, 'J")

pick the earliest date LEAST(dq. .... dn)

pick the latest date GREATEST(dq, .... dn)

pick the last day of the month LAST_DAY (d)

get the next day of the week NEXT_DAY(d, 'Monday')

are necessary to highlight these differences. So a Start_Time is an instant, but an
Incrmnt_Time is an interval (the comment states that the “Increment Time is taken
in reference to the start of the period”).

Intervals were represented with numerics. The Time_String_.In_Hole column of
the Well_Log_-Service table is of type NUMBER(8,2); the granularity must be in-
ferred from other information. For example, the comment for the Sample_Interval
column of the Seis_Trace_Hdr table specifies “sampling interval in milliseconds.”

When he needed more control over the granularity, Jim found that Oracle was of
little help. Most of these values were expressed as a pair of columns. Although the
Start_Time is a DATE, thereby utilizing a possible granularity of seconds, the In-
crmnt_Time is a NUMBER(7,2) column, coupled with an Incrmnt_.Time_Unit column,
of type VARCHAR(12). The Well_Test_Hdr table specifies the Start_Time, with the
Well.Test_Incrmnt providing a specific observation (ordered by the Incrmnt_0bs_No
column). Consider though how you would calculate in SQL the starting time of
a particular observation. The Incrmnt_Time is a fractional number of units, which
must be multiplied by the size of the unit, determined from the name of that unit,
then added to the Start_Time. This calculation must be done in terms of fractional
days, so it is important that the size of the units are stored in that manner (Oracle8
Server will blithely permit this calculation without this requirement being satisfied,
with incorrect results).

UniSQL

UniSQL supports the DATE, TIME, and TIMESTAMP data types. TIMESTAMPs are
constrained to a granularity of a second; their range is only January 1, 1970 through
03:14:07 January 19, 2038. TIMEs also are to a granularity of one second. Sub-
tracting two dates yields an integral number of days; subtracting two TIME or
TIMESTAMP values will yield an integral number of seconds.

Table 3.8 shows how the facilities in SQL-92 can be simulated, to some degree,
in UniSQL. In the SQL-92 column, d denotes a datetime value, 7 an interval value,
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The Start of the Millennium

Given that there is no 0 A.D. (see page 27), the
issue is then raised of when the millennium starts,
2000 A.D. or 2001 A.D. Those of a more mathemat-
ical constitution generally insist on the latter, an ex-
ample being the Royal Greenwich Observatory in
Cambridge, England, as reported in the New York
Times on December 8, 1996. Pop culture clearly
sides with the former; we can effectively argue that
the millennium has already arrived months before
the end of 2000 A.D. But in that case, the first mil-
lennium was but 999 years long, thereby belying its

etymological basis (“one thousand years,” in Latin,
see page 86), and raising the questions of how long
is a century, or even a decade? Stephen Jay Gould
is unapologetic on this—it is clear his sentiments lie
with the solution that a (nay, every) millennium is
10 centuries long, a century consists of 10 decades,
and all decades are 10 years, save the first, which
was but 9 years in length, thus, by incontrovert-
ible logic, the first century contained 99 years and
the first millennium (but thankfully, not the present
one) comprised 999 years.

and n a numeric (exact or approximate) value. In the UniSQL column, d denotes a
UniSQL TIMESTAMP value (to the granularity of seconds), and 7 denotes a UniSQL
INTEGER representing an integral number of granules (seconds).

3.6 THE YEAR 2000 PROBLEM*

(We remind you that the asterisk in this section heading—and in some later section
headings—indicates advanced material that may be skipped on a first reading.)
The year 2000 problem has often been abbreviated to the “Y2K problem” by
those who love acronyms, and termed the “Millennium Bug” by those who want a
more catchy name. The problem involves software that stores dates using only two
digits for the year. That raises the issue of determining what the year 00 denotes. If
it denotes 2000, then everything will generally be fine when that year arrives. On
the other hand, if it denotes 1900, then all manner of difficulties will arise. A phone
call that starts the night of December 31, 1999, and extends a little past midnight,
could be charged for 100 years of air time, resulting in a horrendous bill. A bill due
in December 1999 but not paid until the next month could result in an interest fee
of gigantic proportions. Or the software might just fail, freezing bank accounts and
leaving flight controllers with no information on their tracking screens. Indeed,
consumers are already being affected. The expiration date on Mastercard and Visa
credit and debit cards is listed as MM/YY. Recently, cards were issued with an expi-
ration date of 01/00, and these cards are being denied, as having expired some 98
years ago. While the larger authorization centers have updated their software, some
smaller authorization centers still cannot accept those cards (as of June 1998).
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Table 3.8 SQL-92 operations in UniSQL.

SQL-92 UniSQL Equivalent

Types:

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP (to second granularity)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH no equivalent

INTERVAL DAY TO SECOND INTEGER (integer number of seconds or

days)

Literals:

DATE '1997-01-01" DATE '01/01/1997"

TIME '"12:34:56" TIME "12:34:56"

TIMESTAMP "1997-01-01 12:34:56" TIMESTAMP '01/01/1997 12:34:56"

INTERVAL "3-4" YEAR TO MONTH not possible

INTERVAL "1 23:45:12" DAY TO SECOND 171812 (seconds)
Predicates:

d1 = dz d] = dz

dy < dy dy < dy

dy <> dy dy <> dy

dy BETWEEN dy AND d3 dq BETWEEN dy AND d3

f] = fz f1 = fz

1< 12 1< 12

i1 <> 13 71 <> 1>

71 BETWEEN 7, AND 73 71 BETWEEN 7, AND 73

d IS NULL d IS NULL

7 IS NULL 7 IS NULL

(dqy, 7) OVERLAPS (dy, d3) di < dz3 AND dp < dq + 1
Datetime Constructors:

a+1 d+1

i+d i+d

d-i d- 1

dAT 7 not supported

d AT LOCAL not supported

CURRENT_DATE not supported

CURRENT_TIME not supported

CURRENT_TIMESTAMP not supported
Interval Constructors:

71+ 17, i1+ 179

f] - fz f1 - fz

(di - dy) qual d1 - dj (result is an integer number at

the indicated granularity)
(dy - d) MONTH not possible
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Table 3.8 (continued)

SQL-92

UniSQL Equivalent

Interval Constructors (cont.):

7*n 7*n

n*i n*i

i1/ iy Ji/J2

i/ n J/n

+ 7 7

-7 -7
Other Operators:

CAST(d AS DATE)
CAST(d AS TIME)

CAST(d AS DATE)
CAST(d AS TIME)

CAST(d AS TIMESTAMP)

CAST(d AS TIMESTAMP)

CAST(7 AS INTERVAL YEAR TO MONTH) not possible
CAST(7 AS INTERVAL DAY TO SECOND) li

CAST(d AS CHAR)

CAST (7 AS CHAR)
CAST(7 AS INTEGER)
EXTRACT (DAY FROM d)
EXTRACT (DAY FROM 1)
EXTRACT (HOUR FROM 1)

CAST(d AS CHAR)
CAST(7 AS CHAR)

i already an integer
EXTRACT (DAY FROM d)
not possible

not possible

The year 2000 problem is a
specificinstance of a more
general problem of an (often
unstated) assumption that will
be invalidated purely by the
course of time.

The year 2000 problem is but one instance of a more gen-
eral problem, that of making assumptions that are invalidated
purely by the course of time. Here, the assumption was that two
digits suffice for the year, which is a valid assumption if all the
information is contained in a single century. Indeed, one digit
suffices if the information is contained in a particular decade.
What has captured the imagination of the public and the press
about the year 2000 problem is due to four factors:

1. The underlying assumption was made, sometimes implicitly, in so many
software systems.

2. The problem was ignored until (almost) too late, despite being recognized for
decades: the 1965 Multics system used a 71-bit microsecond representation.

3. The assumption is invalidated at exactly the same time (well, within a single
24-hour period) for these systems.

4. The systems involved are generally legacy systems, with underlying source code
a much-modified mess, or worse, simply unavailable.
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3.6.1

These factors conspire to make fixing the problem exceedingly expensive, yet the
third factor imposes an unavoidable deadline for coming up with an acceptable
solution, with often disastrous consequences if this deadline is not met. The classic
movie High Noon comes to mind, with Gary Cooper in almost every scene glancing
at that pendulum clock inexorably ticking away the minutes. I, as author of this
book, which contains material on the Y2K problem, am similarly constrained by
this approaching deadline.

The year 2000 problem may be found in hardware, specifically physical clocks,
and all manner of software, from programming languages to operating systems,
from DBMSs to applications. As the present book considers time-varying applica-
tions and SQL, we will limit our discussion to those topics. In particular, we will
eschew discussion of the extremely important and challenging task of identifying,
repairing, and testing legacy code. At the same time, we will examine the phe-
nomenon more generally, by highlighting time-dependent assumptions that involve
both the year 2000 and other dates. As we will emphasize, it is effectively impossi-
ble to completely avoid these problems, but we can minimize them, and be aware
of those that are present.

Year 2000 Compliance and Certification

Each organization must develop its own definition of compliance, termed “year
2000 compliance,” or in the general case, “century compliance.” The following lan-
guage is recommended by the Chief Information Officers Council Sub-Committee
on the Year 2000 for voluntary use by federal agencies in their solicitations and
contracts for year 2000 compliant products.

The contractor warrants that each hardware, software, and firmware product de-
livered under this contract and listed below shall be able to accurately process
date/time data (including, but not limited to, calculating, comparing, and se-
quencing) from, into, and between the twentieth and twenty-first centuries, and
the years 1999 and 2000 and leap year calculations to the extent that other infor-
mation technology, used in combination with the information technology being
acquired, properly exchanges date/time data with it.

Year 2000 certification is defined by Mitre as “a measure of assurance by a des-
ignated Y2K authority (or their representative), that an item is operationally ready.
Any company working toward Year 2000 compliance must ultimately be concerned
with Year 2000 certification.”

For database products, vendors generally certify, viewing themselves as a Y2K
authority, that their products are (or are not) year 2000 compliant, generally based
on their specific definition of year 2000 compliance.

To address the problem of two-digit dates, vendors generally define a “window”
of 100 years within which a two-digit date is interpreted. This interpretation is
often called the “implied century rule.” The window is sometimes dependent on
when the date is interpreted. In many cases, the window is xx00-xx99, meaning
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3.6.2

that a two-digit date is interpreted as being in the current century. So, 34 would
then be interpreted in 1998 as 1934, and in 2001 as 2034; the window jumped in
the year 2000. The year 2000 problem can be rephrased as the “window ending at
99 and jumping at 00 problem,” in that the window goes from 1900 to 1999, and
jumps to the next century (2000-2099) in the year 2000. Products vary on where
this window is located and when it jumps (in the best scenario, the jump and the
window boundary should be far apart).

It would have been to the consumer’s benefit for vendors to come up with a
common approach to the year 2000 problem: specify a common window, specify
a common jump point, and specify a common mechanism to ensure backward
compatibility. Vendors in their wisdom have taken exactly the opposite tack: every
approach is unique. Would it be cynical to think that this is intentional?

Two-digit dates, and indeed, any finite representation, imply that eventually the
range will be exhausted, and some kind of discontinuity will result. All that
the windowing approaches do is delay the discontinuity at the jumps. In scanning
the various extant DBMSs, we see difficulties with the years 2000, 2030, 2050, 2079,
2100, 4712, and 10,000. This implies that programmers will be kept busy both fix-
ing applications as these notable years approach and converting applications from
one DBMS to another that takes a different approach.

SQL-92

SQL-92 DATEs and TIMESTAMPs both use four digits to represent the year. Appli-
cations using this standard are fine until the year 9999 C.k., and thus exhibit the
“year 10,000 problem,” but are fortunately not affected by the year 2000 transition.

As will be discussed in the following section, an SQL-92 TIME value is actually a
funny kind of interval. An alternative characterization is that TIME has a midnight
problem: its meaning changes every midnight. In the above terminology, a TIME
value has a window of 24 hours (from midnight to midnight) and a jump time of
midnight.

Concerning leap years, the question could be phrased several ways.

e “Is the value of DATE '2000-02-29" valid?” The standard states “Within the defi-
nition of a (datetime literal), the (datetime value)s are constrained by the natural
rules for dates and times according to the Gregorian calendar” [44, p. 75]. As the
contribution of the namesake of this calendar, Pope Gregory XIII, was to specify
that century years not divisible by 400 would no longer be leap years, this clearly
indicates that the “natural rules” would consider the year 2000 to be a leap year.

e “Is (DATE '2000-03-01" - DATE '2000-02-01") DAY the value 29 days?” The SQL-
92 standard specifies datetime subtraction as “a) A [here, DATE '2000-03-1']
and B [here, DATE '2000-02-1"] are converted to integer scalars A2 and B2, re-
spectively, in units Y [here, DAY] as displacements from some implementation-
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dependent start datetime. b) The result is determined by effectively computing
A2-B2...” [44, p. 137]. Is this year 2000 compliant? It all depends on what is
meant by the word “converted.” Jim Melton has told me that those on the stan-
dards committee would agree that the value 29 is correct and intended, but I
counter that the standard itself should be unambiguous and clear, especially on
such an important question.

e “Is DATE '2000-03-01" - INTERVAL '29"' DAY the value DATE '2000-02-01'?" The
SQL-92 standard specifies such expressions as “Arithmetic is performed so as to
maintain the integrity of the datetime data type that is the result of the (datetime
value expression). This may involve carry from or to the immediately next more
significant (datetime field)” [44, p. 133]. Here, we are concerned about the carry
from the DAY field to the MONTH field. Presumably the “integrity of the date-
time data type” refers back to the definition of a DATE literal, which we saw
above treats the year 2000 as a leap year.

My conclusion: since the conversion for date difference is not explicitly spelled out,
we don’t know that the conversion will treat the year 2000 as a leap year, and so the
SQL-92 standard should not be considered year 2000 compliant.

What should programmers do to ensure that new code being written does not
exhibit the year 2000 problem? Quite simply, use four-digit years, as the SQL-92
standard mandates. Of course, this aphorism ignores the requirement that new
code work with and indeed be compatible with existing legacy programs, which
might themselves use only two-digit years. As Mark Haselkorn said in an interview
published in the February 1998 issue of the Institute of the IEEE:

Y2K is not about hardware, firmware and operating software (platforms). It is not
even about application software and even data. It is not even about users, orga-
nizations, economies and nations—it’s about all of them together. You cannot
change your computer to a Y2K-safe one and think you have fixed the problem.

You still have software that runs on it and, more importantly, data you have
accumulated that has great value to you that must be part of the fix.

With that chastening fresh on our mind, we now turn to specific DBMS products.
A critical disclaimer: these products and their level of compliance are highly fluid,
with new techniques being developed daily to achieve compliance. The remarks
below reflect the situation as this is being written, in June 1998. This material will
surely be somewhat out of date when it appears in print. You are urged to contact
your vendor for information on year 2000 compliance.

IBM DB2 Universal Database

IBM DB2 UDB DATEs and TIMESTAMPs both use four-digit years, and so are year
2000 compliant. The year 2000 is considered a leap year by DB2 UDB.

e DATE('2000-02-29"') is a valid DB2 UDB DATE.
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e DATE('2000-02-01"') + 1 MONTH yields March 1, 2000.

e DATE('2000-03-01"') - 1 MONTH yields February 1, 2000.

e DATE('2000-02-01"') +00000100. yields March 1, 2000.

e DATE('2000-03-01") - 00000100. yields February 1, 2000.
e DATE('2000-02-28"') + 1 DAY yields February 29, 2000.

e DATE('2000-03-01") - 1 DAY yields February 29, 2000.
Informix

Informix defines “year 2000 compliant” as

...the use or occurrence of the dates on or after January 1, 2000, will not ad-
versely affect the performance of the Informix products with respect to four-digit
data dependent data or the ability of such products to correctly create, store,
process, and output information related to such date data.

The internal formats of Informix DATE and DATETIME data types both support
four digits for the year.

For two-digit input of dates, Informix has added the DBCENTURY environ-
ment variable. There are four values for this environment variable: past (‘P’), fu-
ture (‘F’), closest (‘C’), and present (‘R’). If no value is specified, the default is
present semantics. Of course, this environment variable is not used if four digits
are supplied.

e Present semantics (‘R’) The present century provides the window. The window
is 00-99 and the jump date is the end of the century.

DATE("1-1-1") when entered on June 22, 1998, evaluates to January 1, 1901.
When entered in 2002, this literal evaluates to January 1, 2001.

e Past semantics (‘P’) The past and present centuries provide two windows and
produce two expanded date values. The one that is prior to the current date is
chosen. If both dates are prior to the current date, the date that is closest to the
current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1899 and
January 1, 1999; January 1, 1899 is chosen. When entered in 2002, this literal
evaluates to January 1, 1999. DATE("1-1-97") when entered on June 22, 1998,
produces January 1, 1897 and January 1, 1997; January 1, 1997 is chosen. While
seemingly only two years before DATE("1-1-99"), the resulting four-digit date is
98 years later. When entered in 2002, DATE("1-1-97") evaluates to January 1,
1997.

In our terminology, the window is the preceding 100 years (for a current date of
June 22, 1998, the window extends from June 21, 1898 to June 21, 1998) and
the jump date is each day (though the window only moves forward one day).
DATE("6-22-98") will evaluate to June 22, 1898, exactly 100 years ago today;
tomorrow that same literal will evaluate to June 22, 1998.
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e Future semantics (‘F’) The present and future centuries provide two windows

and produce two expanded date values. The one that is after the current date
is chosen. If both dates are after the current date, the date that is closest to the
current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1999 and
January 1, 2099; January 1, 1999 is chosen. When entered in 2002, this literal
evaluates to January 1, 2099. DATE("1-1-97") when entered on June 22, 1998,
produces January 1, 1997 and January 1, 2097; January 1, 2097 is chosen. As
before, while this literal seems to be only two years before DATE("1-1-99"), the
resulting four-digit date is 98 years later. When entered in 2002, DATE("1-1-97")
evaluates to January 1, 2097.

The window is the following 100 years (for a current date of June 22, 1998, the
window extends from June 23, 1998 to June 22, 2098) and the jump date is each
day. DATE("6-22-98") will evaluate to June 22, 2098, exactly 100 years in the
future; tomorrow that same literal will evaluate to June 22, 1998.

Closest semantics (“C’) The past, present, and future centuries provide three
windows and produce three expanded date values. The one that is closest to the
current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1899, Jan-
uary 1, 1999, and January 1, 2099 as candidates; January 1, 1999 is chosen. When
entered in 2002, this literal evaluates to January 1, 1999. DATE("1-1-97") when
entered on June 22, 1998, produces January 1, 1897, January 1, 1997, and Jan-
uary 1, 2097 as candidates; January 1, 1997 is chosen. Unlike with the other
semantics, this literal seems to be only two years before DATE("1-1-99"), and in
fact the resulting four-digit date is also two years earlier. When entered in 2002,
DATE("1-1-97") evaluates to January 1, 1997.

There is still anomalous behavior with this semantics; it is just distant in time.
DATE("1-1-48") when entered on June 22, 1998, evaluates to January 1, 2048.
DATE("1-1-49"), seemingly one year later, evaluates to January 1, 1949.

The window is the 100 years centered on the current date (for a current date of
June 22, 1998, the window extends from June 22, 1948 to June 22, 2048) and the
jump date is each day. Actually, this brings up a slight unspecification of closest
semantics. Because 2000 is a leap year, any 100-year window between 1900 and
2100 will contain an odd number of days (36,525); hence, there will be a (single)
closest value. However, when the present date is after the year 2100, the current
window will contain an even number of days (36,524), and there may occur two
potential dates equidistant from the current date. As an example, if the current
date is January 1, 2105, the current semantics provides for the value DATE("1-
1-55") January 1, 2055, January 1, 2155, and January 1, 2255. The last date is
certainly out of consideration, but the first two are exactly 18,262 days from
the current date, and so neither is preferred (or worse, both are preferred). We
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simply don’t know which date will be returned when this literal is evaluated on
that date.

It seems that the closest semantics provides the most intuitive behavior, in that the
anomalies occur with distant dates.
The year 2000 is considered a leap year by Informix.

DATE("2/29/2000") is a valid SQLServer DATETIME.
DATE("3/1/2000") - DATE("2/1/2000") yields 29 days.
DATE("2/28/2000") + INTERVAL(1) DAY yields February 29, 2000.
DATE("3/1/2000") - INTERVAL(1) DAY yields February 29, 2000.

Microsoft Access
Microsoft’s definition of year 2000 compliance is as follows:

A Year 2000 Compliant product from Microsoft will not produce errors processing
date data in connection with the year change from December 31, 1999 to January
1, 2000 when used with accurate date data in accordance with its documentation
and the recommendations and exceptions set forth in the Microsoft Year 2000
Product Guide, provided all other products (e.g., other software, firmware and
hardware) used with it properly exchange date data with the Microsoft product.
A Year 2000 Compliant product from Microsoft will recognize the Year 2000 as a
leap year.

Microsoft classifies its products into five categories.

e Compliant The product fully meets Microsoft’s standard of compliance. May
have prerequisite patch or service pack for compliance.

e Compliant with minor issues The product meets Microsoft’s standard of
compliance with some disclosed exceptions that constitute minor date issues.

e Not compliant The product does not meet Microsoft’s standard of compliance.

e Testing yet to be completed Product test is not yet complete or has not
started but will be tested.

e Will not test The product will not be tested for compliance.

Microsoft considers both Access 95 and Access 97 to be year 2000 compliant, in
terms of the above definition.

Access Date/Time values have a range of 9899 years (100 A.D. to 9999 A.D.).
However, Access 95 and Access 97 differ on the interpretation of two-digit dates.

Access 95 by default allows two-digit and four-digit years on input. The user can
define formats, via an input mask. Included in the predefined formats is a Short
Date format, which forces users to enter dates in a two-digit year format.

Parsing of dates is controlled by the OLEAUT32.DLL file in the system folder. The
interpretation of the two-digit dates depends on the version of this file.
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For version 2.20.4048 and lower, two-digit dates are considered to be in the same
century. Hence, DateValue('01/01/00") will be interpreted as January 1, 1900.

For version 2.20.2049 and higher, dates 1/1/00 through 12/31/29 are inter-
preted as being in the next century. So these dates would be interpreted in 1998
as 1/1/2000 through 12/31/2029. Dates 1/1/30 through 12/31/99 are interpreted
in the current century, so would be interpreted in 1998 as 1/1/1930 through
12/31/1999. Effectively, this delays the year 2000 problem until the year 2030.

For Access 97, there is only one possible interpretation: the window is from year
30 of this century to year 29 of the next century, and shifts at the year 2000.

The year 2000 is considered a leap year by Access.

e DateValue('2000-02-29") is a valid Access Date/Time.

e DateValue('2000-03-01") - DateValue('2000-02-01") yields 29 days.
e DateAdd("m", DateValue('2000-02-01"), 1) yields March 1, 2000.

e DateAdd("m", DateValue('2000-03-01"), -1) yields February 1, 2000.
e DateAdd("d", DateValue('2000-02-28"), 1) yields February 29, 2000.
e DateAdd("d", DateValue('2000-03-01"), -1) yields February 29, 2000.
Microsoft SQL Server

Microsoft considers SQL Server 6.5 and 7.0 to be year 2000 compliant.

Microsoft SQL Server supports two temporal data types, DATETIME, with a range
of 1753 to 9999, and SMALLDATETIME, with a range of January 1, 1900 to June 6,
2079. Either data type allows you to specify only the last two digits of the year, with
values less than 50 interpreted as 20yy (e.g., 17 is interpreted as 2017) and values
greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957). Put another
way, the window starts at 1950 and is fixed, representing a “year 2050 problem,” as
well as a “year 2079 problem,” beyond which SMALLDATETIME:s are not defined.

Concerning the year 2000 being considered a leap year, several bugs in this
regard were fixed in Service Packs 2 and 5 of SQL Server 6.5.

e CONVERT(DATETIME, "2000-02-29", 102) is a valid SQL Server DATETIME.

e DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102), CONVERT(DATETIME,
"2000-03-01", 102)) yields 29 days.

e DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields March 1,
2000.

e DateAdd(month, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields
February 1, 2000.

e DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields
February 29, 2000.

e DateAdd(day, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields
February 29, 2000.
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Sybase SQLServer

Sybase’s definition of “century compliant” is as follows:

e “General Integrity: No value for the current date will interrupt normal opera-
tion: the system returns the correct date accurate to century in response to a
request for current date, and the software is unatfected by any value returned.”

e “Date Integrity: Correct results are returned in the operation of all legal and
calendar operations of dates that span century marks within the range of the
software.”

e “Explicit Century: The software’s internal date storage format explicitly in-
cludes the century and reporting formats allow date representation in the full
century format.”

e “Implicit Century: On encountering data that does not include the century
either from transaction input or from an external data source, the century
value is unambiguously inferred by the software.”

Under this definition, Sybase considers SQLServer to be century compliant.

Sybase SQLServer supports two temporal data types, DATETIME, with a range
of 1753 to 9999, and SMALLDATETIME, with a range of January 1, 1900 to June 6,
2079. Either data type allows you to specify only the last two digits of the year, with
values less than 50 interpreted as 20yy (e.g., 17 is interpreted as 2017) and values
greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957). Put another
way, the window starts at 1950 and is fixed, representing a “year 2050 problem,” as
well as a “year 2079 problem,” beyond which SMALLDATETIMEs are not defined.

The year 2000 is considered a leap year by Sybase SQLServer.

e CONVERT(DATETIME, "2000-02-29", 102) is a valid SQLServer DATETIME.

e DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102), CONVERT(DATETIME,
"2000-03-01", 102)) yields 29 days.

e DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields March 1,
2000.

e DateAdd(month, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields February
1, 2000.

e DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields February
29, 2000.

e DateAdd(day, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields February
29, 2000.

Oracle8 Server

The Oracle8 Server supports the DATE type, which includes a four-digit year, and so
accommodates the year 2000. However, Oracle8 Server can store a maximum year
of 4712; this raises the impending “year 4712 problem.”

Oracle’s TO_DATE function takes two strings, a value string and a format string.
Applications using YYYY in the format string are safe; applications using only two
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digits (e.g., a format string of 'YY-MM-DD") will need to be examined, as the func-
tion will interpret such value strings as being in the current century. For example,
TO_DATE('450123", 'YYMMDD') when evaluated today (June 19, 1998) returns the
value denoting January 23, 1945. This means that TO_DATE('000101", 'YYMMDD")
will evaluate to January 1, 1900.

For such applications, the Oracle7 Server and the Oracle8 Server provide a special
year format mask, RR. Values with years between O and 49 that are stored in 1998
with the RR format are interpreted to be in the twenty-first century; for example,
TO_DATE('000101", 'RRMMDD') will evaluate to January 1, 2000. This format still
experiences a shift in semantics at the millennium. Say in 1998 an application
attempts to store a future date of 2051, using a value string of '550101' and a
format of RR. This will be interpreted as 1955. Two years later, that same value
string will be interpreted as 2055. This raises a “year 2050 problem.”

Summarizing, the YY format uses centuries (years having the same first two digits
are in the same century) as both the window and the window transition. The RR
format has a window starting at year 50 and going to year 49, with the window
transition occurring at year O of the century.

The year 2000 is considered a leap year by Oracle8 Server.

e TO.DATE('2000-02-29', 'YYYY-MM-DD') is a valid Oracle DATE.
e TO_DATE('2000-03-01", "YYYY-MM-DD') - TO_DATE('2000-02-01",
"YYYY-MM-DD') yields 29 Julian days.
e ADD_MONTHS(TO_DATE('2000-02-01", 'YYYY-MM-DD'), 1) yields March 1, 2000.
e ADD_MONTHS(TO_DATE('2000-03-01", 'YYYY-MM-DD'), -1) yields
February 1, 2000.
e ADD_DAYS(TO_DATE('2000-02-28", 'YYYY-MM-DD'), 1) yields February 29, 2000.
e ADD_DAYS(TO_DATE('2000-03-01", 'YYYY-MM-DD'), -1) yields
February 29, 2000.

SUBTLETIES*

It is critical that the limitations and subtle ramifications of the representation of in-
stants provided by the DBMS be understood. As we'll see, the meaning of a temporal
value is somewhat arbitrary, with the application providing some of the semantics.

Datetimes

While an instant is, well, instantaneous, SQL and all DBMSs assume a discrete time
line of various granularities, such as second, day, and year, and indicate only the
particular granule in which the instant is located. The event of an individual well
sample extraction occurred at a specific instant, but we may care to record only the
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B.C., A.D., B.C.E., C.E., and B.P.

The prevailing system before the use of B.C.-A.D.,
at least in the Western world, was A.U.C. (ab urbe
condita, literally, “from the foundation of the city,”
which, being in Latin, of course meant Rome).
Dionysius (see page 27) pegged 1 A.D. at 754
A.U.C. There is the slight problem that King Herod
died in 750 A.u.C., which translates to 4 B.C. Since
Herod was ostensibly alive at the birth of Jesus,
we have the interesting oxymoron of Christ be-
ing alive in 4 B.C., that is, four years before the
birth of Christ. In an effort to be less parochial,
B.C. has been retermed B.C.E. (“Before the Chris-

Era”), with A.D. renamed C.t. (“Common Era”).
Even more PC is B.P. (“Before the Present”), that is,
interpreted with reference to the year of publica-
tion of the source. This book will have a copyright
date of 1999 (as will all books published between
July 1, 1998, and June 30, 1999), so the millen-
nium will reputedly end at —1 B.P. (since it is after
the present). The problem with this scheme is that
it carries with it an extra obligation for the author:
if this book is delayed but a few months, I will have
to adjust that B.P. date above, as well as all others
that appear herein.

tian Era,” or even better, “Before the Common

day granule in which that event occurred. If multiple tests are
performed during the day on a well sample, a time granularity,
say, hour or even second, may be appropriate. An instant has no
duration, but its representation, as a particular granule, always
does (when utilizing a discrete time line).

The concept of an instant is independent of any particular calendar. SQL has cho-
sen the Gregorian calendar for its representation of an instant. The use of a specific
calendar, especially one so infused with politics, brings with it subtle difficulties.
The Gregorian calendar was proclaimed by Pope Gregory XIII in 1582, with adop-
tion by the Catholic states within a year. However, in some places adoption was
very slow. The Protestant German states adopted the Gregorian calendar in 1699,
Japan in 1873, and Greece only in 1923. Muslim countries tend to retain calen-
dars based on Islam, and Asian countries generally use lunar or hybrid (solar/lunar)
calendars.

Consider an art dealer who has in hand a letter written by the artist Enoch
Seeman stating that his “Portrait of the Countess of Berkeley” was completed on
“March 23, 1735.” The art dealer entering this date in SQL as DATE '1735-03-23"
would in fact be specifying a day some 11 days before the painting was finished.
The reason is that before 1752 England and its colonies used the Julian calendar,
which differs from the Gregorian calendar only in the presence of century leap
years (in fact, this difference between the solar year and the calendar year precip-
itated the construction of the Gregorian calendar). So the correct denotation in
SQL is DATE '1735-04-03'. Had the letter been written in, say, Paris, the same day,

An instant has no duration, but
its representation as a particular
granule always does.
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rather than at Berkeley Castle, it would have recorded the date “April 3, 1735.” The
geographical location of the historical reference supplies the calendar in force,
which then implies the correction, if any, required before the date can be specified
in SQL.

As the Gregorian calendar was undefined before 1582, SQL presumably extrap-
olates this calendar backwards using its rules to 1 C.E., obtaining what some have
called the “proleptic Gregorian calendar” (which as has been noted is a misnomer,
because “proleptic” refers to a future act). Problems occur in the opposite direction.
Because the tropical year is 365.242,191 days, and the Gregorian year (due to the
rather complex leap year rules, see page 37) is 365.2425 days, the calendar year will
be one day longer than the astronomical year in 4000 C.E. and two days longer in
8000 C.E. A further refinement to the Gregorian calendar designating years evenly
divisible by 4000 as common (not leap) years would ensure accuracy to within one
day in 20,000 years. If this refinement was legislated, dates after 4000 C.E. stored in
the database would be off by one or two days. As it is, the vernal equinox will occur
on DATE '1997-03-21", DATE '4000-03-22', and DATE '8000-03-23".

While my watch tells me in which second (approximately) the current instant
occurs, we desire a more precise and universal definition. As mentioned, SQL uses
UTC. UTC is based on cesium atomic clocks, which are accurate to within a second
in a million years. A step adjustment of a fraction of a second at the beginning
of each month correlates UTC with mean solar time (the average time between
noons, when the sun is directly overhead). In October 1967, the second in the
International System of Weights and Measures was defined to be 9,192,631,770
periods of the radiation emitted by the transition between two hyperfine states of
the cesium 133 atom in the ground state. On January 1, 1972, the atomic second
became the practical unit of time. The UTC clock runs just a little fast with respect
to mean solar time, gaining about a second a year. UTC is adjusted by applying leap
seconds on January 1 or July 1 to keep UTC within 0.7 seconds of solar time.

So, what does this mean for an SQL user? The database is a model of reality. An
event in reality occurs at a particular instant. The representation of that instant
in the database should identify the particular day, or second, or microsecond, in
which the instant occurred, to the precision chosen by the user.

Say that TIMESTAMP(0) is specified. Then the user is satisfied if the instant can
be characterized to within a second. Alternatively, if the database specifies that an
event happened at a particular timestamp value, the user would like to identify the
second in reality during which the event occurred.

For times between 1958 and about 1998, this correspondence between reality
and its representation in an SQL-compliant database is well defined. The problem
with future time is that leap seconds are determined by a committee, after review-
ing astronomical records indicating how far apart solar time is from atomic time.
When the differential gets too great, a leap second is mandated. Since January 1972,
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22 leap seconds have been added, the last inserted just before 12:00 A.M., January 1,
1999 (do you remember?). Specifically, the sequence of UTC markers was '1998-12-
31 23:59:59", '1998-12-31 23:59:60", '1999-01-01 00:00:00'. While it is proba-
ble that a leap second will be added in 2000, exactly when future ones will be
added is a bureaucratic decision, informed by changes, which cannot be precisely
predicted, that are slowing down the earth’s spin. The decision is generally made
around five months before the leap second is effected.

Leap seconds imply that some minutes, such as the last minute of the year 1995,
contain 61 seconds. In fact, UTC allows two leap seconds to be added, so the sec-
onds value of a TIMESTAMP is restricted to 0.0 through 61.999. ... UTC also allows
the omission of a leap second; such minutes will only contain 59 seconds. However,
a leap second has not yet been omitted in the more than two decades since UTC
was defined.

Since UTC is coordinated with solar time, the sun will be directly overhead
within 0.7 second of '2222-01-01 12:00:00'. However, the number of seconds be-
tween TIMESTAMP '1997-01-1511:35:29.123456" and that instant is not known. As
we will see later, the DBMS will provide a number that should be close, within 300
seconds or so: the DBMS will assume no leap seconds in the intervening time. The
number of intervening minutes is known precisely, 118,843,224, because there are
no leap minutes. Leap seconds extend the minute to which they are assigned (such
as '1999-12-31 23:59:60', above); they do not accumulate into a leap minute.

Before 1958, UTC is not defined. One possibility is that the definition of UTC is
extrapolated backward to 1 C.E. The definition of UTC in 1958 is ephemeris seconds

as measured with an atomic clock, with adjustments for changes

Which second an SQL timestamp  in the earth’s rotation. So there are at least two possibilities. One
before 1958 denotes is not is that the proper adjustment is made each month, in that the
adequately specified in the first second of each month is a little longer or shorter than the

standard.

other seconds, so that the solar day is coordinated with UTC.

The problem with this approach is that it is impossible to cor-

relate SQL timestamps with any other time, such as unadjusted
ephemeris time, used by astronomers. A second possibility is that we can assume
that each minute contains exactly 60 (unadjusted) ephemeris seconds, which em-
phasizes equal-sized seconds but which becomes uncorrelated with the solar day as
we go back in time.

The moral is that no one really knows which second in reality is denoted by an
SQL timestamp before 1958. Returning to the letter written by our artist Enoch
Seeman, that day could have started on the second denoted by TIMESTAMP '1735-
03-23 00:00:00", or perhaps it started at '1735-03-23 00:00:10", or perhaps even
at '1735-03-22 23:55:04"'. Such uncertainty is frustrating. Ideally, that date should
start precisely at midnight: '1735-03-23 00:00:00". But the standard is surprisingly
silent on precisely what instant in reality such a value means.
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Given this imprecision in the standard, it is the responsibility of the applica-
tion designer to supply the semantics for SQL timestamp values. When a value
in a specific system—be it atomic (TAI), barycentric coordinate (TCB), barycentric
dynamical (TDB), ephemeris, geocentric coordinate (TCG), mean solar, sidereal, ter-
restrial (TT), universal (UTO, UT1, UTC), or some other system—is stored in an SQL
database, it must be converted to the semantics chosen for the application. When
information from two databases, with different semantics, are combined or com-
pared, the timestamp values must be converted to a common representation. It may
very well be the case that one timestamp '1735-03-23 00:00:00"' from a database
and a second timestamp '1735-03-22 23:55:04' from another database denote the
same exact instant!

Recall that an instant is an anchored location on the time line. So, which instant
is denoted by TIME '11:35:29'? On this, perhaps the most critical question, the
standard is entirely silent. Here is the entire specification [44, pp. 24-25]:

Section 4.5.1 Datetimes Therefore, datetime data types that contain time
fields (TIME and TIMESTAMP) are maintained in Universal Coordinated Time
(UTC), with an explicit or implicit time zone part.... A TIME or TIMESTAMP
that does not specify WITH TIME ZONE has an implicit time zone equal to the
local time zone for the SQL-session. However, the meaning [italics retained] of the
time does not change, because it is effectively in UTC.

An aside: the draft Technical Corrigendum 3 replaces this explanation with an
equally laconic specification [19, pp. 10-11]:
Section 4.5.1 Datetimes, Draft Corrigendum The surface of the earth is

divided into zones, called time zones, in which every correct clock tells the same
time, known as local time [italics retained]. Local time is equal to UTC (Coor-

dinated Universal Time) plus the time zone displacement [italics retained].... A
datetime value, of data type TIME or TIMESTAMP, may represent a local time or
UTC.

Let’s assume that the user is in the Mountain Standard time zone (seven hours be-
hind Greenwich). She specifies in her SQL code the literal TIME '11:35:29". This
particular time occurs exactly once each day in the UTC definition. So perhaps the
implied meaning is that the meaning of a TIME literal (or data value) is relative
to the current day. But this assumption has two unfortunate ramifications. Some
TIME values are defined for only about 1 in every 500 days: leap seconds, TIME
'23:59:60", have occurred 22 times thus far. So if I happen to retrieve this TIME
value on one of those days, everything is well defined, but if I retrieve the same
value any other day, the value indicates a nonexistent instant. The second prob-
lem is that the particular instant denoted by the value is dependent on when the
value is used or retrieved from the database. Consider a transaction that starts a few
minutes before midnight on Monday, January 13, 1997, and runs until a few min-
utes after midnight on Tuesday. The literal TIME '11:35:29" when first retrieved by
the transaction denotes the instant TIMESTAMP '1997-01-13 11:35:29". Just a few
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More on the Start of the Millennium

This confusion between anchored and unanchored
values also appears in discussions of “the millen-
nium.” That word translated from the Latin means
simply “one thousand years,” and hence is an
unanchored duration: an interval. So the years 998
and 1998 differ by a millennium. However, Web-
ster’s Dictionary notes the connection with “bien-
nium” (“a period of two years”), defining millen-
nium to be “a period of 1000 years,” in particular,
“the thousand years mentioned in Revelation 20
during which holiness is to prevail and Christ is to
reign on earth.” Many different interpretations of
the millennium have been given [18]: it is unclear

between interval and period thus seems to underlie
the doomsayers who claim that the world will end
or other fantastic happenings will occur on January
1, 2000 (or is it January 1, 2001—see page 63).

Others have started the millennial clock at the
supposed start of the world. It has been calcu-
lated that Jesus was born on 4000 A.M. (Annus
Mundi, or “year of the world”). Given that Jesus
was born in 4 B.C. (see page 75), you may want
to ponder where you were at the start of the sixth
millennium, or 6000 A.M., which started Mon-
day, October 27, 1997. (Surely you remember that
momentous transition!)

when this thousand years will start. This confusion

minutes later, the same value denotes a different instant, TIMESTAMP '1997-01-14
11:35:29', that is, an instant 24 hours later.

Values with an explicit UTC offset are safer to use. Consider again Enoch See-
man's letter; say it was written on TIMESTAMP '1735-03-23 13:23:45", in the early
afternoon. Now the letter was written in Berkeley Castle, which is in the same time
zone as Greenwich (using time zones as they are specified today; there were no
time zones in Seeman’s day). However, a user in Los Angeles who retrieved this
value from the database and printed it relative to GMT would see it as having been
written in the wee hours of the morning. On the other hand, had the offset (in this
case, +0:00) been stored with the timestamp, the desired instant would have been
correctly specified and would print out correctly in GMT.

In conclusion, only DATE and TIMESTAMP WITH TIME
ZONE adequately specify an instant, an anchored location on
the time line. TIME is relative to an unspecified midnight, and
TIMESTAMP without an associated offset acquires the time zone
of the user when the value is manipulated.

As another subtlety, the standard states:

An SQL-92 TIME value is really
an interval that can be added to
midnight of a particular day to
specify an instant.

Subclause 6.8 (datetime value function) General Rule 1. The (datetime
value function)s CURRENT_DATE, CURRENT_TIME, and CURRENT_TIMESTAMP
respectively return the current date, current time, and current timestamp.
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3.7.2

However, that subclause goes on to state:

Subclause 6.8 (datetime value function) General Rule 3. If an SQL-
statement generally contains more than one reference to one or more (datetime
value function)s, then all such references are effectively evaluated simultane-
ously. The time of evaluation of the (datetime value function) during the
execution of the SQL-statement is implementation-dependent.

So an implementation is free to adopt whatever definition of “current” it wishes,
including perhaps when the statement was presented to the system, or perhaps
when the database was first defined.

Time Zones

As we saw above, TIME WITH TIME ZONE values are safer than TIME values. A care-
ful reading of the SQL-92 standard indicates that implicit time zone displacement
“is defective, in at least one respect, is imprecisely specified, does not fully imple-
ment the approach proposed [in a prior standards meeting] and leaves unsolved
a problem that was acknowledged to need a solution as long ago as 1988” [101,
pp- 1-2]. In the current SQL-92 standard, for a TIME value without an explicit time
zone, either AT LOCAL or GMT was assumed; the standard is unclear on which is
to be used.

Technical Corrigendum 3 (at the time this is being written,

Use TIME (without time zones) this document is a working draft approaching ISO approval)

exceedingly carefully, as the specifies that a TIME (without the time zone) value does not
standard is imprecise and have an implicit time zone; indeed, nothing is assumed about
defective in its application of the nonexistent time zone. While some of the identified defi-

implicit time zones.

ciencies have been addressed in this way by the Technical Cor-
rigendum, it is doubtful that the changes have migrated into
commercial products.

Even when the TIME WITH TIME ZONE type is used, the user should
be careful. For example, given two values v; and v, of type TIME
WITH TIME ZONE, it is possible that v; = v, while EXTRACT(TIMEZONE.
HOUR FROM wvy) <> EXTRACT(TIMEZONE_HOUR FROM ), and

Use TIME WITH TIME ZONE CAST(vy TO TIME) <> CAST (v, TO TIME). This unintuitive seman-
carefully, as the time zone tics results from the time zone being ignored in the equality, but
stored in such a value is often not in the latter two expressions. Since many other predicates,
ignored. such as OVERLAPS, are defined in terms of equality, often the

3.7.3

time zone stored in a value is ignored.

Intervals

The reason given for the distinction between year-month intervals and day-time
intervals is that months are not an integral number of days. Melton and Simon
[71] ask the question, “What is the result of 1 year, 3 months, 19 days divided by
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3?” They correctly state that the answer cannot be determined unless we know the
dates spanned by that interval. However, minutes are not an integral number of
seconds, due to leap seconds. What if we ask the question, “What is the result of
1 minute divided by 4, in seconds?” The answer could be 14, 15, or 16, depending
on which particular times were spanned by that interval (up to 2 leap seconds can
be added or subtracted from a minute). So, what does the standard have to say about
this? The expression INTERVAL '1' MINUTE / 4 evaluates to INTERVAL '0" MINUTE;
fractional minutes are lost. However, we can explicitly request that the calculation
be done in terms of seconds, either with INTERVAL '1:00' MINUTE TO SECOND / 4 or
CAST(INTERVAL "1' MINUTE TO INTERVAL MINUTE TO SECOND) / 4, with the cast being
implicit or explicit. Now the question is, What does cast return? Here is the entire
specification [44, p. 122].

Subclause 6.10 (cast specification) General Rule 13.d. If SD [the data type

of the source expression SV, here INTERVAL '2' MINUTE] is interval and TD [the

target data type, here INTERVAL MINUTE TO SECOND] and SD have ditferent

interval precisions, then let Q be the least significant (datetime field) of TD [that

is, SECOND]. Let Y be the result of converting SV to a scalar in units Q according

to the natural rules for intervals as defined in the Gregorian calendar. Normalize
Y to conform to the datetime qualifier “P TO Q" of TD.

The rub lies in deciding exactly what the “natural rules for intervals as defined in
the Gregorian calendar” are in the presence of leap seconds. Presumably this ex-
pression would always evaluate to 15 seconds (assuming that the “average” minute
contains 60 seconds), but the specification is not clear. However, using the same
logic, “What is the result of 1 year, 3 months, 19 days divided by 3?” could just as
easily be interpreted to yield 3 months, 17 days, using an average length, in days,
of a year and a month in the Gregorian calendar.

There are at least two ways the SQL could be interpreted in its handling of in-
tervals in a consistent manner. One is to use “average” months, and minutes, in
interval conversions, and do away with the distinction between year-month and
day-time intervals. The other is to not use average months or minutes, and ex-
pand the kinds of intervals to year-month, day-minute, and second (and fractions
thereof) variants.

Another problem surfaces as to what values are allowed for SQL intervals. The
specification is laconic on this as well [44, p. 75]:

Subclause 5.3 (literal) Syntax Rule 23. Within the definition of an (interval

literal), the (datetime value)s are constrained by the natural rules for intervals
according to the Gregorian calendar.

Most days have 24 hours. The day in April that daylight sav-

Whether or not leap secondsare  ing time kicks in has only 23 hours; the day in October that
included in day_time intervalsis  daylight saving time ends contains 25 hours. Similarly, minutes
not specified in the SQL-92 can have 62 seconds (though up to 1999 only one leap second

standard.

has ever been added to any particular minute), as mentioned in
this standard [44, p. 25].
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374

Section 4.5.1 Datetimes Note: On occasion, UTC is adjusted by the omission
of a second or the insertion of a “leap second” in order to maintain synchroniza-
tion with sidereal time. This implies that sometimes, but very rarely, a particular
minute will contain exactly 59, 61 or 62 seconds.

However, no such mention is made of days with 25 hours. Hence, the standard
is not clear as to whether the maximum value of the hours field is 24 or 25, or
whether the maximum value of the seconds field is 60, 61, or 62.

Predicates

The OVERLAPS predicate could have been easily generalized, but wasn't. For exam-
ple, the following forms are not permitted, even though they make perfect sense:

BirthDate OVERLAPS DATE "1970-01-01"
BirthDate OVERLAPS (DATE '1970-01-01', INTERVAL '0" DAY)
(DATE '1970-01-01"', INTERVAL "0'" DAY) OVERLAPS BirthDate

We could argue that all three are equivalent to

BirthDate = DATE '1970-01-01'

but the discussion in Section 3.3 shows that orthogonality was not a priority in
SQL’s design. If the intervals in the last two are replaced with a nonempty interval,
say, INTERVAL '7' DAY (within a week), then they are not equivalent to the first.
Again, we could argue that those would be equivalent to

(BirthDate, INTERVAL 'O' DAY)

OVERLAPS (DATE '1970-01-01"', INTERVAL '7' DAY)
(DATE '1970-01-01", INTERVAL '7' DAY)
OVERLAPS (BirthDate, INTERVAL '0' DAY)

or

(BirthDate, NULL) OVERLAPS (DATE '1970-01-01', INTERVAL '7' DAY)
(DATE "1970-01-01", INTERVAL '7" DAY) OVERLAPS (BirthDate, NULL)

but it seems less desirable to require an empty or null interval.
In the same vein, it would have been nice to allow equality and inequality
comparisons between these period information values, such as

(BirthDate, INTERVAL '7' DAY)

= (DATE '1970-01-01", INTERVAL '7" DAY)
(DATE '1970-01-01", INTERVAL '7' DAY)
<= (BirthDate, INTERVAL '9" DAY)

As it is, SQL-92 introduces these period information values with their concomitant
complex syntax rules just for the OVERLAP predicate.



3.8 IMPLEMENTATION CONSIDERATIONS* 83

3.7.5

3.8

3.8.1

3.8.2

3.8.3

Constructors

The CAST function is not symmetric, in the following way. This is being written at
4:57 p.M. on July 23, 1997. The expression CAST(TIME '12:34:56" AS TIMESTAMP(0))
yields '1997-07-23 12:34:56", that is, that time today, but CAST(DATE '1997-01-
01' AS TIMESTAMP(0)) yields TIMESTAMP '1997-01-01 00:00:00'. This asymmetry
appears to be a reasonable design decision, as chances are that something that hap-
pened at some other date probably did not happen at exactly the same time of day
as “now.”

IMPLEMENTATION CONSIDERATIONS*

Here we consider subtleties of instants and intervals in specific DBMSs.

IBM DB2 Universal Database

IBM DB2 UDB will generate an error if a field value (e.g., 60 seconds, 24 hours) was
out of range. Hence, every minute in DB2 contains exactly 60 seconds; leap seconds
are not accommodated.

Microsoft Access

Access interprets the fractional portion of a DATE as a fraction of a day, effectively
dividing each day into 86,400 seconds. Hence, every minute in Access contains
exactly 60 seconds; Access DATEs do not take into account leap seconds. Access
will generate a runtime error if the field value (e.g., 60 seconds, 24 hours) was out
of range.

Oracle8 Server

Oracle8 Server date arithmetic takes into account the (Catholic) switch from the
Julian to the Gregorian calendar, which eliminated 10 days in October 1582 (Octo-
ber 5 through October 14). Missing dates can be entered into the database, but are
ignored in date arithmetic and treated as the next date. For example, the next day
after October 4, 1582, is October 15, 1582, and the day following October 5, 1582,
is October 15, 1582. Specifically, all the dates between October 5 and October 14
are mapped identically to October 15.

As the maximum number of seconds in a minute in Oracle8 Server is 60, Oracle
DATEs do not take into account leap seconds. Instead, Oracle8 Server will generate
a runtime error if the field value (e.g., 60 seconds, 24 hours) was out of range.
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The Adoption of the Gregorian Calendar

As the Gregorian calendar was imposed by fiat by
a sitting pope (see page 37), adoption was quick
in Roman Catholic countries, but decidedly unen-
thusiastic in Protestant countries. Britain and its
colonies (which includes what is now the United
States) didn’t adopt the Gregorian calendar until
1752. Because it waited so long, Parliament had
to drop 11 days (September 3-13, 1752) in or-
der to catch up. George Washington’s birthday
was recorded at the time as February 11, 1731;
this is a Julian date because Britain hadn't yet
switched over. However, President George Wash-

ington’s birthday is celebrated in the United States
on February 22, its Gregorian date (at least un-
til a Presidents’ Day was instituted covering for
both Washington’s birthday and Lincoln’s birthday,
which occurred after the switch).

The U.S.S.R. didn’t join the bandwagon until
1918. The “October Revolution” happened in a Ju-
lian October; until recently it has been celebrated
in Gregorian November. In fact, there are many
different switchover dates (e.g., Sweden, 1753;
Turkey, 1927), rendering “the Gregorian calendar”
an oxymoron.

3.84 CD-ROM Materials
Detailed explanations of the temporal types in Microsoft Access 2000, Microsoft
SQL Server, IBM DB2 UDB, Informix-Universal Server, Oracle8 Server, Sybase SQL-
Server, and UniSQL are provided, as well as sample SQL statements illustrating op-
erations on instants and intervals. For some of the operations that are not possible
in IBM DB2 strictly in SQL, the equivalents are given as embedded SQL.

A detailed explanation of Ingres is also included on the CD-ROM, but the

examples have not been tested.

3.9 SUMMARY

Temporal values are the stuff of which time-varying applications are made. In order
to record the history of the modeled reality, it is first necessary to be able to record
the “when.”

Instants are the most basic data type. An instant is a position on the time line.
Virtually all DBMSs support this data type. In SQL-92, five related data types en-
code instants, to various granularities: DATE, TIME, TIMESTAMP, TIME WITH TIME
ZONE, and TIMESTAMP WITH TIME ZONE.

Intervals are unanchored, directed portions of the time line; an interval can be
added to an instant to displace that instant either into the future or back into the
past. SQL-92 supports two kinds of intervals, year-month intervals and day-time
intervals.
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3.10

A rich set of operators and predicates applies to temporal values. SQL-92 provides
the following classes of predicates: equality, inequality, is null, and overlaps. It also
provides arithmetic operators (‘+', *-*, **’, /"), unary plus and minus, time zone con-
version (AT), “now” (CURRENT_TIME, CURRENT_DATE, CURRENT_TIMESTAMP), a
variety of conversions (CAST), and field extraction (EXTRACT).

Specific DBMSs vary greatly in their support of the standard, from quite strict
adherence (e.g., IBM DB2) to studied apathy (most DBMSs). While most temporal
operations in SQL-92 can be simulated in the facilities of the various DBMSs (and
vice versa), that simulation is often unnecessarily convoluted.

Despite the care with which the SQL-92 standard has been developed and doc-
umented, it still contains dark corners and seemingly arbitrary design decisions.
Most DATE and TIMESTAMP values are undefined, as the standard is based on UTC,
which doesn’t apply before 1958. SQL-92, and virtually all DBMSs, utilize the Gre-
gorian calendar, which was adopted in different parts of the world over a 350-year
period. A TIME value does not actually represent an instant; rather, it represents
a special kind of interval. Leap seconds may or may not be accommodated (the
standard doesn’t say); most DBMSs ignore this subtlety.

READINGS

Information on the Public Petroleum Data Model can be found at www.ppdm.org.

Datetime literals are based on an ISO standard, “Representation of Dates and
Times” [43]. This standard uses the Gregorian calendar as well as a 24-hour clock,
which also serve as the basis for SQL datetimes.

While the SQL-92 standard [44] is quite lengthy, at 580 pages, only a small por-
tion, about 30 pages, or 5 percent, concerns temporal data types and their opera-
tors. However, this portion in some ways is more complex than other parts of SQL,
as evidenced by over 12 pages (almost 10 percent) of the Technical Corrigendum
3 [19]. Even with these numerous corrections, many of the deficiencies discussed in
Section 3.7 remain. Sykes provides a cogent discussion of the problems, and partial
solutions, to time zone support in SQL-92 [101].

The temporal constructs are included in the Intermediate SQL and Full SQL lev-
els of conformance to SQL-92; the Entry SQL level of conformance includes no
temporal types. Conformance testing was initially done by the National Institute
of Standards and Technology (NIST), a U.S. Department of Commerce agency. As
of July 1, 1997, when NIST ceased SQL conformance testing, 11 products had been
validated for conformance to FIPS publication 127-2 [73]: IBM (2 configurations),
Informix (5 configurations), NCR, and Sybase (3 configurations). Unfortunately, all
of these validations were at Entry FIPS 127-2, which includes no time support. The
National Software Testing Laboratories (NSTL), an independent organization not
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associated with the government, has established a testing and certification program
for SQL at www.nstl.com/html/press___nstl_establishes_sql_conformance_testing.html.
Unfortunately, according to NSTL, “All of NSTL's testing services are conducted on
a strictly confidential basis. Clients...have used NSTL test results for promotional
purposes,” so information about which products conform to the standard will come
only from the vendors themselves.

Books and articles on the year 2000 problem could fill an entire shelf of your
library. A quick search on amazon.com turned up over several dozen titles; there
is even a Year 2000 for Dummies [16]. (Some book titles to the contrary, the proper
spelling is “millennium,” with two ns, from the Latin mille, “one thousand,” and an-
nus, “year,” whereby the two ns.) The following are some useful Web sites providing
further pointers:

e The Year 2000 Information Center: www.year2000.com

e U.S. Federal Government Gateway for Year 2000 Information Directories:
www.itpolicy.gsa.gov/mks/yr2000/y2khome.htm

e National Institute of Standards and Technology: www.nist.gov/y2k/

e Information Technology Association of America (ITAA):
www.itaa.org/year2000.htm

e Mitre's Year 2000 home page: www.mitre.org/technology/y2k/

e The Federal Technology Service of the General Service Administration (GSA) of
the U.S. Federal Government: www.fts.gsa.gov

e The IEEE Technical Activities Board (TAC) New Technologies Development
Committee: www.mindspring.com/~pci-inc/Year2000/y2ktech.htm

e IBM’s Year 2000 home page: www.ibm.com/IBM/year2000/

e Microsoft Year 2000 Resource Center: microsoft.com/year2000/

e Newsgroup: comp.software.year-2000

The year 2000 problem isn’t unique to computers. The July 1998 issue of Con-
sumer Reports (p. 67) describes a (manual) Mead 10-year date stamp that had been
purchased in March of that year. The reader subsequently found out that the date
stamp was good only until December 31, 2000. As the packaging copyright says
1993, this was at best an 8-year date stamp when it was manufactured. Perhaps at
the turn of the century there will be a run on office supply stores when all of the
10-year date stamps expire.

Jones [59] lists other year 2000-like problems, many of which in a cruel irony
just happen to fall right around the same time: the conversion of the euro, which
started January 1, 1999, the Global Positioning System (GPS) week-counter rollover,
which occurs at midnight on August 21, 1999, the use of the value 9999 as a file
termination code, which might be misinterpreted as September 9, 1999, and the
use in Unix of the number 999999999 as end-of-file, which can be interpreted as a
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Unix date of September 8, 2001. Neumann [75] provided the Multics observation
on page 65.

The SQL standards are denoted SQL-86, SQL-89, and SQL-92. You might think
that the next standard, due out in 1999, would be named SQL-99. Logically, then,
the standard following that might be named SQL-02, which might be confused
with SQL2 (the project name under which SQL-92 was developed). The resolution
was to term the next standard SQL:1999, thereby avoiding a year 2000 problem
with the name of the standard [30].

An impressive amount of information on UTC and leap seconds can be found
at tycho.usno.navy.mil/time.html. Papers by Dyreson, Howse, Quinn, and the au-
thor provide details on UTC and ephemeris time [28, 42, 79]. While UTC is de-
fined relative to an atomic clock, an ephemeris second is a constant duration of
time: 1/31,556,925.9747 of the period of time between the passage in 1899 and
the passage in 1900 of the sun through the vernal equinox, when the duration
of sunlight and darkness are the same. While this may seem an odd definition,
the ephemeris second is actually the average value of a second calculated from
astronomical observations over the 18th and 19th centuries.

HAL was the computer featured prominently in Arthur C. Clarke’s 2001: A Space
Odyssey. 1ts (his?) birth date, January 12, 1997, was occasioned by the release of a
book on HAL's legacy [100].

Oracle’s temporal support is described well in Koch and Loney’s encyclopedic
reference book [63, ch. 7].

See bert.cs.pitt.edu/~tawfig/convert/introduction.html for a discussion of the Hijri
calendar, supported by Microsoft Access.

Dershowitz and Reingold’s beautiful book, Calendrical Calculations [27], presents
in completely algorithmic form a description of 14 calendars: the present civil cal-
endar (Gregorian), the recent ISO commercial calendar (ISO 8061), the old civil
calendar (Julian), the Coptic and Ethiopic calendars, the Islamic (Moslem) calen-
dar, the modern Persian (solar) calendar, the Baha'i calendar, the Hebrew (Jewish)
calendar, the Mayan calendar, the French Revolutionary calendar, the Chinese cal-
endar, and both the old (mean) and new (true) Hindu (Indian) calendars. Included
is a wealth of historical material. The mere existence of Dershowitz and Reingold’s
book is illustrative of the inherent complexities of the subject.
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A period is a segment of the time line, starting
at oneinstant and terminating at a later instant.
While there are a variety of representations
of periods, one particular representation is
preferable.
Periods are more complex than instants, be-
cause there is no total order on periods, unlike

instants.

SQL-92 has essentially one construct, OVER-
LAPS, that is relevant to periods. However, the
draft SQL3 standard includes a period type con-
structor, period literals, predicates, and value

constructors.



Periods

of time. To express when a fact holds in the enterprise, a period is associated
with that fact.

A period is an anchored duration of the time line. The Fall 1997 academic semes-
ter at the University of Arizona comprises the period from August 25, 1997 to De-

cember 19, 1997. This data type, while quite useful, is not sup-
A period is an anchored duration  ported directly by any commercial DBMS, nor is it in the SQL-
of the time line. 92 standard. However, periods are in the SQL3 draft standard, as
will be discussed in Section 12.4.

Perhaps the reason that periods were not included with the other temporal types
in SQL-92 is that they are relatively easy to simulate with datetimes. The most
common representation is with a pair of instants, the first specifying the first day
(second, microsecond) of the period and the second specifying the last day (sec-
ond, microsecond) of the period. Generally the delimiting datetimes are of identical
granularity.

Jim Barnett utilized periods in several places in the FINDER schema. The Create.
Date and Last_-Update columns indicate when the data was stored in the database.
Many tables also have Start_Date and End.Date columns to specify when the data
was valid in reality. These two, quite different notions are explored in detail in
Chapters 8 and 5, respectively.

There are several variants possible even with an instant-pair representation
of periods. One common representation is termed a closed-closed representation
because both delimiting datetimes are in the period. For the Fall 1997 semester, the
pair of dates would be [DATE '1997-08-25", DATE '1997-12-19'], with the square
brackets denoting a closed representation.

An alternative is the closed-open representation, in which the second datetime
of the pair represents the granule immediately following the last granule of the
period. Our example in a closed-open representation is thus [DATE '1997-08-25",

A n instant has no duration. Yet facts in the database are true over a duration
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DATE '1997-12-20"). The ending parenthesis indicates that the ending is open.
We'll examine the relative advantages of each of these representations shortly.
Two less often used alternatives are open-closed and open-

The primary representations of ~ open.
periods are closed-closed and Yet another alternative is the starting datetime and an in-
closed-open pairs of datetimes, ~ terval specifying the duration of the period. In this approach,
and a pair of a starting datetime the Fall 1997 semester becomes (DATE '1997-08-25", INTERVAL
"117" DAY). Finally, for completeness, we might use the termi-
nating datetime and the duration, for example, (INTERVAL "117'
DAY, DATE '1997-12-19'). We could also consider open variants
thereof, but that is not productive.

The delimiting datetime(s) of a period may include a time zone, if their granular-
ity is to the hour or smaller. The Fall 1997 semester to the second granularity in the
closed-open representation with a time zone of Mountain Standard Time is [TIME-
STAMP "1997-08-25 08:00:00-07:00", TIMESTAMP "1997-12-19 17:00:00-07:00").
This example hints at the utility of the closed-open representation. In the closed-

closed representation, the terminating timestamp would be an
The time zone of a period, ifany,  awkward TIMESTAMP *1997 1219 16:59:59-07:00". The two de-
should be stored with the first limiting datetimes of a stored period should have an identical
datetime of the representation.  time zone, for the reasons given in Section 3.7.2.

and an interval, with both
components of the same
granularity.

4.1 LITERALS

As SQL-92 does not provide a period data type, there are no period literals in
that language. Periods must instead be specified by their constituent datetime and
interval literals.

4.2 PREDICATES

As we saw in the previous chapter, SQL-92 supports only four classes of predicates
on datetimes and intervals: equality, less-than, is null, and overlaps.
Equality on periods can be implemented using their under-

Equality testing on periods is lying components, as shown in Table 4.1. Here, the expres-
highly dependent on their sion “+1” denotes adding one granule at the granularity of
underlying representation. the period. At a granularity of day, this expression would be “+

INTERVAL "1" DAY”.
Testing for is null is straightforward in any of these representations: simply apply
IS NULL to the first component, which is always a datetime. If the first component
is null, the value of the second component is irrelevant.



4.2 PREDICATES 91

Table 4.1 The equality predicate on periods.

Representation Equality Predicate

[ay, az] equals[b1, b1 ay = by AND a, = by

[ay, az] equals[b1, by) a1 =Dby AND a, +1= by

[a1, ao] equals(b1, bi) ay=by+1AND a, +1 =01 + b;
a1, ap) equals[b1, bs] a1 =by AND a,=by +1

a1, ap) equals[b1, bs) a1 =>bq AND a» = by

[ay, az) equals(b1, bi) ay=by+1AND ay = by + b;
(ay, a;) equals[az, b1l ar+1l=a,ANDay +a;=b;+1
(ay, a;) equals[az, b1) ay+1=ay AND aq + a; = by

(a1, a;,) equals (az, a;,) ay=az AND a; = aj,

Unlike datetimes and intervals, periods are not ordered. There is only a par-
tial order between periods. Consider the Fall 1997 semester and the calendar year
1997. The calendar year both starts before the semester and ends after the semester.
However, the month of July 1997 definitely precedes the Fall 1997 semester.

While two datetimes or intervals can be related in three ways

While datetimes and intervals (before, equal, and after), two periods can have one of 13 rela-
are totally ordered, periods are tionships, shown in Figure 4.1. In this figure, time proceeds from
only partially ordered, with 13 left to right. These relationships are disjoint: only one can hold
possible relationships between between any two given periods. Note also that a overlaps b is

two periods.

more restrictive than SQL's OVERLAPS, which will be discussed
shortly.

These relationships can be expressed in terms of comparisons on the compo-
nents of the underlying periods. Table 4.2 provides the SQL-92 equivalents for the
relationships, except for equals, which was provided before, and the inverse rela-
tionships (e.g., before™ "), which can be easily derived