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Á Merrie

Ce jour, et toujours



Mach' es wie die Sonnenuhr

Zähl' die heiteren Stunden nur

Do like the sundial:

Count only the bright hours

� German proverb



Foreword
by Jim Gray

Microsoft Research

Precise clocks were developed so that seafarers could �nd their longitude. Precise

temporal data techniques were recently developed to help database designers record

and reason about temporal information. It is paradoxical that we are only now com-

ing to understand how to think about time and represent it in formal systems. After

all, time is the fourth dimension; it is at the core of existence. Yet, it is only recently

that we have come to understand the fundamental concepts of instants, intervals,

periods, sequenced changes, valid time, transaction time, and a bitemporal view of

information.

Richard Snodgrass and his colleagues have explored temporal data concepts over

the last two decades. They now have a fairly complete solution to the problems.

Indeed the concepts are now being added to the SQL language standard. This book

summarizes their work and presents it in a very accessible and useful way.

Temporal databases, viewed from this modern perspective, are surprisingly sim-

ple and powerful. The book gives examples of 85-line SQL programs that collapse

to 3-line programs when the new concepts are applied. It introduces the concepts

using concrete examples and conventional SQL. I found this mix of theory and

practice very instructive and very easy to follow.

The book explains that temporal databases can be designed in two steps. First,

the static database can be designed. Then, in a second pass, each table and con-

straint is given its temporal attributes. This makes design much more tractable.

This approach is made all the more attractive by the fact that the temporal SQL

language extensions are just modi�ers to standard queries and updates�this very

elegant approach makes temporal issues orthogonal to the other language issues.

I highly recommend this book to anyone interested in temporal data�either

designing and building databases that record information over time, or just under-

standing the concepts that underlie representing temporal information. This book

does an excellent job of organizing and summarizing this important area.





Foreword
by Jim Melton

Oracle Corporation

It's about time�time that a book like this was written and time that the SQL

community got the bene�ts of the careful analysis and thought put into the subject.

Rick Snodgrass is one of the relatively few researchers in the �eld of temporal

databases and has proved himself to be one of the more important of those few,

in part because he insists on applying the theoretical knowledge gained from his

research to practical applications and to real products.

Snodgrass proposed in 1992 that temporal extensions to SQL be developed by

the temporal database community. In response to this proposal, a virtual commit-

tee was formed to design extensions to the 1992 edition of the SQL standard (ANSI

X3.135.-1992 and ISO/IEC 9075:1992); those extensions, known as TSQL2, were

developed during 1993 by this committee meeting only via email. In late 1993,

Snodgrass �rst presented this work to the group responsible for the American Na-

tional Standard for Database Language SQL, ANSI Technical Committee X3H2 (now

known as NCITS H2).

In response to Snodgrass's presentation, X3H2 proposed to the International Or-

ganization for Standardization (ISO) that the project to extend the standard for

SQL be enhanced by adding a subproject for temporal extensions to the language.

This proposal was accepted in 1994, and an initial document for ISO/IEC 9075-7,

known as SQL/Temporal, was started. Over the next two years, a series of propos-

als from Snodgrass and others were considered by the ISO group responsible for

SQL (ISO/IEC JTC1/SC21/WG3, later ISO/IEC JTC1/SC32/WG3), but progress was

slowed considerably by the need to focus on what has recently been published as

SQL:1999. Work will undoubtedly resume on progressing SQL/Temporal in 1999

for publication early in the next millennium, and Snodgrass will no doubt play a

signi�cant role in its standardization.



x FOREWORD BY J IM MELTON

The book you hold has been a long time in the making, not only because the

subject matter can seem overwhelmingly complex if not presented carefully, but

also because of the great number of examples that Snodgrass has taken from real

application systems and translated into standard SQL and its proposed extensions.

(Of course, not all of the examples can be used in all SQL products today; some of

them are directed toward speci�c vendors' systems, while others depend on future

extensions to the language.) The result of that care and extensive use of examples

is great clarity and focus, yielding ready comprehension to readers willing to give

the book the attention it deserves. I recommend this book very highly to all SQL

practitioners, especially those with an interest in the temporal semantics of data.
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Preface

This is how it goes.

We develop a database application, and initially the project proceeds smoothly

enough. There are alternatives to weigh during the schema design, problems to con-

tend with while writing the SQL code, and constant recon�guration and interaction

with other programs and legacy data, but all in all the project is under control. Then

we decide that one of the tables needs another DATE column, recording when the

row was valid. (After all, we added a birth date column a few weeks ago, with no

surprises.) So we rework the part of the application that maintains that table, notic-

ing that the code is getting more complicated. During testing, we discover that the

primary key no longer is suf�cient. We add the DATE column to the primary key,

acknowledging that this is only a stopgap measure, and hope that the input data

will be well formed, as there isn't time to write code that checks those constraints

properly. In the back of our mind is the lingering doubt that perhaps referential

integrity checking isn't working quite right either.

We soon realize that we need another DATE column to record when the row

was no longer valid. In doing so we encounter a raft of off-by-one bugs, in which

some less-than comparisons should have been `<=', and other places where we need

to add �+ �1� DAY�. We think we've found all the code locations that need to be

changed, but we're not sure. And we now know for a fact that the primary and

foreign keys are wrong, but we don't know how to even approach that mess.

The code to modify the database is becoming increasingly convoluted. Each

modi�cation has to at least consider changing the DATE columns, but it isn't at

all clear how to approach such changes in a systematic fashion. And even the most

trivial queries, such as �Who was Aaron's manager when he worked on the Capital

account?�, which before we could code in our sleep, now become painful to even

contemplate writing in SQL.

Around this time, users start complaining that reports aren't consistent, that

copies of the end-of-the-year summary have different numbers in them. Looking
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into this anomaly, we �nally �gure out that the reports were run at different times,

and the data had been changed in the meantime. We then realize that there is no

way to correlate the end-of-the-year report with the cash �ow report, unless they

are run at the same time. Users are adopting an irreverent view of these reports: if

you wait a few days, maybe the numbers will �x themselves.

To address the inconsistencies in the reports, someone suggests a quick �x: add

another DATE column. The development group responds with astonishment and

chagrin. How can we possibly get the code working with another DATE column,

when we all know how much work resulted from adding the previous column?

In fact, some in the group despair of ever getting the code as is, with just two

DATE columns, working correctly�there are just too many arbitrary decisions, each

layered on other equally ill-motivated quick �xes.

Looking back on the history of the development process, everyone has a vague

idea that the problems started when that pesky DATE column was �rst added. How

could one column �ummox the whole system? And why do some columns, such

as the birth date column, slide in smoothly, and other DATE columns cause no end

of problems?

A PARADIGM SHIFT

Thomas Kuhn, in his insightful and highly in�uential book, The Structure of Scien-

ti�c Revolutions [64], argued that science does not proceed in a linear, monotonic ac-

cumulation of knowledge, but rather exhibits intellectually jarring discontinuities,

as radical ideas become the established world view, replacing the now-discredited

prior conceptual foundation.

Two decades of research into temporal databases have unequivocally shown that

a time-varying table, containing certain kinds of DATE columns, is a completely

different animal than its cousin, the table without such columns. Effectively de-

signing, querying, and modifying time-varying tables requires a different set of

approaches and techniques than the traditional ones taught in database courses

and training seminars. Developers are naturally unaware of these research results

(and researchers are often clueless as to the realities of real-world applications de-

velopment). As such, developers often reinvent concepts and techniques with little

knowledge of the elegant conceptual framework that has evolved and recently con-

solidated, and researchers continue to conceal this framework with overly formal

prose, never bothering to make the connection with existing tools at hand.

This book is an attempt to recast the insights from some 1600 papers in the

research literature into terms usable by those brave SQL application coders working

in the trenches. These concepts are integrated with the state-of-the-art approaches

utilized by forward-thinking developers, as showcased in the case studies that form

the bulk of the book. The result is, to use Kuhn's phrase, a paradigm shift in how
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we think about time-varying data. This shift impacts how such tables are speci�ed,

how they are maintained, and how they are queried.

PREREQUISITES

I assume you are comfortable with the SQL query language. This book is not a

primer on that language, though I do cover the temporal data types and tempo-

ral constructs of SQL-92 in depth. There are many excellent books that serve as

introductions to SQL.

It helps if you have implemented an application involving time-varying data, if

only to realize �rsthand how dif�cult and confusing such a project can be, and thus

to appreciate the degree to which the approach presented here helps clear out the

undergrowth and achieve an elegant and unfettered design. One chapter assumes

familiarity with the entity-relationship model; the rest of the book focuses solely

on the relational model.

The conceptual tools introduced here are in a speci�c and fundamental way ex-

tensions of existing strategies, so everything you've learned until now (well, almost

everything) will be useful in this brave new world. The hardest part, for which I'll

provide careful guidance, is to jettison the notion that this DATE column �is just

another column.� Operating under the old assumptions unhappily doesn't work, as

project after project after project has shown. Paradigm shifts are always scary, but

the bene�ts are there for those willing to make the jump.

WHAT TO READ

The best way to understand the principles of time-varying applications and their

expression in SQL is to work through a series of tangible examples. By examining

the design issues that arise and the kinds of constraints, queries, and modi�cations

that we wish to express in implementing these speci�c applications, you will gain

an appreciation of the abstract principles at play. For this reason, the bulk of this

book is comprised of case studies.

Each case study sets the stage with a discussion of the application domain, which

includes oil �eld records, cattle location information, and cadastral data. The rel-

evant tables are introduced, followed by a discussion of the design, querying, and

modi�cation of these (time-varying) tables. While the applications and the people

mentioned in the case studies all exist, the speci�c SQL examples have been tailored

to bring out the issues under discussion.

The case studies were easy to locate. It seems that most database applications

involve time-varying data. Indeed, applications that are inherently not temporal

are about as prevalent as the proverbial hen's teeth. In fact, the only places you
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encounter nontemporal examples are in books and seminars, a phenomenon that

unintentionally emphasizes the inherent complexity of time-varying applications.

To understand the fundamental concepts, you are encouraged to read all the

chapters, even if you aren't an oil �eld engineer or a veterinarian. Each case study

brings out a new category of temporal data, with its unique characteristics and de-

mands. In fact, by studying other �elds, you are relieved of the minutiae of your

current environment. By studying a foreign language or culture, a deeper under-

standing of your own language or culture often follows as an additional, or even

sometimes primary, bene�t. After you have read the book, a productive approach

to address a new set of requirements is to ask, To which case study is the application

under development most closely related? Then the relevant code fragments can be

customized to the problem at hand.

A few sections are marked with an asterisk to indicate advanced material. Feel

free to skip these sections on a �rst, or even second, reading.

CASE STUDIES

Be�tting the book's categorization as non�ction, the people and their situations

are as described herein. The speci�cs of their solutions to the problems presented

by time-varying data have been adapted to better illustrate general approaches that

I wish to emphasize. Most of the SQL code was written by use for the book, but it is

reminiscent of that appearing in the actual applications. In the discussion, I have

attempted to not oversimplify. Much of the complexity inherent in these applica-

tions is cleverly hidden in the details, and any realistic solution must ultimately

confront the enterprise in all its glory and intricacy.

CD-ROM

The included CD-ROM contains the code fragments implemented in a variety of

commercial systems, including IBM DB2 Universal Database (UDB), Ingres, Inform-

ix�Universal Server, Microsoft Access, Microsoft SQL Server, Sybase SQLServer, Ora-

cle8 Server, and UniSQL. While these code fragments have been tested, the author

and the publisher make no claims as to the suitability or correctness of these code

fragments.

Also included are versions of some of the systems discussed in Chapter 12.

ERRORS

I would appreciate hearing about any errors that you �nd in the book, as well as re-

ceiving any other constructive suggestions youmay have. (I'd especially like to hear
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of better ways to write individual code fragments.) Please email your comments to

the author at snodgrass@mkp.com.
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Introduction

I
t was �as if you �red a 15-inch naval shell at a piece of tissue paper and the

shell came right back and hit you.� Thus Ernest Rutherford described his aston-

ishment at the result of his undergraduate student's experiment in 1911. The

experiment was a simple one: expose thin foils of gold to � particles and watch for

appreciable scattering. The then-current model of matter was that it was a �bunch

of electrons and some nondescript smeared out jelly of positive charge.� The �

particle weighs some 8000 times more than an electron, yet was unexpectedly de-

�ected by the jelly. This observation led to a radical change in our conception of

matter, resulting in the Rutherford atom, a tight nucleus surrounded by orbiting

electrons.

The scattering of particles and waves such as X rays provides much information

on the inner structure of matter. Diffraction patterns are stunningly beautiful in

their regularity, re�ecting in a highly indirect fashion the ordering of atoms of the

crystalline solids (such as TaSe2, shown in Figure 1.1) exposed to the beam. These

patterns can be analyzed to understand this geometric structure and other proper-

ties. Indeed, much of what is known about the structure of solids is due to analysis

of diffraction patterns. Such a study was critical, for example, in understanding the

spiral staircase of DNA's double helix.

The diffraction patterns are emphatically not magni�cations of the crystalline

structure; rather, the various distances and angles of the blips can be translated

back via sophisticated calculations to the unseen lining up of atoms stuck in a

three-dimensional gridlock. Only by understanding the phenomenon of diffraction

of wave motion, and the impact of a periodic array of barriers on the impinging

wave, can physicists accurately orient the atoms and piece together the underlying

pattern.

An SQL table containing dates and times also exhibits a pleasing regularity, with

dates in one column recurring in other rows in another column, and the dates in

many rows marching forward almost in lockstep. This regularity is indeed sugges-
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Figure 1.1 Electron diffraction pattern of TaSe2. (Image reprinted, by permission,
from Structural and Chemical Analysis of Materials, Figure 11.5(b), by J.P. Eberhart.
c
 1991 John Wiley & Sons, Ltd.)

tive of an inner structure, which SQL so effectively masks. Only by understanding

the ways in which time-varying behavior can be modeled, and by studying the

mapping of this information into tabular form, can an SQL table in a time-varying

application be effectively designed, queried, and maintained.

1.1 A TRIAD OF TRIPLES

It is human nature to differentiate, to tease apart, to contrast. Identifying dichot-

omies, partitioning into two mutually exclusive groups, seems to be a fundamental

strategy for contending with diversity. We favor black and white, this and that, us

and them, over shades of grey, a spectrum of possibilities, a global community. We

stereotype ourselves and others and all things by membership in identi�ed groups:

plant or animal, minority or majority, right or wrong. Logic and libraries emphasize

the distinction between true (non�ction) and false (�ction). Much of the prevalence

of computers in today's society derives from the clarifying simplicity of strings of

just two values, 0 and 1, encoding everything from names to the relative strength

of a chess con�guration.

As prevalent as this binary structure is, a collection of three items of similar im-

port seems to resonate even deeper. While a division into two parts is appealing

in its reductionism and simplicity, a trichotomy is attractive precisely because it is
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not either-or. A triad cannot be reduced to black and white, but is forever resigned

to contain ambiguity and complexity. Three-level logics embrace the value of �un-

known.� The Greeks viewed the world as comprising the earth, the sea, and the

sky (heaven). Christians rejoice in the Trinity; they also speak of earth, heaven, and

hell. In Buddhism, there are the three roots of evil: lust, hatred, and delusion. Many

religions differentiate the mind, the body, and the soul. Pythagoras celebrated the

triangle, the simplest geometric �gure. We perceive three spatial dimensions. Rain-

bows are combinations of three primary colors. Many governments are partitioned

into three branches, for a similar reason that a stool has three legs. The harmonic

basis of Western music is a chord of three tones consisting of a root with its third

and �fth. A literary trilogy carries with it a satisfying completeness.

In this book we examine how to implement a time-varying application in the

SQL structured query language. We focus on three sets of orthogonal concepts:

� Temporal data types

� Kinds of time

� Temporal statements

These concepts are encountered in every time-varying application. If SQL ade-

quately supported these concepts, our task, and yours in actually developing the

application, would have been much easier: just use SQL in the appropriate fash-

ion to bring forth the desired behavior. Despite the near universality of time and

the time-varying nature of the enterprise being modeled�a static and unmalleable

con�guration is rare and uninteresting�SQL quite frankly does a lousy job in cap-

turing those aspects that are changing in time, or in providing constructs to ef-

fectively model, query, or modify such information. Instead, you, the application

developer, are saddled with the task of transforming these concepts into something

that SQL can deal with. This book will emphasize the best way to think about time-

varying data and will show with many examples how to map these concepts into a

temporally unfriendly SQL.

Each of these concepts itself consists of three orthogonal elements. There are

three fundamental temporal data types:

� Instant: something happened at an instant of time (e.g., �now,� which happens

to be June 29, 1998, 4:06:39 P.M., when I am writing this, or sometime, perhaps

much later, when you are reading this)

� Interval: a length of time (e.g., three months)

� Period: an anchored duration of time (e.g., the fall semester, August 24 through

December 18, 1998)

SQL-92 includes support for instants and intervals, though in places it confounds

the two. Most DBMS products, though, only support instants, with intervals being
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simulated with integers or �oating-point numerics. Periods are always left to the

application developer to simulate using supplied data types.

There are three fundamental kinds of time. We'll de�ne more precisely and

illustrate these terms shortly, in the next chapter.

� User-de�ned time: an uninterpreted time value

� Valid time: when a fact was true in the modeled reality

� Transaction time: when a fact was stored in the database

These kinds of time are orthogonal: a table can be associated with none, one, two,

or even all three kinds of time. Understanding each kind of time and determining

which is present in an application is absolutely critical. We will characterize each

in detail. SQL-92 has rudimentary support only for user-de�ned time; the language

provides no help whatsoever with the other two types of time. That is left for you

to manage, manually, in your application. We'll see exactly how to do so.

There are three basic kinds of time-oriented statements:

� Current: now

� Sequenced: at each instant of time

� Nonsequenced: ignoring time

The trichotomy applies equally well to queries, modi�cation statements, views, and

integrity constraints. The most useful is sequenced, for which SQL-92 provides

absolutely no help. In fact, getting SQL to express a sequenced statement is of-

ten quite painful, yet that is usually what is required by the application. We will

show exactly how to write all three kinds of statements. SQL-92 provides some sup-

port for nonsequenced statements; current statements are again entirely up to the

programmer.

So, the several hundred pages of this book attempt to convey three sets of three

orthogonal concepts, most of which SQL is woefully ignorant. Those notions for-

eign to SQL must be transformed from their clean, crisp manifestation into an of-

ten baroque expression in SQL. To add to the challenge, no DBMS supports the SQL

standard in its entirety; instead, there are infuriating inconsistencies and substitu-

tions each vendor has chosen to impose on its users. We help you navigate these

treacherous waters, and avoid the ever-present shoals.

1.2 THE SQL STANDARD

SQL is actually a series of standards. SQL-86 included no temporal data types, even

though some commercial implementations in the late 1980s did support such data

types. SQL-89 added support for referential integrity; no temporal data types were



1 . 3 CONVENT IONS 5

added. Several temporal data types were introduced in SQL-92: DATE, TIME, TIME-

STAMP, and INTERVAL. SQL3 is currently in draft form (and has been so for several

years; the path from draft to �nal accepted standard is a ponderous one). Portions of

SQL3 are expected to be approved as a standard in late 1999. Part 7, SQL/Temporal,

introduced a new constructor, PERIOD. In this book, �SQL� refers to SQL-92, and

�SQL/Temporal� refers to this draft part of SQL3. We emphasize facilities currently

available in database products, but also mention features on the horizon.

1.3 CONVENTIONS

�At least one� queries can be

easily stated using an additional

correlation name in the FROM

clause.

In the case studies, for each kind of query (modi�cation, asser-

tion, constraint, view), the general principle behind the query is

discussed. For some complex queries, pseudocode may be pro-

vided. Following the pseudocode, a particular query is given as a

code fragment. Notable features of the query are then examined.

Code fragments are often referenced later in the discussion. The

references are abbreviated as, for example, CF-1.1. Important points are emphasized

as pull quotes (those pieces of information set off from text and extending into the

page margins).

As an illustration of the stylistic conventions used throughout this book, con-

sider (conventional) queries of the form �. . . at least one . . .��for example, �Which

manager makes less than at least one of their subordinates?� This query must �nd a

suitable subordinate for each manager listed. Such queries can be written with an

EXISTS or IN subquery.

Code Fragment 1.1 Whichmanagers make less than at least one of their subordinates?

SELECT DISTINCT EID

FROM Employee AS M

WHERE EXISTS ( SELECT *

FROM Employee AS E

WHERE E.Mgr = M.EID AND E.Salary > M.Salary )

While this query in some ways parallels the English version, the effect can be

more easily obtained by augmenting the FROM clause and the WHERE clause.

�At least one� queries

Mention the table providing the sought-after entity in the FROM clause.

Reference that table in the WHERE clause to locate the entity.

Here, the sought-after entity is a subordinate (in the Employee table).
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Code Fragment 1.2 Which managers make less than at least one of their subordinates

(without using EXISTS)?

SELECT DISTINCT M.EID

FROM Employee AS M, Employee AS E

WHERE E.Mgr = M.EID AND E.Salary > M.Salary

The nested correlation name has been moved up to the main FROM clause, result-

ing in a more succinct query, a process termed �decorrelation.�

A stylized image of an escapement (the critical component of a mechanical clock)

is displayed on the opening page of each chapter in this book. Such clocks have

an escape wheel connected to a weight (such as in a grandfather clock) or a coiled

spring (such as in a wristwatch). The escape wheel, which is connected by gears to

the hands of the clock, would spin continuously if not retarded by the escapement,

which periodically stops and releases the escape wheel.

Over the last 500 years, horologists have devised all manner of ingenious escape-

ments. Examples include Arnold's chronometer escapement, Bond's gravity escape-

ment, Brocot's pin pallet escapement, Congreve's extreme detached escapement,

the Debaufre escapement, Froment's electrical escapement, Graham's dead-beat es-

capement, Grimthorpe's gravity escapement (used in Big Ben), Harrison's grasshop-

per escapement, and the very early verge and foliot escapement, some of which are

illustrated in the chapter openers.

Interspersed throughout the case studies will be brief sidebars on a multitude of

calendars and on the fascinating alchemy

of art, science, and engineering that char-

acterizes the development of increasingly

accurate clocks through the ages. The clock

descriptions are accompanied by a stylized

�sun� icon, the calendar descriptions by a

�moon� icon.

Finally, each chapter ends with a sec-

tion on implementation considerations,

identifying ways in which commercial sys-

tems deviate from the standard and pro-

viding adaptations of the chapter's code

fragments that will run on these systems.

A �nal section, Readings, provides point-

ers that elaborate on the material in that

chapter and in the clock and calendar side-

bars, indicating the correspondence to the

sidebars with the sun and moon icons,

respectively.

Calendars

Calendars are mankind's way of contending with

years and lunar months composed of a noninte-

gral number of days. As Stephen Jay Gould so elo-

quently writes �If God were Pythagoras in Galileo's

universe, calendrics would never have become an

intellectual subject at all. The relevant cycles for

natural timekeeping would all be nice, crisp, easy

multiples of each other.. . . But God, thank good-

ness, includes both Loki and Odin, the comedian

and the scholar; the jester and the saint. God did

not fashion a very regular universe after all. And we

poor sods of his image are therefore condemned

to struggle with calendrical questions till the cows

come home.� [35, p. 134]
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Gnomonics

Man's �rst subdiurnal clock was most likely his

shadow: when it started getting longer, the day

was half over. The next advance was to substi-

tute a gnomon, or staff of known length whose

shadow can be measured (gnomon is a Greek word

for �pointer�). Obelisks at town centers, which pro-

vide a more accurate designation of noon, by virtue

of their height, were used in Egypt by around

1450 B.C.E. for the measurement of time and the

construction of calendars, thereby signaling the

beginning of the science of sundials, or gnomonics.

In the third century B.C.E., a Chaldean priest by

the name of Berossos hollowed out a half-sphere in

a rectangular block of stone, positioned a gnomon

in the center, and inscribed lines dividing the arc of

the shadow into 12 hours, in accordance with the

12 constellations crossed successively by the sun,

the zodiac (Figure 1.2). This hemispherium was the

�rst sundial to measure hours. Berossos then real-

ized that the bottom half of the sphere was never

used, so he removed this useless portion, resulting

in the lighter and thus more portable hemicyclium

(Figure 1.3).

Figure 1.2 Berossos's hemispherium. (From
Rohr, R. R. J., Sundials: History, Theory, and

Practice. Dover Publications, NY, 1996.)

Figure 1.3 Berossos's hemicyclium. (From
Rohr, R. R. J., Sundials: History, Theory, and

Practice. Dover Publications, NY, 1996.)

1.4 IMPLEMENTATION CONSIDERATIONS

The SQL code for the fragments is almost entirely in standard SQL-92 (any excep-

tions will be clearly noted). Unfortunately, due to the noncompliance of all exist-

ing DBMSs, a few of these fragments run on no existing platform. Hence, each case
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study concludes with a discussion of how the general approach can be applied to

various speci�c DBMSs, including IBM DB2 Universal Database (UDB), Informix�

Universal Server, Microsoft Access and Microsoft SQL Server, Sybase SQLServer,

Oracle8 Server, and UniSQL. Each of these products supports a different variant

of SQL, introducing limitations that must be worked around and extensions that

can be exploited. Each also implements the various constructs in SQL differently,

so an approach that is impractical on one product may be the preferred one on

another product.

The included CD-ROM contains the code fragments implemented on one or

more DBMSs. The speci�c versions on which the fragments were tested were IBM

DB2 UDB; Informix�Universal Server 9.12; Microsoft Access 95, Access 97, and Ac-

cess 2000; Microsoft SQL Server 6.5 and 7.0; Sybase SQLServer 10; Oracle8 Server;

and UniSQL. However, because vendors work very hard to ensure their products are

upward compatible, these fragments can be expected to continue to apply in future

versions of these systems.

The descriptions of the speci�c DBMSs parallel each other, so each can be read

independently of the rest. Indeed, it is expected that you will be using only one

DBMS; the material on the other products may be safely skipped.

1.5 READINGS

The of�cial designation of SQL-86 is American National Standards Institute (ANSI)

X3.135-1986 and International Organization for Standardization (ISO) 9075-1987,

�Database Language SQL.� This standard, at 110 pages, is relatively brief. SQL-89

is ANSI X3.135-1989 and ISO/IEC 9075:1989; this language added referential in-

tegrity. In addition, ANSI published X3.168-1989, �Database languages�

Embedded SQL,� which made speci�cations for embedding SQL in conventional

programming languages normative (required); ISO chose not to publish an anal-

ogous standard. SQL-92, which does have normative embedding, is ANSI X3.135-

1992 and ISO/IEC 9075:1992, �Database languages SQL� [44]. Melton and Simon

provide a comprehensive, readable presentation of SQL-92, including a thorough

explanation of the SQL standardization process (JimMelton is the editor of the SQL

standards) [71]. The standard itself is a precise, though sopori�c 580 pages.

In 1995 ISO standardized ISO/IEC 9075-3:1995, �Database languages�SQL�

Part 3: Call-Level Interface�; the next year, ISO/IEC 9075-4:1996, �Database langua-

ges�SQL�Part 4: Persistent Stored Modules,� appeared. These were originally con-

sidered parts of the draft SQL3 speci�cation, but were standardized before the core

part of that language. There is also a 150-page �Database language SQL�Technical

Corrigendum 3� that provides (mostly minor) corrections and disambiguations to

SQL-92, Part 3, and Part 4 [19].
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SQL3 is an evolving document, with 10 parts, two of which have achieved stan-

dardization, as just mentioned. The core portions of the language, SQL/Framework

(Part 1), SQL/Foundation (Part 2), SQL/CLI (Call Level Interface: Part 3), SQL/PSM

(Persistent Stored Modules: Part 4), and SQL/Bindings (Host Level Bindings: Part 5)

are nearing the FDIS ballot stage, when the SQL committees of the member coun-

tries will vote on the question of whether the speci�cation is ready to be an inter-

national standard. SQL/Temporal (Part 7) will not go into balloting until the next

millennium. SQL/Foundation by itself is 850 pages; together all 10 parts of this

speci�cation exceed a back-straining 2000 pages.

A page maintained by Keith Hare (www.jcc.com/sql stnd.htm) is a central source

of information about the SQL standard. The information available there includes

the current status of the standard, information about the standards committees and

the standards process, and pointers to other standards pages. Eisenberg and Melton

provide a crisply written overview of database standards [29].

Ernest Rutherford, whose model of the atom constituted an essential step to-

ward our current understanding of matter, did not receive the Nobel Prize for that

contribution, only because he had already received this ultimate recognition some

three years earlier in 1908, at the ripe old age of 37, for his work with radioactive

elements and X rays. The context of these experiments is ably described by Abra-

ham Pais (who provides the second quote in the �rst paragraph of this chapter) in

his superb biography of the Danish physicist Neils Bohr [77, p. 123]. Bohr re�ned

and extended Rutherford's model to arrive at our current understanding (which

is often called the �Bohr atom�), attaining the Nobel Prize in 1922, also at the

age of 37. Rutherford's undergraduate student, Henry G. J. Moseley, subsequently

used Rutherford's model, Bohr's theory, and his own X-ray diffraction studies to

understand the periodic table of the elements in terms of atomic numbers.

Stephen Jay Gould has written a delightful and highly recommended mono-

graph entitled Questioning the Millennium: A Rationalist's Guide to a Precisely Arbitrary

Countdown. �If we regard millennial passion in particular, and calendrical fascina-

tion in general, as driven by the pleasure of ordering and the joy of understanding,

then this strange little subject. . . becomes a wonderful microcosm for everything

that makes human beings so distinctive, so potentially noble, and often so actually

funny� [35, pp. 157�158].

René Rohr's Sundials: History, Theory, and Practice provides just that: a fascinating

2500-year chronology, a readable explication of the mathematics behind sundial

design, and sage advice on positioning the gnomon and drawing the arcs [80].

Along the way, 51 photographs and over 100 �gures illustrate the myriad forms

sundials have taken over this period.
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We wend our way through the fundamen-

tal concepts of time-varying database applica-

tions via our �rst case study, temporarily skirt-

ing the complexities of the actual implementa-

tion. These concepts will be examined in depth,

along with their expression in SQL, in subse-

quent chapters.



Fundamental Concepts

T
hey started getting sick in early June of 1997. Some just had a bad stom-

achache; others had severe cramping and were passing blood. They suffered

from a potentially lethal strain of the bacterium Escherichia coli (O157:H7).

By mid-August some dozen-odd cases, all in Colorado, were traced back to a process-

ing plant in Columbus, Nebraska. The plant's operator, Hudson Foods, eventually

recalled 25 million pounds of frozen hamburger to attempt to stem the outbreak.

That particular plant processes about 400,000 pounds of hamburger daily. Ironi-

cally, this plant had received high marks for its cleanliness and adherence to federal

food-processing standards. What led to the recall of about one-�fth of the plant's

annual output was the lack of a database that could track the patties back to the

slaughterhouses that supply carcasses to the Columbus plant. It is believed that the

meat was contaminated in one of these slaughterhouses, but without such tracking,

all were suspect.

Put simply, the lack of an adequate time-varying database cost Hudson Foods

$25 million.

Dr. Brad De Groot is a veterinarian working in Clay Center, Nebraska, about

60 miles southeast of Columbus. He is interested in improving the health main-

tenance of cows on their way to your freezer. He hopes to establish the temporal

relationships between putative risk factor exposure (e.g., a previously healthy cow

sharing a pen with a sick animal) and subsequent health events (e.g., the healthy

cow later succumbs to a disease). These relationships can lead to an understanding

of how disease is transferred to and among cattle, and ultimately to better detec-

tion and prevention regimes. As input to this epidemiologic study, Brad is collecting

data from commercial feed yard record-keeping systems to extract the movement of

some 55,000 head of cattle through the myriad pens of large feedlots in Nebraska.
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2.1 VALID-TIME STATE TABLES

It's present everywhere, but occupies no space.

We can measure it, but we can't see it, touch it,

get rid of it, or put it in a container.

Everyone knows what it is and uses it every day,

but no one has been able to de�ne it.

We can spend it, save it, waste it, or kill it,

but we can't destroy it or even change it,

and there's never any more or less of it.

�Jespersen and Fitz-Randolph, From Sundials to Atomic Clocks

In a feed yard, cattle are grouped into �lots,� with subsets of lots moved from pen

to pen. One of Brad's tables, the LOT LOC table, records how many cattle from each

lot reside in each pen of each feed yard. The full schema for this table has nine

columns; we'll just consider a few of them.

Brad wishes to capture the history of which cattle were coresident, to study how

disease moves from cow to cow. He adds two columns, FROM DATE and TO DATE, to

this table:

LOT LOC(LOT ID NUM, PEN ID, HD CNT, FROM DATE, TO DATE)

These two columns will enable many interesting queries to be expressed (some of

considerable intricacy), while enormously complicating previously innocuous con-

structs such as primary and foreign keys. These columns render the table a �valid-

time state table�: it records information valid at some time in the modeled reality,

and it records states, that is, facts that are true over a period of time. The FROM DATE

and TO DATE columns delimit the �period of validity� of the information in the row.

The �temporal granularity� of this table is a day.

The �rst three columns are integer columns. The last two columns are of type

DATE. SQL supports three kinds of instants, DATE, TIME, and TIMESTAMP, which

differ in their range of values (e.g., DATEs range over 9999 years, whereas TIMEs

range over only 24 hours) and their temporal granularity (a day for DATE and a

second for default TIMEs). Chapter 3 covers these and the INTERVAL data types in

all their glory (and grubbiness).

The last two columns denote the starting instant (actually, the starting day) of

the period of validity of the row and the terminating instant of the period of va-

lidity. Unfortunately, SQL-92 does not support periods, so the period of validity

must be implemented with two delimiting instants. Chapter 4 lists the various ways

periods can be implemented with the data types that SQL does provide, and the

operations (predicates and constructors) that may be applied to periods.

Table 2.1 records the movement of three lots of cattle in the feed yard. In this

table we see that 17 head of cattle were in pen 1 for 11 days, moving inauspiciously
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Table 2.1 The LOT LOC table.

LOT ID NUM PEN ID HD CNT FROM DATE TO DATE

137 1 17 1998-02-07 1998-02-18

219 1 43 1998-02-25 1998-03-01

219 1 20 1998-03-01 1998-03-14

219 2 23 1998-03-01 1998-03-14

219 2 43 1998-03-14 9999-12-31

374 1 14 1998-02-20 9999-12-31

off the feed yard on February 18 (SQL-92 DATE literals are expressed as year-month-

day). Also, 14 head of cattle from lot 374 are still in pen 1 (we use �forever� to

denote currently valid rows), and 23 head of cattle from lot 219 were moved from

pen 1 to pen 2 on March 1, with the remaining 20 head of cattle in that lot moved

to pen 2 on March 14, where they still reside.

Without the timestamp columns (FROM DATE and TO DATE), the primary key of

LOT LOC is the pair (LOT NUM ID, PEN ID), which can be informally expressed as �the

(lot identi�er, pen identi�er) pair is unique to a single row.� With the timestamp

columns, this can be generalized to �at any point in time, the (lot identi�er, pen

identi�er) pair is unique to a single row.� It is unfortunate that SQL's PRIMARY

KEY construct is inadequate for valid-time state tables; expressing this manifest

constraint in SQL-92 requires a complex assertion, as will be shown in Chapter 5,

which covers all manner of de�nitional requirements of valid-time state tables.

2.1.1 Queries

Queries over conventional tables ask, �What is?� Queries over time-varying tables

can be placed in three broad classes. For each conventional (nontemporal) query

over a table without these two DATE columns, there exist �current� (�What is

now?�), �sequenced� (�What was, and when?�), and �nonsequenced� (�What was,

at any time?�) variants over the corresponding valid-time state table.

Consider the nontemporal query �How many head of cattle from lot 219 in feed

yard 1 are in each pen?� The current analog over the LOT LOC valid-time state table

is �How many head of cattle from lot 219 are (currently) in each pen?� For such a

query, we only are concerned with currently valid rows, and we need only to add a

predicate requesting such rows. This query returns the following result, stating that

all the cattle in the lot are currently in a single pen:

PEN ID HD CNT

2 43
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The sequenced variant is �Give the history of how many head of cattle from lot

219 were in each pen.� The result (Table 2.2) provides the requested history. We see

that lot 219 moved around a bit.

The nonsequenced variant is �How many head of cattle from lot 219 were, at

some time, in each pen?� Here we don't care when the data was valid. Note that

the query doesn't ask for totals; it is interested in whenever a portion of the re-

quested lot was in a pen. Table 2.3 shows the result. Nonsequenced queries are

often awkward to express in English, but can sometimes be useful.

As another example, consider the nontemporal query �Which lots are coresident

in a pen?� Such a query could be a �rst step in determining exposure to putative

risks. Indeed, the entire epidemiologic investigation revolves around such queries,

which turn out to be notoriously dif�cult to express in SQL-92.

The current version, �Which lots are currently coresident in a pen?�, will return

the empty table when evaluated on Table 2.1, as none of the lots are currently

coresident (lots 219 and 374 are currently in the feed yard, but in different pens).

The nonsequenced variant is �Which lots were in the same pen, perhaps at

different times?� The result is Table 2.4: all three lots had once been in pen 1.

Note however that at no time were any cattle from lot 137 coresident with ei-

ther of the other two lots. To determine coresidency, the sequenced variant is used:

�Give the history of lots being coresident in a pen.� This requires the cattle to actu-

ally be in the pen together, at the same time. The result of this query on Table 2.1

is the following:

L1 L2 PEN ID FROM DATE TO DATE

219 374 1 1998-02-25 1998-03-01

As we will see in Chapter 6, current and nonsequenced queries are relatively

easy to express in SQL, but sequenced queries, which are prevalent, are surprisingly

arduous. That chapter provides many examples to illustrate how such queries are

phrased in SQL.

2.1.2 Modi�cations

Modi�cations (that is, insertions, deletions, and updates) comprise the bulk of

many applications and are challenging when applied to time-varying data. We'll

illustrate modi�cations on the LOT table, which captures the gender of the cattle in

each lot. Surprisingly (especially to the cattle!), the gender attribute is time-varying.

As an aside on terminology, a �bull� is a male bovine animal (the term also denotes

a male moose). A �cow� is a female bovine animal (or a female whale). A �calf� is

the young of a cow (or a young elephant). A �heifer� is a cow that has not yet borne

a calf (or a young female turtle). �Cattle� are collected bovine animals.
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Table 2.2 The history of lot 219.

PEN ID HD CNT FROM DATE TO DATE

1 43 1998-02-25 1998-03-01

1 20 1998-03-01 1998-03-14

2 23 1998-03-01 1998-03-14

2 43 1998-03-14 9999-12-31

Table 2.3 Result of a nonsequenced query.

PEN ID HD CNT

1 43

1 20

2 23

2 43

Table 2.4 Result of another nonsequenced query.

L1 L2 PEN ID

137 219 1

137 374 1

219 374 1

A �steer� is a castrated male of the cattle family. To steer an automobile or a

committee is emphatically different from steering a calf. Cows and heifers are not

steered, they are �spayed,� or generically, neutered, rendering them a �neutered

cow.� There is no single term for neutered cow paralleling the term �steer,� perhaps

because spaying is a more invasive surgical procedure than steering, or perhaps

because those doing the naming are cowboys.

Bulls are steered to reduce injuries to themselves (bulls are quite aggressive ani-

mals) as well as to enhance meat quality. Basically, all that �ghting reduces glycogen

in the muscle �bers, which increases the water content of the meat, which results in

less meat per pound. Heifers are spayed only if they will feed in open �elds, because

calving in the feed yard is expensive and dangerous to the cow.

Figure 2.1 illustrates the transitions in gender that are possible, all of which are

irreversible. (And you thought that this book was going to be about databases!)

Capturing the (time-varying) gender of cattle is important in epidemiological

studies, for the gender can affect disease transfer to and between cattle. Hence, in

Brad's feed yard database schema, LOT is a valid-time state table.
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Figure 2.1 Gender transitions.

A slice of the LOT table is shown in Table 2.5 (in this excerpt, we've omitted

several columns not relevant to this discussion). The GNDR CODE is an integer code.

For expository purposes, we will use single letters, with c indicating the lot consists

of bull calves, h indicating the lot are heifers, and s indicating the lot are steers. The

FROM DATE and TO DATE in concert specify the time period over which the values of

all the other columns of the row were valid.

In this table, on March 23, 1998, a rather momentous event occurred for the

cattle in lot 101: they were steered. Lot 234 consists of calves; a TO DATE of forever

denotes a row that is currently valid. Lot 234 arrived in the feed yard on February

17; lot 799 arrived on March 12.

Brad collects data from the feed yard to populate his database. In doing so

he makes a series of modi�cations to his tables, including the LOT table. As with

queries, there are three general classes of modi�cations: current, sequenced, and

nonsequenced.

�Lot 433 arrives today� is a current insertion. �Lot 101 leaves the feed yard to-

day� is a current deletion. The two modi�cations in concert result in Table 2.6. All

information on lot 234 after today has been deleted. (As this is being written on

January 13, 1999, �today� is shown in SQL as 1999-01-13, exposing the nonlinear

fashion in which this book evolved.)

�The cattle in lot 799 are being steered today� is a current update, with the result

shown in Table 2.7.

A current modi�cation applies from �now� to �forever.� A sequenced modi�-

cation generalizes this to apply over a speci�ed period, termed the �period of appli-

cability.� This period could be in the past, in the future, or overlap �now.�

�Lot 426, a collection of heifers, was on the feed yard from March 26 to April

14� is a sequenced insertion. �Lot 234 will be absent from the feed yard for the �rst

three weeks of October, when the steering will take place� is a sequenced deletion.
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Table 2.5 The LOT table.

LOT ID NUM GNDR CODE FROM DATE TO DATE

101 c 1998-01-01 1998-03-23

101 s 1998-03-23 9999-12-31

234 c 1998-02-17 9999-12-31

799 c 1998-03-12 9999-12-31

Table 2.6 Result of a current insertion and deletion.

LOT ID NUM GNDR CODE FROM DATE TO DATE

101 c 1998-01-01 1998-03-23

101 s 1998-03-23 9999-12-31

433 c 1999-01-13 9999-12-31

234 c 1998-02-17 1999-01-13

799 c 1998-03-13 9999-12-31

Table 2.7 Lot 799 was steered today.

LOT ID NUM GNDR CODE FROM DATE TO DATE

101 c 1998-01-01 1998-03-23

101 s 1998-03-23 9999-12-31

433 c 1999-01-13 9999-12-31

234 c 1998-02-17 1999-01-13

799 c 1998-03-12 1999-01-13

799 s 1999-01-13 9999-12-31

A sequenced update is the temporal analog of a nontemporal update, with a

speci�ed period of applicability. �Lot 799 was steered only for the month of March�

is a sequenced update. (Something magical happened on April 1. The idea here is

to show how to implement sequenced updates in general, and not just on cattle.)

As with queries, a nonsequenced modi�cation treats the timestamps identically

to the other columns and often mentions the period of validity of the rows to be

deleted. An example is �Delete the records of lot 234 that have duration greater

than three months.�

Most modi�cations will be �rst expressed as changes to the enterprise being mod-

eled (some fact becomes true, or will be true sometime in the future; some aspect

changes, now or in the future; some fact is no longer true). Such modi�cations

are either current or sequenced modi�cations. Nonsequenced modi�cations, while

generally easier to express in SQL, are rare.



18 CHAPTER TWO : FUNDAMENTAL CONCEPTS

Chapter 7 shows that current and nonsequenced modi�cations are not that hard

to express in SQL, but sequenced modi�cations, which are often themost useful, are

doggedly obstinate, almost to the point of intractability. In that chapter we provide

abundant guidance on the care and feeding of modi�cations of time-varying tables.

2.2 TRANSACTION-TIME STATE TABLES

The LOT LOC and LOT tables capture the history of reality. The �rst row of Table 2.6

says that had we checked the cattle in lot 101 anytime during the �rst three months

of 1998, we would have seen that they were calves.

Brad's database also includes the LOT CONTAINS table, with the following schema

(again, we omit mention of some of the columns):

LOT CONTAINS (LOT ID NUM, BKP ID, A NAME)

The primary key of this table is LOT ID NUM, so at any time, this value uniquely

identi�es one row, which records the backup identi�er and application name for

that lot.

Brad copies the �les from the feed yard system, then later processes the infor-

mation. The LOT CONTAINS table stores for each lot the backup �le from which the

current information on that pen was extracted. Because this data tends to be dirty,

containing inconsistencies and omissions, Brad would like to track the information

in the LOT CONTAINS table. In particular, he would like to reconstruct its state at any

date in the past. He adds two columns, a START DATE indicating when that row was

�rst inserted into the table, and a STOP DATE indicating when that row was updated

or deleted. We should emphasize that rows are logically deleted, because physically

deleting old rows would prevent past states

from being reconstructed. A table that can

be reconstructed as of a previous date is

termed a �transaction-time state table,� as

it captures the transactions applied to the

table.

As Table 2.8 shows, a row concerning

lot 101 was �rst inserted on January 1,

1998. The BKP ID was incorrect, and so

was changed on February 5 from 17 to

18. A row concerning lot 433 was inserted

on January 13 and is still considered to

be correct (as signaled by a STOP DATE of

�forever�).

The Tropical Year

The earth orbits around the sun, requiring a tropical

year to return to the same point in space, which

has been measured to take 365.2422 days. The fact

that the tropical year is not an exact multiple of

days, or even a simple fractional multiple of days,

such as 365 1

4
, has caused all manner of dif�culty in

designing calendars. Calendars are expected to be

synchronized with both the rising of the sun and

the seasons, and sometimes with the waxing and

waning of the moon.
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Table 2.8 The LOT CONTAINS table.

LOT ID NUM BKP ID A NAME START DATE STOP DATE

101 17 �ADE� 1998-01-01 1998-02-05

101 18 �ADE� 1998-02-05 9999-12-31

433 23 �SMP� 1998-01-19 9999-12-31

While Tables 2.5 and 2.8 both have two DATE columns, the interpretation of

these columns is dramatically divergent. Valid-time tables capture a history of real-

ity, while transaction-time tables capture a history of the changing state of a table.

We cannot ask the LOT table what its state was three days ago, but we can ask the

LOT CONTAINS table that question. Similarly, we cannot ask the LOT CONTAINS table

what was true in reality three days ago, but we can ask the LOT table that ques-

tion. While any row of the LOT table may change, as we correct mistakes about

the captured history, the LOT CONTAINS table grows monotonically, with old rows

remaining unchanged in perpetuity.

The most relevant query on a transaction-time state table is to reconstruct a past

state. �Provide the state of the LOT CONTAINS table on January 12, 1998� yields the

following result:

LOT ID NUM BKP ID A NAME

101 17 �ADE�

Note that the BKP ID for lot 101 was (erroneously) thought to be 17 on that Monday,

and lot 433 hadn't yet arrived.

Now we ask, �Provide the state of the LOT CONTAINS table on February 12, 1998,�

with the following result:

LOT ID NUM BKP ID A NAME

101 18 �ADE�

433 23 �SMP�

The BKP ID for lot 101 is now the correct value of 18.

Only current modi�cations are permitted on transaction-time state tables, as past

states cannot be changed. Modi�cations must permit subsequent reconstructions.

The modi�cation �Correct the backup identi�er for lot 433 to 37� produces the

result shown in Table 2.9.

Chapters 8 and 9 discuss transaction-time tables in detail, emphasizing various

representations, some requiring only one timestamp column.
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Table 2.9 The corrected backup identi�er.

LOT ID NUM BKP ID A NAME START DATE STOP DATE

101 17 �ADE� 1998-01-01 1998-02-05

101 18 �ADE� 1998-02-05 9999-12-31

433 23 �SMP� 1998-01-19 1999-01-13

433 37 �SMP� 1999-01-13 9999-12-31

Table 2.10 The LOT bitemporal table.

LOT GNDR

ID NUM CODE FROM DATE TO DATE START DATE STOP DATE

101 c 1998-01-01 9999-12-31 1998-01-03 1998-03-19

234 c 1998-02-17 9999-12-31 1998-02-17 9999-12-31

799 c 1998-03-12 9999-12-31 1998-03-12 9999-12-31

101 c 1998-01-01 1998-03-23 1998-03-19 9999-12-31

101 s 1998-03-23 9999-12-31 1998-03-19 9999-12-31

2.3 BITEMPORAL TABLES

Valid time, capturing the history of a changing reality, and transaction time, cap-

turing the sequence of states of a changing table, are orthogonal, and can thus

be separately utilized or applied in concert. A table supporting both is termed a

�bitemporal table.�

The LOT table is critical to Brad's epidemiological analysis, so he also tracks the

changes made to this table. This table already supports valid time; he adds two

columns, START DATE and STOP DATE, to capture transaction time.

Table 2.10 has four timestamps, be�tting its bitemporal nature. There is a wealth

of information in such tables, if care is taken in reading them. Let's examine this

table row by row.

� Row 1: On January 3 (the START DATE), the fact that lot 101, a group of calves,

arrived in the feed yard two days previously, on January 1 (the FROM DATE), is

recorded. The valid time for this fact is January 1 to forever (the TO DATE), in-

dicating that they are expected to remain calves. We'll return to the STOP DATE

when we discuss the fourth row.

� Row 2: On February 17 (the START DATE), the fact that lot 234, also a group of

calves, arrived in the feed yard that day (the FROM DATE) is recorded. A STOP DATE

of forever indicates that the fact is still considered to be correct.

� Row 3: On March 12, the fact that lot 799, a group of calves, arrived in the feed

yard that day is recorded.
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Table 2.11 The history as known on March 15.

LOT ID NUM GNDR CODE FROM DATE TO DATE

101 c 1998-01-01 9999-12-31

234 c 1998-02-17 9999-12-31

799 c 1998-03-12 9999-12-31

Table 2.12 The history as known on April 1.

LOT ID NUM GNDR CODE FROM DATE TO DATE

234 c 1998-02-17 9999-12-31

799 c 1998-03-12 9999-12-31

101 s 1998-03-23 9999-12-31

� Row 4:On Thursday, March 19, unbeknownst to the cattle in lot 101, these cattle

were scheduled to be steered early the next week, on Monday, March 23. So we

logically update the �rst row by setting its STOP DATE to the current date, insert

row 4, indicating that lot 101 consisted of calves from January 1 to March 23,

and insert row 5.

� Row 5: On Thursday, March 19, the fact that lot 101 is a collection of steers from

March 23 to forever was recorded, and that fact is still considered correct.

Since this table supports transaction time, we can reconstruct its state in the past.

�Provide the history of the LOT table as best known on March 15, 1998� (the Ides

of March, beware!) would generate the result shown in Table 2.11. As of March 15,

we hadn't yet scheduled lot 101's steering. �Provide the history as best known on

April 1� yields a different result (Table 2.12).

Interactions between valid and transaction time are especially interesting, as in

�When were steerings scheduled (as opposed to being recorded after the fact)?�

which would identify one such steering:

LOT ID NUM When Scheduled When Recorded

101 1998-03-23 1998-03-19

As bitemporal tables include transaction time, all modi�cations are transaction-

time current. However, we can still provide the period of applicability for

modi�cations, as in �Lot 234 will be absent from the feed yard for the �rst three

weeks of October.�

Chapter 10 explores the glorious expressiveness of bitemporal tables, as well as

the intricacies of expressing queries and modi�cations on such tables.
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2.4 SUMMARY

This chapter has introduced what we want to do with time-varying tables and has

provided a glimpse of how to do them: add one or more timestamp columns. Chap-

ters 3 through 10 furnish the intellectual tools to code applications in SQL over

temporal tables.

On the inside front cover, a Concept Map provides guideposts for our journey

through the triad of triples. In this map, the sections that explicate each concept

are listed in italics, following the concept.

The three temporal data types�instants, intervals, and periods�are covered

�rst. Valid-time state tables are the focus of Chapters 5�7. Chapter 5 considers how

such tables may be speci�ed in the schema; integrity constraints are used heavily,

as the existing SQL constructs of UNIQUE, PRIMARY KEY, and FOREIGN KEY are

inadequate for time-varying tables.

The three kinds of queries�current, sequenced, and nonsequenced�are the topic

of Chapter 6; the analogous kinds of modi�cations are examined in Chapter 7.

Chapters 8 and 9 consider transaction-time tables, emphasizing the critical dis-

tinction between valid time and transaction time (SQL unfortunately completely

blurs this distinction). Chapter 8 considers instant-stamped tables, and Chapter 9

considers period-stamped tables.

Chapter 10 introduces bitemporal tables, supporting both valid and transaction

time. Again, we delve into the intricacies of de�ning, querying, and modifying

these tables.

We then return to Brad's feed yard ap-

plication in Chapter 11, as a thorough

review of these strategies. Finally, Chap-

ter 12 indicates where future versions of

SQL are headed vis-�a-vis temporal support

and shows that constructs proposed for

SQL3 offer a dramatic reduction in both

the number of lines of SQL code and the

mental gymnastics required, thereby end-

ing this exploration on an optimistic note.

We now have suf�cient background to

understand the metaphor of the cover il-

lustration. The sphere on the cover is ma-

chined in such a way that it projects shad-

ows of three different clock faces. The

sphere represents a fact in a bitemporal

table, say, an employee table. The shadow

Hours

A day is demarcated by a physical change, the

peaking of the sun in the sky, indicating noon. Not

so for an hour; it is a purely arbitrary division. The

ancients studied the stars closely and knew that

the sun crossed 12 constellations: Aquarius, Pisces,

Aries, Taurus, Gemini, Cancer, Leo, Virgo, Libra,

Scorpio, Sagittarius, and Capricorn. This sequence

is called the zodiac, from the Greek word zodios,

meaning ��gure of an animal.� The Chaldeans thus

divided the day (that is, the time between sunrise

and sunset) into 12 portions, or hours. However,

because the daylight is shorter in winter than in

summer, these were considered horae temporariae,

or �temporary hours.�
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on the left shows the time 10:25 A.M., indicating that the fact became true in re-

ality (the valid FROM TIME) in midmorning. The shadow on the right shows the

time 12:35 P.M., indicating that the fact was stored in the database (the transaction

START TIME) about a half hour after noon. Part of the fact is the time of birth (a

user-de�ned time) of 6:05 P.M. We see that a particular fact in the database may

include a user-de�ned time and may be associated with both a valid time and a

transaction time.

2.5 READINGS

Other terms have been applied to the valid-time, transaction-time, and bitemporal

tables introduced in this chapter. They have been called temporal tables. The term

time-varying has been used, but this is a misnomer, as all tables in practice vary

over time, as rows are added, removed, and changed. The term time-oriented tables

is also not quite precise; just what does it mean to be �time-oriented�? (For that

reason, the title of this book is unfortunate. To be honest, I originally preferred

Developing Temporal Database Applications in SQL, but felt that title might confuse

people who did not know the technical de�nition of �temporal,� which no longer

characterizes you, gentle reader.) Such tables have also been called historical tables,

but this implies that they record information only about the past. Valid-time tables

often store information about the future, for example, in planning or scheduling

applications. The accepted terminology then is to refer to such tables as temporal

tables, or more speci�cally as, say, a valid-time table.

The of�cial de�nition of a temporal database is �a database that supports some

aspect of time, not counting user-de�ned time� [49]. The intuition here is that

adding a user-de�ned time column such as birth date to an employee table does

not render it temporal, especially since the birth date of an employee is presumably

�xed and applies to that employee forever. The presence of a DATE column will not

a priori render the database a temporal database; rather, the database must record

the time-varying nature of the information managed by the enterprise.

It is perhaps surprising that the discipline of temporal databases is a very active

area within database research. There have been some 1600 (!) papers written about

this topic over a 20-year period. The number of papers has been rising exponen-

tially; several hundred now appear each year. Many are included in the most recent

bibliography, which has pointers to six prior bibliographies over the past 17 years

[105]. Three brief surveys [56, 76, 103] provide entry into this research �eld. The

most complete exposition, albeit somewhat dated by now, is Tansel et al. [102]; a

more recent text provides an updated summary [107].

The cover illustration was inspired in part by the cover of Hofstadter's Gödel,

Escher, Bach [40], which showed two pieces of wood carved to project shadows of

the letters G, E, and B on the three planes.
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At the core of a temporal application are tem-

poral values, indicating when something hap-

pened. There are three basic temporal types.

Instants and intervals are covered in this chap-

ter; periods, which enjoy much less support in

most versions of SQL, are the topic of the next

chapter.

We examine in depth the variants of in-

stants and intervals (SQL-92 supports �ve in-

stant variants and two interval variants) and

the operations permitted on these types. The

highly idiosyncratic temporal facilities of preva-

lent DBMSs are compared in detail with the

SQL-92 standard. The language facilities sup-

porting temporal values are similar in one way

to assembly language facilities: you can (gener-

ally) do what you want, but it is often far from

easy.



Instants and Intervals

J
im Barnett is the quintessential Texan: barrel-chested, sporting a thick mus-

tache, a graduate of the University of Texas, an oil man. His speech has an easy

cadence, peppered with humor. He is an engineer for GeoQuest, a data man-

agement company owned by Schlumberger, a Paris-based instrumentation com-

pany. (This name is of Germanic origin, but is pronounced as a French word.)

The oil and gas business is a dynamic, worldwide industry, with its practition-

ers transferred far and wide, and often. September of 1995 found Jim working in

Dubai, U.A.E., 8000 miles from his home base in Houston, Texas, working with the

Arabian Oil Company (AOC) to systematize its records on wells and oil and gas

production and distribution. Several of his clients are in Al Khafji, a company town

immediately south of the Saudi border with Kuwait. Al Khafji saw action in the Gulf

War, with the AOC workers leaving scant hours before the town was invaded.

Jim helped design the database underlying GeoQuest's FINDER product. FINDER

implements the industrial standard Public Petroleum Data Model (PPDM) via some

300 tables on the Oracle DBMS.

The enterprise (here, wells, production, land, lithography, and seismic data) must

be modeled using the available data types, such as numerics, character strings, and

dates. Character strings record the names of things, numerics record the values that

have been measured or noted, and dates record the when of things.

As this book considers the time-varying nature of data, we focus here on the date

columns. FINDER utilizes all manner of dates. Many tables have Start Date and

End Date columns, denoting a period of time; we will examine this usage in detail

in the next chapter. Other tables have Start Date and Next Event Date columns,

recording a succession of events.

FINDER also uses other approaches to capture time-varying data. The Fac Daily

Prod table tracks daily production of a facility. Each row of this table records a

month's worth of production. The PRODUCTION YEAR column (of type NUMBER(4,0))

and MONTH column (of type VARCHAR(3)) denote the particular month, and 31

columns, DAY1 through DAY31, of type NUMBER(12,4), provide the daily production.
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Duration data is also present in the FINDER schema. In the Well Core Hdr table,

the Dry Time column (of type NUMBER(7,2)) and the Dry Time Unit (of type VAR-

CHAR(12)) in concert capture the drying time of the chemical analysis of a well core

(a sample extracted from a known depth from the well).

Jim found that addressing the AOC requirements involved adding even more

date columns. To most tables he added the following columns: Created By, Create

Date, Updated By, and Last Update, to track more carefully who effected a

change and when the change was made. Other temporal columns were needed by

particular tables, such as the Sample Date, Dispatch Date, and Return Date columns

of the Well Core Sample table.

SQL de�nes several temporal types for use in columns. Any respectable DBMS

provides similar data types, though few compliant with the standard. SQL also

provides useful predicates, constructors, and functions for manipulating time val-

ues. Again, DBMSs include somewhat similar, though usually incompatible, opera-

tors. This chapter summarizes the temporal support that SQL and prevalent DBMSs

provide, and shows how to use these facilities to perform common tasks.

Jim's task was made easier (or perhaps more dif�cult) by the fact that Oracle

supports but one temporal data type, DATE, of a �xed granularity, to a second.

This often shifted the decision from which temporal type was best to which other

available type, for example, NUMBER, should be used.

As in all data modeling, the �rst question that must be asked is, What is the

semantics, that is, the meaning, of the enterprise to be captured? In this sense, the

Dry Time column of the Well Core Hdr table is of a fundamentally different nature

than the Core Date column of that table, even if both are to a precision of seconds.

And both are fundamentally different than the Start Date and End Date columns.

How these columns are typed and correctly manipulated in SQL depends critically

on determining their underlying semantics. In this and the next chapter, we exam-

ine the different temporal semantics that are available, and explore how Jim made

these distinctions when specifying the AOC extensions to the FINDER data model.

3.1 INSTANTS

An instant is an anchored

location on the time line. An

SQL-92 datetime denotes an

instant.

An instant is an anchored location on the time line. I am writing

this on the instant of 2:38 P.M., January 14, 1997, two days af-

ter HAL's birth. (From 2001: A Space Odyssey: �I am a HAL 9000

computer, production number 3. I became operational at the

HAL plant in Urbana, Illinois, on January 12, 1997.�) An instant

occurs but once, and then is forever in the past.
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This data type is most fundamental. Other types can be implemented by, or

simulated to some degree with, instants; indeed, most DBMSs provide no other

temporal data types.

SQL terms instants datetimes and provides three speci�c forms and two varia-

tions.

3.1.1 The DATE Type

An SQL-92 DATE stores the year, month, and day values of an instant. The year

value must be in the range 0001 C.E. (Common Era, formerly called A.D.) through

9999 C.E. Note that a DATE value cannot denote B.C.E. (Before the Common Era,

formerly called B.C.) dates. While the SQL designers point to some technical is-

sues in justifying this design decision (such as there being no year 0 C.E., or year 0

B.C.E.), its true rationale may lie in initial use of relational products primarily in ad-

ministrative data processing rather than in scienti�c applications. Both uses could

have been accommodated much better by centering this 10,000-year range at, say,

1 C.E., rather than favoring the years 5000 C.E. through 9999 C.E. over B.C.E. dates.

The month value is limited to the values 1 through 12, denoting the 12 Gre-

gorian months. The day value is limited to the values 1 through 31, although the

month and year value can apply additional restrictions limiting the maximum to

28, 29, or 30. For example, February 29, 1996, is legal, as is February 29, 2000, but

February 29, 1900, is not. None of these �elds can be negative. This notation is

derived from the ISO 8601 standard.

Date literals consist of the year as four

digits, followed by a hyphen, followed by

the month as two digits, followed by a

hyphen, followed by the day as two dig-

its, in descending granularity (thereby pre-

sumably allowing less-than comparisons to

be implemented via lexicographic compar-

isons). HAL's birth date is then DATE �1997-

01-12�. Note that this literal requires 10

characters. The length of a DATE is spec-

i�ed as 10 positions, which is de�ned as

�the number of characters from the char-

acter set SQL TEXT that it would take to rep-

resent any value� in the DATE type. SQL

does not prescribe what internal format an

implementation employs for such values.

A.D. versus B.C.

There is no 0 A.D.; 1 A.D. follows 1 B.C. The rea-

son for this seeming anomaly is that when the

bifurcation into B.C. and A.D. was proposed, by

a sixth-century monk named Dionysius Exiguus,

under instruction by Pope St. John I, the con-

cept of zero had not been invented. That epic

event would have to wait several centuries, �rst

for Arabic mathematicians to devise the notion

of zero as a placeholder and as a value unto it-

self, then for farsighted Pope Sylvester II, reign-

ing over the last millennial transition from 999

to 1003, to advocate this concept in Western

usage.
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3.1.2 The TIMESTAMP Type

Should the user desire a �ner precision than day, the TIMESTAMP data type is avail-

able in SQL. This variation stores the year, month, and day, as in DATE, along with

the hour, minute, and second, and a number of fractional digits of the second. The

default is six fractional digits, corresponding to microseconds. None of the �elds

may be negative.

The timestamp's precision, or number of fractional digits, can be speci�ed in

parentheses when this data type is used; the precision defaults to 6. A precision

of 3 (i.e., TIMESTAMP(3)), indicates a granularity of milliseconds; a precision of 0,

seconds; a precision of 15, femtoseconds. The maximum precision is de�ned by the

implementation; a negative precision is not allowed. Twenty-four hour clock time

is used, so the hour value ranges from 0 to 23. The minute value ranges from 0 to

59, and the second value from 0 to 61 (more on this shortly).

SQL uses Coordinated Universal Time (UTC), based on atomic clocks.

The time portion of a timestamp literal is denoted in descending granularity:

hour, minute, second, each two digits and separated with colons, followed by a

period and fractional digits, if the precision is greater than zero. Hence the present

time, as near as I can tell from my watch, is TIMESTAMP �1997-01-15

11:35:29.123456�. The length of a TIMESTAMP value is 26 positions (the length

includes the period character); the length of TIMESTAMP(0) is 19 positions.

3.1.3 The TIME Type

Will there really be a morning?

Is there such a thing as day?

. . . . . . . . . . . . .

Oh, some scholar! Oh, some sailor!

Oh, some wise man from the skies!

Please to tell a little pilgrim

Where the place called morning lies!

�Emily Dickinson, �Will there really be a morning?�

The SQL-92 datetime types

DATE, TIME, and TIMESTAMP

differ in the �elds (year, month,

day, hour, minute, and second)

they contain.

The SQL TIME data type stores the hour, minute, and second,

and a number of optional fractional digits of the second. The

default is no fractional digits, corresponding to integral seconds;

a nonzero precision is denoted, as with TIMESTAMP, in paren-

theses.

TIME literals are as one would expect: in descending granu-

larity, separated with colons (e.g., TIME �11:35:29�). The length

of a TIME value is eight positions; if the precision is nonzero,

then it is nine positions (for the decimal point) plus the precision. Unlike DATE
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and TIMESTAMP values, TIME values include a zero element: '00:00:00'.

As we will see in Section 3.7, and as hinted in Emily Dickinson's poem, TIME

is not really an instant data type at all; it is a funny kind of interval (to be dis-

cussed below), representing a number (between 0 and 86,400) of seconds (along

with optional fractional seconds).

3.1.4 Time Zone Variants

Greenwich Mean Time ensures that the sun, on those days it is visible, is directly

overhead Greenwich, England, each noon. Locales distant from England, shift UTC

by a certain number of hours and minutes so that the sun is approximately over-

head locally at noon. Mountain Standard Time subtracts 7 hours from UTC. We

would expect 24 time zones, each corresponding to 60 minutes of longitude, but as

with all things political, there are many exceptions. Nepal's time zone is 15 minutes

off from India's as an expression of independence. Many locales also change the off-

set, advancing their clocks by one hour in the summer and turning them back in

the winter, at speci�ed days. Arizona, unlike the other states in the Mountain Time

Zone, does not adopt this adjustment, called daylight saving time, presumably as

an expression of independence from the federal government. The Navajo Indian

reservation, located within Arizona, does use daylight saving time, perhaps to be

different than Arizona. And the Hopi Indian reservation, which is completely sur-

rounded by the Navajo Indian reservation, does not adopt daylight saving time,

perhaps to differentiate themselves from the Navajos. So you can drive a few hours

in Arizona and go in and out of daylight saving time four times.

The time zone can be stored

with SQL-92 TIME and

TIMESTAMP values.

Each SQL session has an associated default offset from UTC

that is used in that session. This offset can range from -12:59

to +13:00 (the reason for the additional hour on each side is

daylight saving time). The offset is assumed for TIME and TIME-

STAMP values manipulated within the SQL session. Hence, time

literals denote the local time, whereas times are stored as UTC time (with no time

zone, i.e., Greenwich Mean Time).

The TIMEWITH TIME ZONE data type includes with the stored value an explicit

offset from UTC. This is written as a sign (the hyphen character for a minus sign,

or the plus character) followed by the offset hour as two digits, a colon, and the

offset minute as two digits (e.g., TIME �11:08:27-07:00�). This added information

requires an additional six positions: four digits, a hyphen, and a colon. Fractional

seconds appear before the time zone (e.g., TIME �11:08:27.123456-07:00�).

The TIMESTAMP WITH TIME ZONE data type is also available. Without frac-

tional digits, the length of this type is 25 positions, more with fractional dig-

its. An example is TIMESTAMP �1997-01-15 11:35:29.123456-07:00�, requiring 32

positions.
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3.2 INTERVALS

. . . and an ocean tumbled by with a private boat for Max

and he sailed off through night and day

and in and out of weeks

and almost over a year

to where the wild things are.

�Maurice Sendak,Where the Wild Things Are

And which of you by being anxious can add one cubit to his span of life?

�Matthew 6:27

An interval is an unanchored,

directional duration of the time

line.

An interval is an unanchored contiguous portion of the time line.

An interval is relative; an instant is absolute. An interval can be

added to an instant, yielding another instant. Intervals cannot

be added to spatial points, nor spatial intervals (such as cubits)

to temporal intervals, except as (often highly effective) literary

devices, as the above quotes illustrate.

The distance between two instants is an interval. Unlike instants, intervals have

direction. An interval can be positive or negative, denoting a shift to the future or

to the past.

Intervals are less prominent in the FINDER schema than instants. Some are

signaled with �duration� or �interval� in their name, examples being the Period

Durtn column in Well Test Period and the Sampling Interval column of the Seis

Survey Hdr table, or by mentioning the time during which something was happen-

ing, as in the Time String In Hole column of the Well Log Service table. Other

interval columns are more obscure, such as the Incrmnt Time column of the Stage

Flowback table (other columns having a name with that suf�x denote instants,

e.g., Start Time). It appears that in the FINDER schema, all intervals are positive. As

we'll see, while SQL has an interval type, Oracle8 Server does not support this type,

relying on the designer to differentiate instants from intervals in other ways.

3.2.1 The INTERVAL Type

Solid stone is just sand and water, . . .

Sand and water, and a million years gone by

�Beth Nielsen Chapman, �Sand and Water�

The SQL-92 interval type is complex.

Whereas the other SQL types require but a

few lines to describe, intervals require over

three pages just to specify the syntax. Even

then, some details are left unstated (as will

be discussed in Section 3.7.3).

SQL differentiates year-month intervals

and day-time intervals. The �rst can be

considered to be equivalent to an integral

number of years or months; the latter con-

sidered equivalent to an integral number of

days, hours, minutes, seconds, or fractions

of a second. This distinction is due to vary-

ing month lengths in the Gregorian calen-

dar. The individual units (months, hours,

microseconds) are termed granules, so an

interval value is a (signed) integer number

of granules.

Intervals have a quali�er that

speci�es the leading �eld, an

optional trailing �eld, and an

optional precision for the

leading and trailing �elds.

Intervals are combinations of the �elds year, month, day,

hour, minute, and second, though not all combinations are
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Sundials

A sundial, or more ostentatiously, a heliochronome-

ter, in contrast to most other clocks, does not mea-

sure an interval of time; rather, it indicates a given

instant of time. A sundial can be moved to an-

other longitude and remain accurate; a mechani-

cal watch must be reset when moved�hence the

presence of multiple time zones on many modern

watches.

Sundials, when adjusted for the correct latitude,

are exceedingly accurate, measuring true solar time

(see page 95), at least when the sky is not cloudy.

There is no drift with a sundial, unlike mechanical

clocks.

allowed, as we will see. Intervals have a quali�er associated with

them that speci�es the leading �eld, an optional trailing �eld,

and an optional precision for the leading and trailing �elds. If

no trailing �eld is present, the interval contains only the leading

�eld.

3.2.2 Year-Month Intervals

For year-month intervals, the only �elds available are year and month. Such

an interval can contain only years (INTERVAL YEAR), only months (INTERVAL

MONTH), or both (INTERVAL YEAR TO MONTH). For the leading or only �eld, a pre-

cision, specifying the maximum number of digits, is permitted (INTERVAL YEAR(p),

INTERVAL MONTH(p), INTERVAL YEAR(p) to MONTH); the precision defaults to two

digits and must be positive. Nonleading �elds can have up to two digits.

Year-month intervals contain a

year, a month, or both �elds.

Year-month literals are denoted with the year (e.g., INTERVAL

�3� YEAR), the month (e.g., INTERVAL �7� MONTH), or the year

followed by a hyphen followed by the month (e.g., INTERVAL

�3-7� YEAR TO MONTH, for three years and seven months). Note

that the �elds must be speci�ed in literals, but the precision need not be. If years

and months are present, then the number of months must be between 1 and 12.

The length, in positions, of a year-month interval is the precision of the year �eld

if alone, the precision of the month �eld if alone, or the precision of the year �eld

plus three, for the hyphen and two digits of the month, if both are present.
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The hyphen in intervals is not a minus sign; it serves instead to separate �eld

values. An interval literal can have a sign preceding the quoted portion. A positive

interval literal is indicated by the absence of a sign or by a plus sign (e.g., INTERVAL

�3-4� YEAR TO MONTH = INTERVAL +�3-4� YEAR TO MONTH). A negative interval literal

is indicated with a minus sign (a hyphen) preceding the string portion of the lit-

eral (e.g., INTERVAL -�3-7� YEAR TO MONTH, for three years and seven months going

back into the past). The one exception is the zero element, for which positive and

negative literals denote the same value: INTERVAL +�0-0� YEAR TO MONTH = INTERVAL

�0-0� YEAR TO MONTH = INTERVAL -�0-0� YEAR TO MONTH.

We note in passing that the Technical Corrigendum 3, currently in draft form,

permits a sign to also appear within the quoted portion. In fact, two signs can be

present, with the normal mathematical interpretation�for example, double nega-

tion results in a positive literal. Hence, INTERVAL +�3-4� YEAR TO MONTH = INTERVAL

�+3-4� YEAR TO MONTH = INTERVAL +�+3-4� YEAR TO MONTH = INTERVAL -�-3-4� YEAR

TO MONTH = INTERVAL �3-4� YEAR TO MONTH.

3.2.3 Day-Time Intervals

The gods confound the man who �rst found out

How to distinguish hours. Confound him, to,

Who in this place set up a sundial,

To cut and hack my days so wretchedly

Into small pieces!

�Plautus (quoted by David S. Landes), Boeotia

Day-time intervals contain day,

hour, minute, and second �elds,

in any contiguous sequence.

Day-time intervals may contain up to four �elds: day, hour, minute, and sec-

ond, with optional fractional seconds. All �elds between the leading and trail-

ing �elds are included. Hence, INTERVAL DAY TO SECOND contains

four �elds, while INTERVAL DAY TO HOUR contains two �elds, and

INTERVAL DAY (or, equivalently, INTERVAL DAY TO DAY) contains

only one �eld. As with year-month intervals, we can specify a

precision for the leading �eld, which defaults to two digits. Ex-

amples include INTERVAL DAY(4) TO HOUR, which can represent up to 9999 days,

and up to 24 hours; INTERVAL HOUR(3) TO SECOND, which can represent up to

approximately 40 days; and INTERVAL MINUTE(4) TO SECOND, which can represent

almost a week (within a few minutes), to the granularity of seconds.

Day-time interval types and literals are even more complex when seconds are

involved because the standard wished to accommodate fractional seconds (no other

�eld can have a fractional value). If the leading (i.e., only) �eld is SECOND, then it

can have a precision, which defaults to two digits (e.g., INTERVAL SECOND(8), which

can represent three years). (A bit of trivia: there are � � 107 seconds in a year, to
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an accuracy of greater than 1 in 100.) If the trailing (or only) �eld is SECOND, it

can also have a fractional precision, which defaults to six (e.g., INTERVAL DAY(3) TO

SECOND(3), which represents a count of milliseconds). A single SECOND �eld can

thus have two precisions, separated with a comma (e.g., INTERVAL SECOND(5,3),

which can represent milliseconds up to a little more than a day). Such intervals

require nine positions, including the period.

Day-time literals are just what you might expect, making the correspondence

with timestamp literals (e.g., INTERVAL �1 23:45:12� DAY TO SECOND). In all cases,

the length in positions of an interval type is identical to the number of characters

required by any literal of that type.

3.3 PREDICATES

For such a diverse set of types (DATE, TIME, TIMESTAMP, TIME WITH TIME ZONE,

TIMESTAMP WITH TIME ZONE, and two variants of INTERVAL: year-month and

day-time), SQL-92 supports only four classes of temporal predicates: equality, less-

than, is null, and overlaps.

There are several variants of the equality predicate; these variants apply to all the

data types. When applied to two expressions, `=' determines whether the values of

these expressions are identical. When applied to a value and a set of values (of the

same type), =ANY determines if the left-hand value is identical to at least one of the

values in the right-hand set. =SOME and IN are nonorthogonal equivalents. MATCH

also relies on equality testing. The queries in CF-3.1 are identical in meaning.

Code Fragment 3.1 Sevenways to ask for information on those bornon January1, 1970.

SELECT * FROM Employee

WHERE BirthDate = DATE �1970-01-01�

SELECT * FROM Employee

WHERE BirthDate =ANY (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE BirthDate =ALL (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE BirthDate =SOME (VALUES ((DATE �1970-01-01�)))

continued on page 34
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continued from page 33

SELECT * FROM Employee

WHERE BirthDate IN (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE NOT BirthDate NOT IN (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE BirthDate MATCH (VALUES ((DATE �1970-01-01�)))

Here, VALUES constructs a table with one row consisting of one column. More

variations are possible using the UNIQUE and PARTIAL reserved words available

with MATCH. (We mention MATCH for completeness. This construct, particularly

with its options, is intended for determining whether or not candidate rows would

satisfy referential integrity constraints.)

In all of the above examples, the two values being compared are of a speci�c type

(DATE). Two datetimes can be compared if they are comparable, which is de�ned as

having the same �elds. Intervals are compared by �rst converting to a common

base granularity, then converting to integers, then doing the integer comparison.

So INTERVAL �3-7� YEAR TO MONTH can be compared to INTERVAL �43� MONTH (and in

fact these two intervals are equal), while neither of these intervals can be compared

with INTERVAL �23� DAY, as the two intervals are incomparable.

Since every SQL-92 data type, including the temporal types, is ordered, less-than

is de�ned on them all. The operators `<', `<=', `>', `>=', and `<>' comprise the avail-

able combinations. Each combination is a disjunction, OR-ing the two possibilities,

so `<=' means �less than or equal to.� The last, `<>', means �less than or greater

than,� or equivalently, �not equal to.�

Code Fragment 3.2 Four more ways to ask for information on those born on January 1,

1970.

SELECT * FROM Employee

WHERE NOT BirthDate <> DATE �1970-01-01�

SELECT * FROM Employee

WHERE NOT BirthDate <>ANY (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE NOT BirthDate <>ALL (VALUES ((DATE �1970-01-01�)))

SELECT * FROM Employee

WHERE NOT BirthDate <>SOME (VALUES ((DATE �1970-01-01�)))

There are yet other ways to test for equality of temporal values in SQL; the following

discussion will provide more than a dozen.
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The BETWEEN construct is a useful form of inequality. The predicate

value1 BETWEEN value2 AND value3

is equivalent to

value2 <= value1 AND value1 <= value3

Note that the BETWEEN predicate is ordered, in that value2 � value3 is required.

Code Fragment 3.3 Two more ways to ask for information on those born on January 1,

1970.

SELECT * FROM Employee

WHERE BirthDate BETWEEN DATE �1970-01-01� AND DATE �1970-01-01�

SELECT * FROM Employee

WHERE NOT BirthDate NOT BETWEEN

DATE �1970-01-01� AND DATE �1970-01-01�

These exploit the fact that equality is allowed on both sides of the BETWEEN.

As with other data types, the value of any temporal column can be NULL. And

as with other data types, predicates on null temporal values have the value un-

known, except for value IS NULL, which returns true when the value is null and false

otherwise, and value IS NOT NULL, which naturally returns true if the value is not

null.

The �nal temporal predicate, OVERLAPS, differs from the rest, in that it only

applies to temporal values, and then only to values of particular temporal types. As

we'll see in Chapter 4, OVERLAPS is a way to get periods in the back door.

The format of this predicate is

period information
1
OVERLAPS period information

2

Either period information is constructed either via

( start time, duration)

or

( start time, end time)

where start time and end time are instants, that is, SQL datetimes, and dura-

tion is an interval that can be added to start time (we'll cover adding intervals to

datetimes in more detail in the next section). These two forms can be mixed and

matched at will.

The predicate returns true if period information1 overlaps period informa-

tion2 , that is, if they share at least one instant, or, equivalently, if the start of

period information1 is less than the end of period information2 and the start

of period information2 is less than the end of period information1 (try it!). By
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using a zero duration, or identical start and end instants, we can construct periods

of one granule, as the following illustrate.

Code Fragment 3.4 Yet fourmoreways to ask for information on those born on January

1, 1970.

SELECT * FROM Employee

WHERE (BirthDate, INTERVAL �0� DAY)

OVERLAPS (DATE �1970-01-01�, INTERVAL �0� DAY)

SELECT * FROM Employee

WHERE (BirthDate, BirthDate)

OVERLAPS (DATE �1970-01-01�, INTERVAL �0� DAY)

SELECT * FROM Employee

WHERE (BirthDate, INTERVAL �0� DAY)

OVERLAPS (DATE �1970-01-01�, DATE �1970-01-01�)

SELECT * FROM Employee

WHERE (BirthDate, BirthDate)

OVERLAPS (DATE �1970-01-01�, DATE �1970-01-01�)

NULL can be used in either position within a period information; often the

predicate will return true (or false) anyway.

Code Fragment 3.5 Threemoreways to ask for information on those born on January 1,

1970.

SELECT * FROM Employee

WHERE (BirthDate, NULL)

OVERLAPS (DATE �1970-01-01�, INTERVAL �0� DAY)

SELECT * FROM Employee

WHERE (BirthDate, NULL)

OVERLAPS (DATE �1970-01-01�, NULL)

SELECT * FROM Employee

WHERE (BirthDate, NULL)

OVERLAPS (NULL, DATE �1970-01-01�)

3.4 CONSTRUCTORS

A temporal constructor is an expression that returns a temporal value. (Some

might consider a predicate to be a boolean constructor, but we �nd it helpful to

differentiate predicates and other constructors.)
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The Gregorian Calendar

The Gregorian calendar was necessitated by the

fact that a year is not an integral number of days.

The tropical year is roughly 365.242191 days, or

equivalently, 365 days, 5 hours, 48 minutes, and

45.96768 seconds. (�Nature, apparently, can make

a gorgeous hexagon, but she cannot (or did not

deign to) make a year with a nice even number

of days or lunations� [35, p. 137].) The Julian cal-

endar starts off with 12 months of various lengths

that add up to 365 days. It then makes a correc-

tion of imposing a leap day every fourth year, as

a sequence of 365, 365, 365, 366 days, averaging

out at 365.25 days per year. This is pretty close:

it makes the year about 11 minutes and 154 sec-

onds longer than it actually is. But 11 minutes a

year can add up, and the civil calendar got more

and more out of step from the solar calendar. By

1581, the vernal equinox was on April 2, rather

than the accepted March 21. So Pope Gregory

XIII appointed a committee, with the Jesuit math-

ematician Christopher Clavius as chair. His com-

mittee came up with two solutions, both imposed

by Pope Gregory in a papal bull issued on Febru-

ary 24, 1582. First, to get the civil and solar cal-

endars back in sync, 10 days, October 5 through

14, 1582, were simply dropped�they never ex-

isted! Second, the de�nition of leap years (a year

divisible by 4) was amended to not include a cen-

tury year (multiple of 100), but to still include years

divisible by 400. So, every 25th leap year was re-

moved, but every 100th was restored. 1900 is not

a leap year, but 2000 is, a fact still misunderstood

by some software packages. This yields the Gre-

gorian year to be 365.2425 days long, depart-

ing from the solar calendar by some 25.96 sec-

onds: pretty darned close! At this rate, a discrep-

ancy of one day accumulates every 2800 years

or so.

3.4.1 Datetime Constructors

SQL provides seven constructors returning datetimes (DATE, TIME, TIMESTAMP,

TIME WITH TIME ZONE, and TIMESTAMP WITH TIME ZONE). We discuss each in

turn, after providing an example.

� DATE �1996-02-24� + INTERVAL �7� DAY This expression evaluates to DATE

�1996-03-02�, as 1996 was a leap year. The instant is shifted forward (or back,

for negative intervals) by the length of the interval. For expressions involving an

interval and a datetime, the interval must contain only �elds that are also con-

tained in the datetime. DATE �1996-02-24� + INTERVAL �12:30� HOUR TO MINUTE

is thus disallowed, as is DATE �1996-02-24� + INTERVAL �2 12� DAY TO HOUR.

� INTERVAL �7� DAY + DATE �1996-02-24� This expression also evaluates to DATE

�1996-03-02�, as addition of intervals and datetimes is commutative.

� DATE �1996-03-02� - INTERVAL �7� DAY This expression evaluates to DATE

�1996-02-24� and is not commutative.

� TIMESTAMP �1996-02-24 12:34:56� AT LOCAL This expression assumes that

the value is expressed in terms of GMT and applies the local time zone offset
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to get the local time. As Tucson, Arizona is always at Mountain Standard Time

(MST), seven hours behind Greenwich, this evaluates to TIMESTAMP �1996-02-

24 19:34:56�. As another example, TIMESTAMP �1996-02-24 12:34:56+02:00� AT

LOCAL takes the Danish TIMESTAMP WITH TIME ZONE, speci�cally, at Mean

European Time with daylight saving (MET DST), normalizes it to UTC (i.e.,

10:34:56), then applies the Tucson, Arizona time zone offset, yielding TIMESTAMP

�1996-02-24 03:34:56�. This construct may not be applied to DATE values. If

we use a value without specifying an AT clause, AT LOCAL is assumed.

� TIMESTAMP �1996-02-24 12:34:56� AT TIME ZONE INTERVAL �-7:00� HOUR TO

MINUTE The expression allows the user to specify a particular time zone offset,

which must be an hour to minute interval. It returns TIMESTAMP �1996-02-24

19:34:56�. As with the previous example, this construct may not be applied to

DATE values.

� CURRENT DATE returns the current date (the date of the current instant).

CURRENT TIME and CURRENT TIMESTAMP function analogously. All such so-called

datetime value functions within a statement are effectively performed simul-

taneously. Such functions appearing in two separate statements are allowed to

return different results.

� CAST(�1996-02-24� AS DATE) The CAST function converts a value in a source

data type (here, CHARACTER) to the speci�ed target data type. When the target

data type (here, DATE) is a temporal type, then the cast may be regarded as

a temporal constructor. In this case, the function returns DATE �1996-02-24�.

While only character strings may be cast to (and from) datetimes in SQL-92,

products often extend this to integers and other types.

The following types can be converted to a datetime value.

� CHARACTER A character string can be converted to a DATE, TIME, or TIME-

STAMP value. The string must be identical to a literal of the datetime type. The

example above converts a character string to a DATE. CAST(�12:34:56� TO TIME)

is another example.

� TIME A time value may be converted to a TIME or TIMESTAMP value, the lat-

ter �lling in the year, month, and day with the value of CURRENT DATE. If the

target type has a time zone, then these �elds are set to the current time zone

of the session. This is being written on Wednesday, July 23, 1997. CAST(TIME

�12:34:56� AS TIMESTAMP WITH TIME ZONE) results in TIMESTAMP �1997-07-23

12:34:56-07:00�. If the target has a smaller precision than the source, the addi-

tional digits are discarded. If the target has a greater precision than the source,

the needed digits are set to 0. Hence, CAST(TIME �12:34:56.123� AS TIME(6))

results in TIME �12:34:56.123000�; casting this value to TIME(1) results in TIME

�12:34:56.1�.
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� TIMESTAMP A timestamp value may be converted to a DATE, TIME, or TIME-

STAMP value, by extracting the requested �elds and adjusting, if necessary,

the precision. Hence, CAST(TIMESTAMP �1997-07-23 12:34:56.123� AS TIME(6))

results in TIME �12:34:56.123000�; casting this value to DATE results in DATE

�1997-07-23�.

� DATE A date value may be converted into a DATE by simply copying the value

or into a TIMESTAMP by setting the hour, minute, and second to 0. CAST(DATE

�1997-01-01� AS TIMESTAMP(4)) yields �1997-01-01 00:00:00.0000�.

Note that when a TIME value is cast to a TIMESTAMP, the current date provides the

missing �elds, but when a DATE value is cast to a TIMESTAMP, the missing �elds

are set to zero.

3.4.2 Interval Constructors

SQL provides a variety of constructors that return year-month or day-time intervals.

We summarize all but the cast function, which warrants closer scrutiny.

� INTERVAL �3� DAY + INTERVAL �4� DAY evaluates to INTERVAL �7� DAY. The

result is at a precision so that information is not lost and contains the �elds

of both arguments. Hence, INTERVAL �3� DAY + INTERVAL �4� HOUR yields IN-

TERVAL �3 4� DAY TO HOUR, and INTERVAL �3� DAY + INTERVAL �8 4� DAY TO

HOUR yields INTERVAL �11 4� DAY TO HOUR. The SQL-92 semantics treats INTERVAL

�3� DAY as exactly 3 days (72 hours).

� INTERVAL �3� DAY - INTERVAL �4� DAY yields INTERVAL -�1� DAY. As with

addition, subtraction results in the union of the �elds, to the necessary preci-

sion. INTERVAL �3� DAY - INTERVAL -�8 4� DAY TO HOUR results in INTERVAL �11

4� DAY TO HOUR.

� (DATE �1997-01-01� - DATE �1996-01-01�) DAY yields INTERVAL �366� DAY, as

1996 was a leap year. Note that both the parentheses and a quali�er must be

speci�ed; this provides the granularity of the result. The subtraction is done at

the least signi�cant �eld of the quali�er, then the interval is converted to an

interval of that �eld as the end �eld, with a start �eld chosen to not lose any

information. So (DATE �1997-01-01� - DATE �1996-01-01�) YEAR TO MONTH will

convert both to months (23,952 and 23,940, respectively, though it turns out the

origin doesn't matter), then the difference is taken, resulting in INTERVAL �12�

MONTH, then the result is converted to the requested quali�er, or INTERVAL �1-0�

YEAR TO MONTH.

� INTERVAL �4� DAY * 3 yields INTERVAL �12� DAY. Multiplication is symmetric;

this result is also obtained from 3 * INTERVAL �4� DAY. Multiple �elds can

be accommodated; the interval is �rst converted to a scalar at the smallest

�eld, then converted back after the multiplication. INTERVAL �12:30� HOUR TO
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MINUTE * 3 yields 750 minutes times 3, or 2250 minutes, or INTERVAL �37:30�

HOUR TO MINUTE.

� INTERVAL �4� DAY / 2 yields INTERVAL �2� DAY. This is similar to multiplication,

though it is not symmetric. Hence, 2 / INTERVAL �4� DAY is not permitted.

� - INTERVAL �4� DAY yields, naturally, INTERVAL -�4� DAY. Unary plus is also

provided: + INTERVAL �4� DAY yields itself.

The �nal constructor is CAST. Datetimes cannot be cast to intervals, nor intervals

to datetimes. In fact, year-month intervals cannot be cast to day-time intervals, nor

vice versa. The only casts that result in year-month intervals are from three sources:

� CHARACTER As with datetimes, a character string may also be cast to a year-

month interval, assuming the character string would have been acceptable as

a literal. CAST(�2� AS INTERVAL MONTH) works, but CAST(�3-7� AS INTERVAL

MONTH) does not.

� year-month interval The source interval is �rst converted to a scalar in units

of the least signi�cant �eld of the target type. For CAST(INTERVAL �8-7� YEAR

TO MONTH AS INTERVAL MONTH(2)), the source value would be converted to 103

months. This value is then normalized (a term not de�ned in the standard) to

conform to the target type. If the precision is not suf�cient, as here, an excep-

tion is raised. As another example, CAST(INTERVAL �3� YEAR AS INTERVAL YEAR TO

MONTH), the source value would be converted to 36 months, then normalized to

3 years and 0 months, resulting in INTERVAL �3-0� YEAR TO MONTH.

� exact numeric Here, the target interval must contain a single �eld, YEAR or

MONTH. The source value is interpreted as a number of such units. CAST(103

AS INTERVAL MONTH) would evaluate to INTERVAL �103� MONTH; CAST(103 AS

INTERVAL MONTH(2)) would raise an over�ow exception.

Similarly, the only casts that result in day-time intervals are as follows:

� CHARACTER CAST(�2 12:34� AS INTERVAL DAY TO MINUTE) works, but

CAST(�12:34� AS INTERVAL DAY TO MINUTE) does not.

� day-time interval As before, the source interval is �rst converted to a scalar in

units of the least signi�cant �eld of the target type. For CAST(�85 23:59:60� AS

INTERVAL HOUR TO SECOND), the source value is converted to 7,434,060 seconds.

This value is then normalized to conform to the target type, resulting in IN-

TERVAL �2065:00:00� HOUR TO SECOND. Had a target type of INTERVAL HOUR(3) TO

SECOND been speci�ed, an over�ow exception would have been raised.

� exact numeric Here, the target interval must contain a single �eld, DAY, HOUR,

MINUTE, or SECOND. The source value is interpreted as a number of such

units. To convert an exact numeric to a multi�eld interval, two casts are re-

quired. CAST(CAST(7434060 AS INTERVAL SECOND) AS INTERVAL DAY TO SECOND)

would evaluate to our original value INTERVAL �86 00:00:00� DAY TO SECOND.
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3.4.3 Other Constructors

Temporal values can also participate in casts to other types. We list these here for

completeness:

� CAST(DATE �1997-01-01� AS CHARACTER) returns the character string �1997-01-

01�. All temporal types can be cast to �xed- or variable-length character strings.

� CAST(INTERVAL �743060� SECOND AS INTEGER) returns the value 743,060. The

source interval must have a single �eld. Intervals with multiple �elds can be

converted to exact numerics via two casts; for example, CAST(CAST(INTERVAL

�2064:60:60� HOUR TO SECOND AS INTERVAL SECOND) AS INTEGER) yields the

same value.

Finally, individual �elds can be extracted from datetimes and intervals:

� EXTRACT(YEAR FROM DATE �1970-01-01�) returns the integer value 1970.

� EXTRACT(MINUTE FROM INTERVAL �12:34:56� HOUR TO SECOND) returns 34.

� EXTRACT(TIMEZONE HOUR FROM TIME �12:34:56-07:00�) returns -7.

� EXTRACT(TIMEZONE MINUTE FROM TIME �12:34:56-07:00�) returns 0.

The last two exemplify new reserved words that were required to obtain these

additional �elds from datetimes with time zones.

Code Fragment 3.6 Yet another four ways to ask for information on those born on

January 1, 1970.

SELECT * FROM Employee

WHERE CAST(BirthDate AS CHAR) = �1970-01-01�

SELECT * FROM Employee

WHERE CAST(BirthDate AS CHAR) LIKE �1970-01-01�

SELECT * FROM Employee

WHERE CAST((DATE �1971-01-01� - BirthDate) DAY AS INT) = 365

AND CAST((DATE �1971-01-01� - BirthDate) YEAR AS INT) = 1

SELECT * FROM Employee

WHERE EXTRACT(YEAR FROM BirthDate) = 1970

AND EXTRACT(MONTH FROM BirthDate) = 1

AND EXTRACT(DAY FROM BirthDate) = 1

The resulting data type (�elds and precision) varies among the operators. Table

3.1 summarizes the cases. Here, d denotes a datetime value, i an interval value, and

n a numeric (exact or approximate) value. Union ([) is shorthand for combining

the �elds of both operands. This table lists all the constructors involving temporal

values.
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Table 3.1 Result type of SQL-92 expressions involving temporal values.

Expression Result type

d + i type of d

i + d type of d

d - i type of d

d AT LOCAL type of d

d AT TIME ZONE i type of d

CAST(type1 AS type2) type2

EXTRACT(field FROM d) n (exact numeric)

CURRENT DATE DATE

CURRENT TIME TIME

CURRENT TIMESTAMP TIMESTAMP

i1 + i2 type of i1[ type of i2

i1 - i2 type of i1[ type of i2

(d - d) qual qual

i * n type of i

n * i type of i

i1 / i2 n (integer)

i / n type of i

+ i type of i

- i type of i

EXTRACT(field FROM i) n (exact numeric)

3.5 IMPLEMENTATION CONSIDERATIONS

No vendor supports SQL-92 at

the Full SQL level of

conformance. All products

include idiosyncrasies in their

temporal support that render

porting to other DBMSs dif�cult.

Although temporal types have been in the SQL standard since 1992 and were de-

�ned in the mid-1980s, it is surprising, and unfortunate, that unlike other portions

of SQL, the types and their predicates and constructors are not supported by most

DBMSs. Instead, each vendor has de�ned an incompatible and idiosyncratic set of

temporal types and operators, replete with inconsistencies and

seemingly arbitrary design decisions. Temporal types are among

the most variable features of commercial DBMSs. Coupled with

this is the often poor documentation available from the ven-

dors of temporal features of their products. Determining the op-

erations supported on temporal type(s) can be a frustrating ex-

ercise, with the information, if present at all, spread across the

documentation. The following is an attempt to gather in one

place the information about temporal support in a few promi-

nent DBMSs. We make no claim for comprehensiveness, but then, neither do most
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vendors. Interestingly, only Informix�Universal Server supports a type that provides

partial support for intervals; all of the other DBMSs require intervals to be simulated

with integers, �xed-point, or �oating-point numbers.

3.5.1 IBM DB2 Universal Database

We start with IBM DB2 Universal Database (UDB), as it is closest to the SQL-92

standard in its support of temporal data types.

IBM DB2 UDB supports the DATE, TIME, and TIMESTAMP instant types, with a

few deviations from SQL-92. The TIME type has a �xed precision of 0, indicating

a granularity of seconds. The TIMESTAMP type has a �xed precision of 6, indicat-

ing a granularity of microseconds. Time zone information is not included in DB2

instant values; however, the current time zone is available in the CURRENT TIME-

ZONE register. Instant literals are speci�ed as a conversion function of the name of

the data type operating on a character string, for example, DATE(�1997-01-15�) or

CAST(�1997-01-15� AS DATE), which is preferred, because DATE( ) could be a user-

de�ned function. Timestamp literals replace the space between the day and hour

with a dash, for example, TIMESTAMP(�1997-01-15-11.35.29.123456�).

There is no INTERVAL data type in DB2 UDB. Instead, DB2 UDB supports

specialized versions of the DECIMAL data type, termed durations.

� A date duration, in the format YYYYMMDD, is a DECIMAL(8,0) number represent-

ing an interval of days, with a range of 10,000 years.

� A time duration, in the format HHMMSS., is a DECIMAL(6,0) number representing

an interval of seconds, with a range of one day. Note that the decimal point is

required in a time duration.

� A timestamp duration, in the format YYYYMMDD.HHMMSSZZZZZZ, is a DECI-

MAL(20,6) number representing an interval of microseconds, with a range of

10,000 years.

These values can be stored in DECIMAL columns and represented by DECIMAL

constants. Hence, �DATE(�1997-11-08�) + 00010101.� adds one year, one month,

and one day to the indicated instant, resulting in the date 1998-12-09.

DB2 UDB also supports a kind of highly restricted interval literal, termed a labeled

duration, which is a numeric expression followed by a time unit (singular or plural).

Labeled durations can only be used in an addition or subtraction with an instant

type. An example is DATE(�1997-11-08�) + 1 MONTH. The available units are YEAR,

MONTH, DAY, HOUR, MINUTE, SECOND, MICROSECOND, and plural versions of

these keywords.

The function TIMESTAMPDIFF takes two parameters, a code specifying the granu-

larity (e.g., 256 denotes years, 16 denotes days), and a character string that is the

result of subtracting two timestamps and converting the result to character form.

Note that there are many datetime functions provided.
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Table 3.2 shows how the facilities in SQL-92 can be simulated, to some degree,

in IBM DB2 UDB. In the SQL-92 column, d denotes a datetime value, i an interval

value, and n a numeric (exact or approximate) value. In the IBM DB2 UDB column,

d denotes a datetime value, i denotes a DB2 timestamp duration, and itype is an

integer denoting an interval type.

3.5.2 Informix�Universal Server

Informix�Universal Server supports two instant types, DATE and DATETIME, and

an interval type, INTERVAL. Time zones are not supported. An Informix DATE is

stored internally as an integer denoting the number of dates since December 31,

1899; for example, day 1 is January 1, 1900. DATEs occupy four bytes, so the max-

imum date is sometime after 5 million C.E. Informix DATE literals are inconsis-

tent with SQL-92; in Informix, the month is �rst, followed by the day, followed

by the year, all separated with dashes, with the entire string delimited with double

quotes. However, an Informix DATE literal only supports two digits, for example,

DATE("10/01/98"), with the year 00 being 1900. To denote the years after 1999,

you have to add an INTERVAL explicitly. Hence, to designate January 1, 2000, you

have to use something like DATE("12/01/99") + INTERVAL(0-1) YEAR TO MONTH or

DATE("01/01/99") + INTERVAL(1-0) YEAR TO MONTH.

The Informix DATETIME type is equivalent to TIMESTAMP in SQL-92 and can

have a user-speci�ed precision, such as YEAR TO MONTH or YEAR TO SECOND. SQL-92's

TIME type is identical to Informix's DATETIME HOUR TO SECOND. Fractional seconds

are denoted with FRACTION(n). SQL-92's TIMESTAMP type is then equivalent to

Informix's DATETIME YEAR TO FRACTION(6). Interestingly, Informix DATETIME lit-

erals are consistent with SQL-92 (except that Informix DATETIME literals don't

use quotes) but are inconsistent with Informix DATEs. Speci�cally, in an Informix

DATETIME literal, the year comes �rst, as a four-digit number, followed by the

month and day, then hour, minute, and second, without quotes (!). At this sec-

ond, my watch reads DATETIME(1998-04-08 12:13:52), about time for lunch; my

calendar reads DATE("04/08/98").

Informix�Universal Server supplies utilities such as DATE, MDY (month/day/

year), YEAR, and WEEKDAY for formatting and converting dates. The current DATE

is given by TODAY; the current DATETIME is given by CURRENT. The EXTEND

function can be used to alter the precision of instants. This function extracts the

year and month from the corresponding values of CURRENT; the minutes and the

seconds are set to zero if not provided. Hence, EXTEND(DATETIME(16 19) DAY TO

HOUR, YEAR TO SECOND) returns DATETIME(1997-01-01 19:00:00). It can also be used

to convert strings into instant types. The standard predicates are also available on

instants.

As in SQL-92, an Informix INTERVAL must be either a year-month interval or a

day-time interval. Note that intervals can be added to instants (yielding an instant),
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Table 3.2 SQL-92 operations in IBM DB2 UDB.

SQL-92 IBM DB2 UDB Equivalent

Types:

DATE DATE

TIME TIME (precision �xed at 0)

TIMESTAMP TIMESTAMP (precision �xed at 6)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH A date duration(DECIMAL(8, 0)) with a

0 DAY �eld

INTERVAL DAY TO SECOND A timestamp duration with 0 YEAR,

MONTH, and MICROSECOND �elds,

negative values not available

Literals:

DATE �1997-01-01� DATE(�1997-01-01�)

TIME �12:34:56� TIME(�12:34:56�)

TIMESTAMP �1997-01-01

12:34:56�

TIMESTAMP(�1997-01-01-

12.34.56.000000�)

INTERVAL �3-4� YEAR TO MONTH 40 MONTHS,

00030400 (only in an expression)

INTERVAL �1 23:45:12� DAY TO

SECOND

00000001234512.000000,

171912 SECONDS (only in an

expression)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 i1 = i2

i1 < i2 i1 < i2

i1 <> i2 i1 <> i2

i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3

d IS NULL d IS NULL

i IS NULL i IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < (d1 + i)

Datetime Constructors:

d + i d + i

i + d i + d

d - i d - i

d AT i d + i

d AT LOCAL d + CURRENT TIMEZONE

CURRENT DATE CURRENT DATE

CURRENT TIME CURRENT TIME

CURRENT TIMESTAMP CURRENT TIMESTAMP
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Table 3.2 (continued)

SQL-92 IBM DB2 UDB Equivalent

Interval Constructors:

i1 + i2 not possible

i1 - i2 not possible

(d1 - d2) qual TIMESTAMPDIFF(itype, CHAR(d1 - d2))

(d1 - d2) MONTH TIMESTAMPDIFF(64, CHAR(d1 - d2))

i * n not possible

n * i not possible

i1 / i2 not possible

i / n not possible

+ i i

- i not possible

Other Operators:

CAST(d AS DATE) CAST(d AS DATE)

CAST(d AS TIME) CAST(d AS TIME)

CAST(d AS TIMESTAMP) CAST(d AS TIMESTAMP)

CAST(i AS INTERVAL YEAR

TO MONTH)

not possible

CAST(i AS INTERVAL DAY

TO SECOND)

not possible

CAST(d AS CHAR) CHAR(d)

CAST(i AS CHAR) not possible

CAST(i AS INTEGER)

i is YEAR TO DAY JULIAN DAY(DATE(�001-01-01�) + i)

- JULIAN DAY(DATE(�001-01-01-00))

i is DAY TO HOUR 24 * DAY(i) + HOUR(i)

i is DAY TO MINUTE 1440 * DAY(i) + 60 * HOUR(i)

+ MINUTE(i)

i is DAY TO SECOND 86400 * DAY(i) + 3600 * HOUR(i)

+ 60 * MINUTE(i) + SECOND(i)

EXTRACT(DAY FROM d) DAY(d)

EXTRACT(DAY FROM i) DAY(i)

EXTRACT(HOUR FROM i) HOUR(i)

Operators not in SQL-92:

convert d to Julian day JULIAN DAY(d)

but instants can't be added to intervals, the reason being that the resulting type

must be an interval.

Table 3.3 shows how the facilities in SQL-92 can be simulated, to some degree,

in Informix�Universal Server.
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Table 3.3 SQL-92 operations in Informix�Universal Server.

SQL-92 Informix�Universal Server Equivalent

Types:

DATE DATE

TIME DATETIME HOUR TO SECOND

TIMESTAMP DATETIME YEAR TO FRACTION(6)

TIME WITH no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH INTERVAL YEAR TO MONTH

INTERVAL DAY TO SECOND INTERVAL DAY TO SECOND

Literals:

DATE �1997-01-01� DATE("01/01/97")

TIME �12:34:56� DATETIME(12:34:56) HOUR TO SECOND

TIMESTAMP �1997-01-01 12:34:56� DATETIME(1997-01-01-12:34:56)

YEAR TO SECOND

INTERVAL �3-4� YEAR TO MONTH INTERVAL(3-4) YEAR TO MONTH

INTERVAL �1 23:45:12� DAY TO SECOND INTERVAL(1 23:45:12) DAY TO SECOND

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 i1 = i2

i1 < i2 i1 < i2

i1 <> i2 i1 <> i2

i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3

d IS NULL d IS NULL

i IS NULL i IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < (d1 + i)

Datetime Constructors:

d + i d + i

i + d d + i

d - i d - i

d AT i not supported

d AT LOCAL not supported

CURRENT DATE TODAY

CURRENT TIME CURRENT HOUR TO SECOND

CURRENT TIMESTAMP CURRENT
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Table 3.3 (continued)

SQL-92 Informix�Universal Server Equivalent

Interval Constructors:

i1 + i2 i1 + i2

i1 - i2 i1 - i2

(d1 - d2) qual d1 - d2 (if both have the same precision)

(d1 - d2) MONTH not supported

i * n i * n

n * i i * n

i1 / i2 not possible

i / n not possible

+ i + i

- i - i

Other Operators:

CAST(d AS DATE) DATE(d)

CAST(d AS TIME) EXTEND(DATE(d), HOUR TO SECOND)

CAST(d AS TIMESTAMP) EXTEND(d, YEAR TO SECOND)

CAST(i AS INTERVAL YEAR TO MONTH) INTERVAL(i) YEAR TO MONTH

CAST(i AS INTERVAL DAY TO SECOND) INTERVAL(i) DAY TO SECOND

CAST(d AS CHAR) not possible

CAST(i AS CHAR) not possible

CAST(i AS INTEGER) not supported

EXTRACT(DAY FROM d) DAY(d) (returns an integer)

EXTRACT(DAY FROM i) not possible

EXTRACT(HOUR FROM i) not possible

Operators not in SQL-92:

extract weekday from d (where d is

DATE)

WEEKDAY(d)

3.5.3 Microsoft Access

While SQL-92 supplies six temporal types (DATE, TIME, TIMESTAMP, TIME WITH

TIME ZONE, TIMESTAMP WITH TIME ZONE, and INTERVAL), Microsoft Access

supplies just one, Date/Time, which is similar to SQL-92's TIMESTAMP type. Ac-

cess Date/Time values are stored as an IEEE 8-byte �oating-point number, with the

integral portion denoting days since December 30, 1899, and the fractional portion

denoting fractions of a day, to a precision of eight decimal places, or equivalently, a

granularity of slightly less than one millisecond. The range is restricted to 1 C.E. to

9999 C.E.; dates before 1899 are represented with negative values.

Literals are delimited with `#', for example, #5/10/96#, which uses the �U.S. for-

mat� (month, day, year), even on international versions of Microsoft Windows.

To have the format depend on the locale, use DateValue. For example,
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The Hijri Calendar

The Hijri is an Islamic calendar based on lunar cy-

cles, with one year consisting of 12 (purely lu-

nar) months. It was �rst introduced in 638 C.E. by

Umar ibn Al-Khattab. The �rst day of this calendar,

Muharram 1 (New Year), 1 A.H. (�Anno Hegirae�)

corresponds to June 16, 622 C.E.

Since the Islamic calendar is purely lunar, as op-

posed to solar or lunar-solar, the Hijri year is shorter

than the Gregorian year by about 11 days. Also

contrary to most calendars, months in the Hijri year

are not related to seasons, which are themselves

tied to the solar cycle. Important Muslim festivals,

which always fall in the same Hijri month, may oc-

cur in different seasons. For example, the Hajj and

Ramadan can take place in the summer as well as

the winter. It is only over a roughly 33-year cy-

cle that lunar months resynchronize with the solar

year.

Interestingly, the start of a Hijri month is de�ned

not by an astronomical new moon, but rather by

an actual sighting of the crescent moon at a par-

ticular locale. This implies that a month will start at

different Gregorian times in different locales, and

indeed the start is affected by weather conditions

and various optical factors of the atmosphere.

DateValue(�5/10/96�) when evaluated in the U.S. will return the same date as

DateValue(�10/5/96�) when evaluated in the U.K.

In an effort to address the year 2000 problem, Access 2000 has a special interpre-

tation of two-digit years. #1/1/00# through #12/31/29# are interpreted as the dates

January 1, 2000, through December 31, 2029. #1/1/30# through #12/31/99# are in-

terpreted as the dates January 1, 1930, through December 31, 1999. Of course, this

just moves the year 2000 problem ahead 30 years, as well as invalidating previous

data from the �rst third of this century. More detail may be found in Section 3.6.5.

The format of a literal is speci�ed in a format property setting. Custom for-

mats may be speci�ed using some thirty-odd multicharacter symbols, such as �ww,�

which speci�es a number between 1 and 53 denoting the week of the year. The

format routine allows a format to be used once, for example, format("1/10/99",

"dd/mm/yy"). Prede�ned formats, set in the properties, may also be used within this

function, for example, format("1/10/99", "short date"). The Windows 95 system

settings (in �Regional Settings�) dictate the initial values for these format proper-

ties. The CDate( ) function takes a string and attempts to convert it into a date,

using context to determine which �elds are where in the string.

The equality and inequality predicates are available for Access Date/Times.

OVERLAP is not available.

Extraction of �elds is accomplished through a variety of functions, such as Day( )

and Second( ). There is also an extraction function, DatePart( ), for example,

DatePart("yyyy", [OrderDate]) would return a four-digit year.
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Intervals are simulated with two functions, DateAdd and DateDiff. DateAdd takes

a string expression specifying the interval granularity ("yyyy" denotes year, "q"

denotes quarter, "m" denotes month, "y" denotes day of year, "d" denotes day,

"w" denotes weekday, "ww" denotes week, "h" denotes hour, "m" denotes minute,

and "s" denotes second), a numeric expression (positive or negative) denoting the

number of granules, and a date to be shifted. As an example, DateAdd("d", 7,

#2/24/96#) yields the date March 2, 1996. Analogously, DateDiff takes the pa-

rameters of a string expression denoting the granularity, as well as two days, and

returns a long integer specifying the number of time intervals between these dates.

For example, DateDiff("d", #3/2/96#, #2/26/96#) evaluates to the value 7.

The weekday granularity depends on which day is considered the �rst day of

the week. Several of the functions, including DateDiff, take an optional parameter

specifying a particular day (1 = Sunday through 7 = Saturday, with Sunday being

the default). The week granularity depends on which week is considered the �rst

week of the year. Several of the functions take an optional parameter specifying

this detail (1 = start with the week in which January 1 occurs, 2 = start with the �rst

week that has at least four days in the year, 3 = start with the �rst full week of the

year, with 1 being the default).

Table 3.4 shows how the facilities in SQL-92 can be simulated, to some degree, in

Access. In the Access column, d denotes an Access Date/Time value and j denotes

an Access FLOAT, indicating a (fractional) count of Julian days.

3.5.4 Microsoft SQL Server

Microsoft SQL Server supplies two temporal data types, DATETIME and SMALL-

DATETIME, with precisions of 1/300 second and 1 minute, respectively. The range

of these two types is January 1, 1753 to December 31, 9999 for the DATETIME type,

and from January 1, 1900 to June 6, 2079 for the SMALLDATETIME type. A DATE-

TIME requires eight bytes, four bytes for the number of days since the base date

and four bytes for the time of day. A SMALLDATETIME requires only four bytes,

two bytes for the number of days since the base date and two bytes for the number

of minutes since midnight.

Intervals can be represented as SQL Server integers, of an integral number of

granules in the required granularity.

Table 3.5 shows how the facilities in SQL-92 can be simulated, to some degree,

in Microsoft SQL Server. In the SQL-92 column, d denotes a datetime value, `i '

an interval value, and n a numeric (exact or approximate) value. In the Microsoft

column, d denotes an SQL Server DATETIME value, and i denotes an SQL Server

integer representing an integral number of seconds.

Microsoft SQL Server automatically handles certain data type conversions; in

such cases, the convert function is optional. For example, when a character ex-

pression is compared with a DATETIME expression, the character expression is

implicitly converted to a DATETIME.
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Table 3.4 SQL-92 operations in Microsoft Access 2000.

SQL-92 Microsoft Access 2000 Equivalent

Types:

DATE Date/Time, ignoring the hour, minute,

and second �elds

TIME Date/Time, ignoring the century, year,

month, and day �elds

TIMESTAMP Date/Time

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH INTEGER (months)

INTERVAL DAY TO SECOND INTEGER (seconds) or FLOAT (days)

Literals:

DATE �1997-01-01� DateValue(�1997-01-01�) or

#1997-01-01#

TIME �12:34:56� TimeValue(�12:34:56�, �HH:MI:SS�)

or #12:34:56#

TIMESTAMP �1997-01-01 12:34:56� Format("1997-01-01 12:34:56",

"YYYY-MM-DD HH:NN:SS") or

#1997-01-01 12:34:56#

INTERVAL �3-4� YEAR TO MONTH 40 (months)

INTERVAL �1 23:45:12� DAY TO SECOND 171912 (seconds) or 1.9897222

(Julian days)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 j1 = j2

i1 < i2 j1 < j2

i1 <> i2 j1 <> j2

i1 BETWEEN i2 AND i3 j1 BETWEEN j2 AND j3

d IS NULL d IS NULL

i IS NULL j IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < DateAdd("m", j, d1)

Datetime Constructors:

d + i DateAdd("d",d, j)

i + d DateAdd("d",d, j)

d - i DateAdd("d",d, -j)

d AT i time zones not supported

d AT LOCAL time zones not supported

CURRENT DATE Date() The time part is set to 0

CURRENT TIME Time() The date part is set to 0

(i.e., December 31, 1899)

CURRENT TIMESTAMP Now()
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Table 3.4 (continued)

SQL-92 Microsoft Access 2000 Equivalent

Interval Constructors:

i1 + i2 j1 + j2

i1 - i2 j1 - j2

(d - d) qual d1 - d2 (result is a fractional number

of days)

d - d MONTH DateDiff("m", d2, d1) (result is an

integral number of months)

i * n j * n

n * i n * j

i1 / i2 Trunc(j1 / j2)

i / n Trunc(j / n)

+ i j

- i -j

Other Operators:

CAST(d AS DATE) DateValue(d) or Format(d,

"YYYY-MM-DD")

CAST(d AS TIME) TimeValue(d) or Format(d,

"HH:MI:SS")

CAST(d AS TIMESTAMP)

d is a DATE d

d is a TIME not possible

CAST(i AS INTERVAL YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY TO SECOND) not possible

CAST(d AS CHAR) Cstr(d)

CAST(i AS CHAR) Cstr(j)

CAST(i AS INTEGER)

i is DAY CLng(j)

i is HOUR CLng(j * 24)

i is MINUTE CLng(j * 1440)

i is SECOND CLng(j * 86400)

EXTRACT(DAY FROM d) Day(d)

EXTRACT(DAY FROM i) Day(j)

EXTRACT(HOUR FROM i) Hour(j)
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Table 3.5 SQL-92 operations in Microsoft SQL Server.

SQL-92 Microsoft SQL Server Equivalent

Types:

DATE DATETIME or SMALLDATETIME, ignoring the

hour, minute, and second �elds

TIME DATETIME or SMALLDATETIME, ignoring the

century, year, month, and day �elds

TIMESTAMP DATETIME (to second granularity)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH int (integral number of months)

INTERVAL DAY TO SECOND int (integral number of seconds)

Literals:

DATE �1997-01-01� convert(datetime,

"1997-01-01", 102)

TIME �12:34:56� "12:34:56" or convert(datetime,

"12:34:56")

TIMESTAMP �1997-01-01 12:34:56� "1997-01-01 12:34:56" or

convert(datetime,

"1997-01-01 12:34:56") or

convert(datetime,

"1997-01-01 12:34:56", 102)

INTERVAL �3-4� YEAR TO MONTH 40 (months)

INTERVAL �1 23:45:12� DAY TO

SECOND

171812 (seconds)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 i1 = i2

i1 < i2 i1 < i2

i1 <> i2 i1 <> i2

i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3

d IS NULL d IS NULL

i IS NULL i IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < dateadd(second,i,d1)

Datetime Constructors:

d + i dateadd(second, i, d)

i + d dateadd(second, i, d)

d - i dateadd(second, -i, d)

d AT i not supported

d AT LOCAL not supported
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Table 3.5 (continued)

SQL-92 Microsoft SQL Server Equivalent

Datetime Constructors, cont.:

CURRENT DATE convert (datetime,

(convert(char(3),

datename(month,getdate())) + " "

+ convert(char(2),

datename(day,getdate())) + ","

+ convert(char(4),

datename(year,getdate()))))

CURRENT TIME convert (datetime,

convert(char(2),

datename(hour,getdate())) + ":"

+ convert(char(2),

datename(minute,getdate())) + ":"

+ convert(char(2),

datename(second,getdate())))

CURRENT TIMESTAMP getdate()

Interval Constructors:

i1 + i2 i1 + i2

i1 - i2 i1 - i2

(d1 - d2) qual datediff(qual, d1, d2) (result is an

integral number at the indicated

granularity)

(d1 - d2) MONTH datediff(month, d1, d2)

i * n i * n

n * i n * i

i1 / i2 convert(int, i1 / i2)

i / n convert(int, i / n)

+ i i

- i - i

Other Operators:

CAST(d AS DATE) convert (datetime,

(convert(char(3),

datename(month,d)) + " "

+ convert(char(2),

datename(day,d)) + ","

+ convert(char(4),

datename(year,d))))

CAST(d AS TIME) convert (datetime,

convert(char(2),

datename(hour,d)) + ":"

+ convert(char(2),

datename(minute,d)) + ":"

+ convert(char(2),

datename(second,d)))
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Table 3.5 (continued)

SQL-92 Microsoft SQL Server Equivalent

Other Operators, cont.:

CAST(d AS TIMESTAMP)

d is a DATE d

d is a TIME convert (datetime,

(convert(char(3),

datename(month,getdate())) + " "

+ convert(char(2),

datename(day,getdate())) + ","

+ convert(char(4),

datename(year,getdate())) + " "

+ convert(char(2),

datename(hour,d)) + ":"

+ convert(char(2),

datename(minute,d)) + ":"

+ convert(char(2),

datename(second,d))))

CAST(i AS INTERVAL YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY TO SECOND) not possible

CAST(d AS CHAR) convert(char, d)

CAST(i AS CHAR) convert(char, i)

CAST(i AS INTEGER) i already an integer

EXTRACT(DAY FROM d) datename(day,d) (returns a string)

EXTRACT(DAY FROM i) convert(int, i/86400)

EXTRACT(HOUR FROM i) convert(int, i/3600)

3.5.5 Sybase SQLServer

Support for time in Sybase SQLServer is essentially identical to that of Microsoft SQL

Server because they started from the same code base. For details, see the discussion

on that system, in Section 3.5.4.

Table 3.6 shows how the facilities in SQL-92 can be simulated, to some degree, in

Sybase SQLServer. In the SQL-92 column, d denotes a datetime value, i an interval

value, and n a numeric (exact or approximate) value. In the Sybase SQLServer col-

umn, d denotes an SQLServer DATETIME value, and i denotes an SQLServer integer

representing an integral number of seconds.

3.5.6 Oracle8 Server

As with Access, Oracle8 Server provides but one temporal type, here called DATE.

An Oracle DATE comprises seven �elds, century, year, month, day, hour, minute,

and second, each as one byte. Oracle8 Server can store dates from January 1, 4712

B.C.E. (Julian Day 1) to December 31, 4712 C.E., while disallowing the nonexistent
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Table 3.6 SQL-92 operations in Sybase SQLServer.

SQL-92 Sybase SQLServer Equivalent

Types:

DATE DATETIME or SMALLDATETIME, ignoring the

hour, minute, and second �elds

TIME DATETIME or SMALLDATETIME, ignoring the

century, year, month, and day �elds

TIMESTAMP DATETIME (to second granularity)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH int (integral number of months)

INTERVAL DAY TO SECOND int (integral number of seconds)

Literals:

DATE �1997-01-01� convert(datetime, "1997-01-01", 105)

TIME �12:34:56� convert(datetime, "12:34:56")

TIMESTAMP �1997-01-01 12:34:56� convert(datetime,

"1997-01-01 12:34:56",105)

INTERVAL �3-4� YEAR TO MONTH 40 (months)

INTERVAL �1 23:45:12� DAY TO

SECOND

171812 (seconds)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d2 <= d1 AND d1 <= d3

i1 = i2 i1 = i2

i1 < i2 i1 < i2

i1 <> i2 i1 <> i2

i1 BETWEEN i2 AND i3 i2 <= i1 AND i1 <= i3

d IS NULL d IS NULL

i IS NULL i IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < dateadd(second,i,d1)

Datetime Constructors:

d + i dateadd(second,i,d)

i + d dateadd(second,i,d)

d - i dateadd(second,-i,d)

d AT i not supported

d AT LOCAL not supported

CURRENT DATE convert (datetime,

(convert(char(3),

datename(month,getdate())) + " "

+ convert(char(2),

datename(day,getdate())) + ","

+ convert(char(4),

datename(year,getdate()))))
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Table 3.6 (continued)

SQL-92 Sybase SQLServer Equivalent

Datetime Constructors, cont.:

CURRENT TIME convert (datetime, convert(char(2),

datename(hour,getdate())) + ":"

+ convert(char(2),

datename(minute,getdate())) + ":"

+ convert(char(2),

datename(second,getdate())))

CURRENT TIMESTAMP getdate()

Interval Constructors:

i1 + i2 i1 + i2

i1 - i2 i1 - i2

(d1 - d2) qual datediff(qual, d1, d2) (result is an

integral number at the indicated

granularity)

(d1 - d2) MONTH datediff(month, d1, d2)

i * n i * n

n * i n * i

i1 / i2 convert(int, i1 / i2)

i / n convert(int, i / n)

+ i i

- i - i

Other Operators:

CAST(d AS DATE) convert (datetime,

(convert(char(3),

datename(month,d)) + " "

+ convert(char(2),

datename(day,d)) + ","

+ convert(char(4),

datename(year,d))))

CAST(d AS TIME) convert (datetime,

convert(char(2),

datename(hour,d))+":"

+ convert(char(2),

datename(minute,d)) + ":"

+ convert(char(2),

datename(second,d)))

CAST(d AS TIMESTAMP)

d is a DATE d
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Table 3.6 (continued)

SQL-92 Sybase SQLServer Equivalent

Other Operators, cont.:

CAST(d AS TIMESTAMP)

d is a TIME convert (datetime,

(convert(char(3),

datename(month,getdate())) + " "

+ convert(char(2),

datename(day,getdate())) + ","

+ convert(char(4),

datename(year,getdate())) + " "

+ convert(char(2),

datename(hour,d)) + ":"

+ convert(char(2),

datename(minute,d)) + ":"

+ convert(char(2),

datename(second,d))))

CAST(i AS INTERVAL YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY TO SECOND) not possible

CAST(d AS CHAR) convert(char, d)

CAST(i AS CHAR) convert(char, i)

CAST(i AS INTEGER) i already an integer

EXTRACT(DAY FROM d) datename(day,d) (returns a string)

EXTRACT(DAY FROM i) convert(int, i/86400)

EXTRACT(HOUR FROM i) convert(int, i/3600)

year 0000. It is thus superior to SQL's TIMESTAMP type in permitting B.C.E. dates,

but is inferior in not permitting fractions of a second and in stopping about halfway

to the year 9999.

SQL-92's INTERVAL DAY can be simulated using Oracle NUMBER, which pro-

vides a day count. Smaller granularities can be partially simulated with fractional

days. NUMBER(12,5) is suf�cient for seconds; NUMBER(18,11) will support micro-

seconds. Both support the full range of 4700 years. It is not possible to simulate SQL-

92 year-month intervals, though subtraction to the months granularity is possible

via MONTHS BETWEEN. NEXT DAY gives the date of the next day of the week (speci�ed

as a character string such as �Monday�) after a speci�ed date value.

The predicates that Oracle8 Server supports on DATEs are `=', `<', `<=', `>', `>=',

`<>', and BETWEEN. These are based on the seven-byte internal representation

of dates. For not equals, Oracle8 Server also allows `!=', `� =', and `:=' (on some

systems).

Oracle dates can be converted to character strings via the TO CHAR function,

which takes as a second argument the format desired. SQL-92's CAST(value AS

CHARACTER) may thus be simulated with TO CHAR(value, �YYYY-MM-DD HH24:MI:SS�)

(HH24 requests military time, that is, a 24-hour clock). This format string is quite
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�exible, with over 30 options available. As an example, TO CHAR(value, �DY Month

DD, YYYY�) will produce a string looking like �THU July 24, 1997�. A third pa-

rameter to this function speci�es other aspects of the output, such as the lan-

guage, for example, TO CHAR(BirthDate, �Month DD, YYYY, HH12:MI A.M.�, �NLS

DATE LANGUAGE = American�).

The TO CHAR function can also extract individual �elds; for example,

TO CHAR(BirthDate, �MM�) returns the month. Finally, the Julian day number can

be computed via TO CHAR(BirthDate, �J�), returning an integer (2,440,588, for

January 1, 1970).

The TO DATE function produces a date value from a character string, via a format

string, for example, TO DATE(�January 15, 1989, 11:00 A.M.�, �Month DD, YYYY,

HH12:MI A.M.�). This function can also convert an integer (containing the Julian

number) to a date, for example, TO DATE(2440588, �J�). The Julian number iden-

ti�es a particular day, so the hour, minute, and second �elds are set to 0. There

seems to be no way to extract fractional days from an Oracle DATE, nor convert

fractional days to a DATE value. However, an Oracle (fractional) NUMBER, repre-

senting a day-time interval, can be added (or subtracted) from a DATE, yielding a

DATE.

Oracle8 Server provides a variety of other date functions. ADD MONTHS adds an

integer number of months to a DATE value. By using a negative integer, months can

be subtracted. GREATEST picks the latest date from a list of dates; LEAST is analogous.

LAST DAY returns the date of the last day of the month that the provided date is in.

The NEW TIME function allows you to shift a DATE from one speci�ed time zone

to another. The source and target time zones are three-character strings; only a few

time zones are supported. There seems to be no way within Oracle8 Server to �nd

out your own time zone.

The TRUNC function removes the hour, minute, and second �elds from a DATE

value, resulting in a day starting at midnight. TRUNC also accepts an optional

string parameter, specifying a �eld below which truncation should occur; for ex-

ample, TRUNC(BirthDate, �HH24�) would zero out the minute and second �elds.

An analogous ROUND function is also available for DATEs.

Finally, the current date and time is returned by SYSDATE.

Table 3.7 shows how the facilities in SQL-92 can be simulated, to some degree,

in Oracle8 Server. In the SQL-92 column, d denotes a datetime value, i an interval

value, and n a numeric (exact or approximate) value. In the Oracle8 Server column,

d denotes an Oracle DATE value and j denotes an Oracle NUMBER representing

Julian days.

So, how did Jim Barnett represent instants and intervals in the FINDER schema?

Well, for the most part he used Oracle DATEs. In fact, in the resulting schema one

of every �ve columns is a DATE column. The fundamental distinction between in-

stants and intervals is hidden in the Oracle schema; column names and comments
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Table 3.7 SQL-92 operations in Oracle8 Server.

SQL-92 Oracle8 Server Equivalent

Types:

DATE DATE, ignoring the hour, minute, and

second �elds

TIME DATE, ignoring the century, year, month,

and day �elds

TIMESTAMP DATE (to second granularity)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH no equivalent

INTERVAL DAY TO SECOND NUMBER(12, 5)

Literals:

DATE �1997-01-01� TO DATE(�1997-01-01�, �YYYY-MM-DD�)

TIME �12:34:56� TO DATE(�12:34:56�, �HH24:MI:SS�)

TIMESTAMP �1997-01-01 12:34:56� TO DATE(�1997-01-01 12:34:56�,

�YYYY-MM-DD HH24:MI:SS�)

INTERVAL �3-4� YEAR TO MONTH not possible

INTERVAL �1 23:45:12� DAY TO

SECOND

TO NUMBER(SUBSTR(�1 23:45:12�,

1,LENGTH(�1 23:45:12�)-9))

+ TO NUMBER(SUBSTR(�1 23:45:12�,

LENGTH(�1 23:45:12�)-7,2))/24

+ TO NUMBER(SUBSTR(�1 23:45:12�,

LENGTH(�1 23:45:12�)-4,2))/1440

+ TO NUMBER(SUBSTR(�1 23:45:12�,

LENGTH(�1 23:45:12�)-1,2))/86400

(result is a fractional Julian day)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 j1 = j2

i1 < i2 j1 < j2

i1 <> i2 j1 <> j2

i1 BETWEEN i2 AND i3 j1 BETWEEN j2 AND j3

d IS NULL d IS NULL

i IS NULL j IS NULL

(d1, i) OVERLAPS (d3, d4) d1 < d4 AND d3 < (d1 + j)

Datetime Constructors:

d + i d + j, ADD MONTHS(d, j)

i + d j + d, ADD MONTHS(d, j)

d - i d - j, ADD MONTHS(d, -j)

d AT i not supported

d AT LOCAL not supported
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Table 3.7 (continued)

SQL-92 Oracle8 Server Equivalent

Datetime Constructors, cont.:

CURRENT DATE TRUNC(SYSDATE)

CURRENT TIME TO DATE(

TO CHAR(SYSDATE, �HH24:MI:SS�),

�HH24:MI:SS�)

CURRENT TIMESTAMP SYSDATE

Interval Constructors:

i1 + i2 j1 + j2

i1 - i2 j1 - j2

(d1 - d2) qual d1 - d2 (result is a (fractional) Julian

number)

(d1 - d2) MONTH MONTHS BETWEEN(d1, d2) (result is a

(fractional) number of months)

i * n j * n

n * i n * j

i1 / i2 j1 / j2

i / n j / n

+ i + j

- i - j

Other Operators:

CAST(d AS DATE) TRUNC(d)

CAST(d AS TIME) TO DATE(TO CHAR(d, �HH24:MI:SS�),

�HH24:MI:SS�)

CAST(d AS TIMESTAMP)

d is a DATE TRUNC(d)

d is a TIME TRUNC(SYSDATE)+(d-TRUNC(d))

CAST(i AS INTERVAL YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY TO SECOND) j

CAST(d AS CHAR) TO CHAR(d,

�YYYY-MM-DD� k � HH24:MI:SS�)

CAST(i AS CHAR) TRUNC(j, 0) k TO CHAR(j

+ TO DATE(1, �J�), � HH24:MI:SS�)

CAST(i AS INTEGER)

i is DAY TRUNC(j, 0)

i is HOUR TRUNC(j * 24, 0)

i is MINUTE TRUNC(j * 1440, 0)

i is SECOND TRUNC(j * 86400, 0)

EXTRACT(DAY FROM d) TRUNC(d, �DD�) - TRUNC(d,�MM�) + 1

EXTRACT(DAY FROM i) TRUNC(j,0)

EXTRACT(HOUR FROM i) TRUNC(j*24, 0) - (TRUNC(j,0)*24)
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Table 3.7 (continued)

SQL-92 Oracle8 Server Equivalent

Operators not in SQL-92:

convert d to Julian day TO CHAR(d, �J�)

convert Julian day n to DATE n + TO DATE(1, �J�)

pick the earliest date LEAST(d1, . . ., dn)

pick the latest date GREATEST(d1, . . ., dn)

pick the last day of the month LAST DAY(d)

get the next day of the week NEXT DAY(d, �Monday�)

are necessary to highlight these differences. So a Start Time is an instant, but an

Incrmnt Time is an interval (the comment states that the �Increment Time is taken

in reference to the start of the period�).

Intervals were represented with numerics. The Time String In Hole column of

the Well Log Service table is of type NUMBER(8,2); the granularity must be in-

ferred from other information. For example, the comment for the Sample Interval

column of the Seis Trace Hdr table speci�es �sampling interval in milliseconds.�

When he needed more control over the granularity, Jim found that Oracle was of

little help. Most of these values were expressed as a pair of columns. Although the

Start Time is a DATE, thereby utilizing a possible granularity of seconds, the In-

crmnt Time is a NUMBER(7,2) column, coupled with an Incrmnt Time Unit column,

of type VARCHAR(12). The Well Test Hdr table speci�es the Start Time, with the

Well Test Incrmnt providing a speci�c observation (ordered by the Incrmnt Obs No

column). Consider though how you would calculate in SQL the starting time of

a particular observation. The Incrmnt Time is a fractional number of units, which

must be multiplied by the size of the unit, determined from the name of that unit,

then added to the Start Time. This calculation must be done in terms of fractional

days, so it is important that the size of the units are stored in that manner (Oracle8

Server will blithely permit this calculation without this requirement being satis�ed,

with incorrect results).

3.5.7 UniSQL

UniSQL supports the DATE, TIME, and TIMESTAMP data types. TIMESTAMPs are

constrained to a granularity of a second; their range is only January 1, 1970 through

03:14:07 January 19, 2038. TIMEs also are to a granularity of one second. Sub-

tracting two dates yields an integral number of days; subtracting two TIME or

TIMESTAMP values will yield an integral number of seconds.

Table 3.8 shows how the facilities in SQL-92 can be simulated, to some degree,

in UniSQL. In the SQL-92 column, d denotes a datetime value, i an interval value,
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The Start of the Millennium

Given that there is no 0 A.D. (see page 27), the

issue is then raised of when the millennium starts,

2000 A.D. or 2001 A.D. Those of a more mathemat-

ical constitution generally insist on the latter, an ex-

ample being the Royal Greenwich Observatory in

Cambridge, England, as reported in the New York

Times on December 8, 1996. Pop culture clearly

sides with the former; we can effectively argue that

the millennium has already arrived months before

the end of 2000 A.D. But in that case, the �rst mil-

lennium was but 999 years long, thereby belying its

etymological basis (�one thousand years,� in Latin,

see page 86), and raising the questions of how long

is a century, or even a decade? Stephen Jay Gould

is unapologetic on this�it is clear his sentiments lie

with the solution that a (nay, every) millennium is

10 centuries long, a century consists of 10 decades,

and all decades are 10 years, save the �rst, which

was but 9 years in length, thus, by incontrovert-

ible logic, the �rst century contained 99 years and

the �rst millennium (but thankfully, not the present

one) comprised 999 years.

and n a numeric (exact or approximate) value. In the UniSQL column, d denotes a

UniSQL TIMESTAMP value (to the granularity of seconds), and i denotes a UniSQL

INTEGER representing an integral number of granules (seconds).

3.6 THE YEAR 2000 PROBLEM*

(We remind you that the asterisk in this section heading�and in some later section

headings�indicates advanced material that may be skipped on a �rst reading.)

The year 2000 problem has often been abbreviated to the �Y2K problem� by

those who love acronyms, and termed the �Millennium Bug� by those who want a

more catchy name. The problem involves software that stores dates using only two

digits for the year. That raises the issue of determining what the year 00 denotes. If

it denotes 2000, then everything will generally be �ne when that year arrives. On

the other hand, if it denotes 1900, then all manner of dif�culties will arise. A phone

call that starts the night of December 31, 1999, and extends a little past midnight,

could be charged for 100 years of air time, resulting in a horrendous bill. A bill due

in December 1999 but not paid until the next month could result in an interest fee

of gigantic proportions. Or the software might just fail, freezing bank accounts and

leaving �ight controllers with no information on their tracking screens. Indeed,

consumers are already being affected. The expiration date on Mastercard and Visa

credit and debit cards is listed as MM/YY. Recently, cards were issued with an expi-

ration date of 01/00, and these cards are being denied, as having expired some 98

years ago. While the larger authorization centers have updated their software, some

smaller authorization centers still cannot accept those cards (as of June 1998).
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Table 3.8 SQL-92 operations in UniSQL.

SQL-92 UniSQL Equivalent

Types:

DATE DATE

TIME TIME

TIMESTAMP TIMESTAMP (to second granularity)

TIME WITH TIME ZONE no equivalent

TIMESTAMP WITH TIME ZONE no equivalent

INTERVAL YEAR TO MONTH no equivalent

INTERVAL DAY TO SECOND INTEGER (integer number of seconds or

days)

Literals:

DATE �1997-01-01� DATE �01/01/1997�

TIME �12:34:56� TIME �12:34:56�

TIMESTAMP �1997-01-01 12:34:56� TIMESTAMP �01/01/1997 12:34:56�

INTERVAL �3-4� YEAR TO MONTH not possible

INTERVAL �1 23:45:12� DAY TO SECOND 171812 (seconds)

Predicates:

d1 = d2 d1 = d2

d1 < d2 d1 < d2

d1 <> d2 d1 <> d2

d1 BETWEEN d2 AND d3 d1 BETWEEN d2 AND d3

i1 = i2 i1 = i2

i1 < i2 i1 < i2

i1 <> i2 i1 <> i2

i1 BETWEEN i2 AND i3 i1 BETWEEN i2 AND i3

d IS NULL d IS NULL

i IS NULL i IS NULL

(d1, i) OVERLAPS (d2, d3) d1 < d3 AND d2 < d1 + i

Datetime Constructors:

d + i d + i

i + d i + d

d - i d - i

d AT i not supported

d AT LOCAL not supported

CURRENT DATE not supported

CURRENT TIME not supported

CURRENT TIMESTAMP not supported

Interval Constructors:

i1 + i2 i1 + i2

i1 - i2 i1 - i2

(d1 - d2) qual d1 - d2 (result is an integer number at

the indicated granularity)

(d1 - d2) MONTH not possible
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Table 3.8 (continued)

SQL-92 UniSQL Equivalent

Interval Constructors (cont.):

i * n i * n

n * i n * i

i1 / i2 j1 / j2

i / n j / n

+ i i

- i - i

Other Operators:

CAST(d AS DATE) CAST(d AS DATE)

CAST(d AS TIME) CAST(d AS TIME)

CAST(d AS TIMESTAMP) CAST(d AS TIMESTAMP)

CAST(i AS INTERVAL YEAR TO MONTH) not possible

CAST(i AS INTERVAL DAY TO SECOND) i

CAST(d AS CHAR) CAST(d AS CHAR)

CAST(i AS CHAR) CAST(i AS CHAR)

CAST(i AS INTEGER) i already an integer

EXTRACT(DAY FROM d) EXTRACT(DAY FROM d)

EXTRACT(DAY FROM i) not possible

EXTRACT(HOUR FROM i) not possible

The year 2000 problem is a

speci�c instance of a more

general problem of an (often

unstated) assumption that will

be invalidated purely by the

course of time.

The year 2000 problem is but one instance of a more gen-

eral problem, that of making assumptions that are invalidated

purely by the course of time. Here, the assumption was that two

digits suf�ce for the year, which is a valid assumption if all the

information is contained in a single century. Indeed, one digit

suf�ces if the information is contained in a particular decade.

What has captured the imagination of the public and the press

about the year 2000 problem is due to four factors:

1. The underlying assumption was made, sometimes implicitly, in so many

software systems.

2. The problem was ignored until (almost) too late, despite being recognized for

decades: the 1965 Multics system used a 71-bit microsecond representation.

3. The assumption is invalidated at exactly the same time (well, within a single

24-hour period) for these systems.

4. The systems involved are generally legacy systems, with underlying source code

a much-modi�ed mess, or worse, simply unavailable.
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These factors conspire to make �xing the problem exceedingly expensive, yet the

third factor imposes an unavoidable deadline for coming up with an acceptable

solution, with often disastrous consequences if this deadline is not met. The classic

movie High Noon comes to mind, with Gary Cooper in almost every scene glancing

at that pendulum clock inexorably ticking away the minutes. I, as author of this

book, which contains material on the Y2K problem, am similarly constrained by

this approaching deadline.

The year 2000 problem may be found in hardware, speci�cally physical clocks,

and all manner of software, from programming languages to operating systems,

from DBMSs to applications. As the present book considers time-varying applica-

tions and SQL, we will limit our discussion to those topics. In particular, we will

eschew discussion of the extremely important and challenging task of identifying,

repairing, and testing legacy code. At the same time, we will examine the phe-

nomenon more generally, by highlighting time-dependent assumptions that involve

both the year 2000 and other dates. As we will emphasize, it is effectively impossi-

ble to completely avoid these problems, but we can minimize them, and be aware

of those that are present.

3.6.1 Year 2000 Compliance and Certi�cation

Each organization must develop its own de�nition of compliance, termed �year

2000 compliance,� or in the general case, �century compliance.� The following lan-

guage is recommended by the Chief Information Of�cers Council Sub-Committee

on the Year 2000 for voluntary use by federal agencies in their solicitations and

contracts for year 2000 compliant products.

The contractor warrants that each hardware, software, and �rmware product de-
livered under this contract and listed below shall be able to accurately process
date/time data (including, but not limited to, calculating, comparing, and se-
quencing) from, into, and between the twentieth and twenty-�rst centuries, and
the years 1999 and 2000 and leap year calculations to the extent that other infor-
mation technology, used in combination with the information technology being
acquired, properly exchanges date/time data with it.

Year 2000 certi�cation is de�ned by Mitre as �a measure of assurance by a des-

ignated Y2K authority (or their representative), that an item is operationally ready.

Any company working toward Year 2000 compliance must ultimately be concerned

with Year 2000 certi�cation.�

For database products, vendors generally certify, viewing themselves as a Y2K

authority, that their products are (or are not) year 2000 compliant, generally based

on their speci�c de�nition of year 2000 compliance.

To address the problem of two-digit dates, vendors generally de�ne a �window�

of 100 years within which a two-digit date is interpreted. This interpretation is

often called the �implied century rule.� The window is sometimes dependent on

when the date is interpreted. In many cases, the window is xx00�xx99, meaning
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that a two-digit date is interpreted as being in the current century. So, 34 would

then be interpreted in 1998 as 1934, and in 2001 as 2034; the window jumped in

the year 2000. The year 2000 problem can be rephrased as the �window ending at

99 and jumping at 00 problem,� in that the window goes from 1900 to 1999, and

jumps to the next century (2000�2099) in the year 2000. Products vary on where

this window is located and when it jumps (in the best scenario, the jump and the

window boundary should be far apart).

It would have been to the consumer's bene�t for vendors to come up with a

common approach to the year 2000 problem: specify a common window, specify

a common jump point, and specify a common mechanism to ensure backward

compatibility. Vendors in their wisdom have taken exactly the opposite tack: every

approach is unique. Would it be cynical to think that this is intentional?

Two-digit dates, and indeed, any �nite representation, imply that eventually the

range will be exhausted, and some kind of discontinuity will result. All that

the windowing approaches do is delay the discontinuity at the jumps. In scanning

the various extant DBMSs, we see dif�culties with the years 2000, 2030, 2050, 2079,

2100, 4712, and 10,000. This implies that programmers will be kept busy both �x-

ing applications as these notable years approach and converting applications from

one DBMS to another that takes a different approach.

3.6.2 SQL-92

SQL-92 DATEs and TIMESTAMPs both use four digits to represent the year. Appli-

cations using this standard are �ne until the year 9999 C.E., and thus exhibit the

�year 10,000 problem,� but are fortunately not affected by the year 2000 transition.

As will be discussed in the following section, an SQL-92 TIME value is actually a

funny kind of interval. An alternative characterization is that TIME has a midnight

problem: its meaning changes every midnight. In the above terminology, a TIME

value has a window of 24 hours (from midnight to midnight) and a jump time of

midnight.

Concerning leap years, the question could be phrased several ways.

� �Is the value of DATE �2000-02-29� valid?� The standard states �Within the de�-

nition of a hdatetime literali, the hdatetime valueis are constrained by the natural

rules for dates and times according to the Gregorian calendar� [44, p. 75]. As the

contribution of the namesake of this calendar, Pope Gregory XIII, was to specify

that century years not divisible by 400 would no longer be leap years, this clearly

indicates that the �natural rules� would consider the year 2000 to be a leap year.

� �Is (DATE �2000-03-01� - DATE �2000-02-01�) DAY the value 29 days?� The SQL-

92 standard speci�es datetime subtraction as �a) A [here, DATE �2000-03-1�]

and B [here, DATE �2000-02-1�] are converted to integer scalars A2 and B2, re-

spectively, in units Y [here, DAY] as displacements from some implementation-
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dependent start datetime. b) The result is determined by effectively computing

A2�B2. . . � [44, p. 137]. Is this year 2000 compliant? It all depends on what is

meant by the word �converted.� Jim Melton has told me that those on the stan-

dards committee would agree that the value 29 is correct and intended, but I

counter that the standard itself should be unambiguous and clear, especially on

such an important question.

� �Is DATE �2000-03-01� - INTERVAL �29� DAY the value DATE �2000-02-01�?� The

SQL-92 standard speci�es such expressions as �Arithmetic is performed so as to

maintain the integrity of the datetime data type that is the result of the hdatetime

value expressioni. This may involve carry from or to the immediately next more

signi�cant hdatetime �eldi� [44, p. 133]. Here, we are concerned about the carry

from the DAY �eld to the MONTH �eld. Presumably the �integrity of the date-

time data type� refers back to the de�nition of a DATE literal, which we saw

above treats the year 2000 as a leap year.

My conclusion: since the conversion for date difference is not explicitly spelled out,

we don't know that the conversion will treat the year 2000 as a leap year, and so the

SQL-92 standard should not be considered year 2000 compliant.

What should programmers do to ensure that new code being written does not

exhibit the year 2000 problem? Quite simply, use four-digit years, as the SQL-92

standard mandates. Of course, this aphorism ignores the requirement that new

code work with and indeed be compatible with existing legacy programs, which

might themselves use only two-digit years. As Mark Haselkorn said in an interview

published in the February 1998 issue of the Institute of the IEEE:

Y2K is not about hardware, �rmware and operating software (platforms). It is not
even about application software and even data. It is not even about users, orga-
nizations, economies and nations�it's about all of them together. You cannot
change your computer to a Y2K-safe one and think you have �xed the problem.
You still have software that runs on it and, more importantly, data you have
accumulated that has great value to you that must be part of the �x.

With that chastening fresh on our mind, we now turn to speci�c DBMS products.

A critical disclaimer: these products and their level of compliance are highly �uid,

with new techniques being developed daily to achieve compliance. The remarks

below re�ect the situation as this is being written, in June 1998. This material will

surely be somewhat out of date when it appears in print. You are urged to contact

your vendor for information on year 2000 compliance.

3.6.3 IBM DB2 Universal Database

IBM DB2 UDB DATEs and TIMESTAMPs both use four-digit years, and so are year

2000 compliant. The year 2000 is considered a leap year by DB2 UDB.

� DATE(�2000-02-29�) is a valid DB2 UDB DATE.
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� DATE(�2000-02-01�) + 1 MONTH yields March 1, 2000.

� DATE(�2000-03-01�) - 1 MONTH yields February 1, 2000.

� DATE(�2000-02-01�) + 00000100. yields March 1, 2000.

� DATE(�2000-03-01�) - 00000100. yields February 1, 2000.

� DATE(�2000-02-28�) + 1 DAY yields February 29, 2000.

� DATE(�2000-03-01�) - 1 DAY yields February 29, 2000.

3.6.4 Informix

Informix de�nes �year 2000 compliant� as

. . . the use or occurrence of the dates on or after January 1, 2000, will not ad-
versely affect the performance of the Informix products with respect to four-digit
data dependent data or the ability of such products to correctly create, store,
process, and output information related to such date data.

The internal formats of Informix DATE and DATETIME data types both support

four digits for the year.

For two-digit input of dates, Informix has added the DBCENTURY environ-

ment variable. There are four values for this environment variable: past (`P'), fu-

ture (`F'), closest (`C'), and present (`R'). If no value is speci�ed, the default is

present semantics. Of course, this environment variable is not used if four digits

are supplied.

� Present semantics (`R') The present century provides the window. The window

is 00�99 and the jump date is the end of the century.

DATE("1-1-1") when entered on June 22, 1998, evaluates to January 1, 1901.

When entered in 2002, this literal evaluates to January 1, 2001.

� Past semantics (`P') The past and present centuries provide two windows and

produce two expanded date values. The one that is prior to the current date is

chosen. If both dates are prior to the current date, the date that is closest to the

current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1899 and

January 1, 1999; January 1, 1899 is chosen. When entered in 2002, this literal

evaluates to January 1, 1999. DATE("1-1-97") when entered on June 22, 1998,

produces January 1, 1897 and January 1, 1997; January 1, 1997 is chosen. While

seemingly only two years before DATE("1-1-99"), the resulting four-digit date is

98 years later. When entered in 2002, DATE("1-1-97") evaluates to January 1,

1997.

In our terminology, the window is the preceding 100 years (for a current date of

June 22, 1998, the window extends from June 21, 1898 to June 21, 1998) and

the jump date is each day (though the window only moves forward one day).

DATE("6-22-98") will evaluate to June 22, 1898, exactly 100 years ago today;

tomorrow that same literal will evaluate to June 22, 1998.
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� Future semantics (`F') The present and future centuries provide two windows

and produce two expanded date values. The one that is after the current date

is chosen. If both dates are after the current date, the date that is closest to the

current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1999 and

January 1, 2099; January 1, 1999 is chosen. When entered in 2002, this literal

evaluates to January 1, 2099. DATE("1-1-97") when entered on June 22, 1998,

produces January 1, 1997 and January 1, 2097; January 1, 2097 is chosen. As

before, while this literal seems to be only two years before DATE("1-1-99"), the

resulting four-digit date is 98 years later. When entered in 2002, DATE("1-1-97")

evaluates to January 1, 2097.

The window is the following 100 years (for a current date of June 22, 1998, the

window extends from June 23, 1998 to June 22, 2098) and the jump date is each

day. DATE("6-22-98") will evaluate to June 22, 2098, exactly 100 years in the

future; tomorrow that same literal will evaluate to June 22, 1998.

� Closest semantics (`C') The past, present, and future centuries provide three

windows and produce three expanded date values. The one that is closest to the

current date is chosen.

DATE("1-1-99") when entered on June 22, 1998, produces January 1, 1899, Jan-

uary 1, 1999, and January 1, 2099 as candidates; January 1, 1999 is chosen.When

entered in 2002, this literal evaluates to January 1, 1999. DATE("1-1-97") when

entered on June 22, 1998, produces January 1, 1897, January 1, 1997, and Jan-

uary 1, 2097 as candidates; January 1, 1997 is chosen. Unlike with the other

semantics, this literal seems to be only two years before DATE("1-1-99"), and in

fact the resulting four-digit date is also two years earlier. When entered in 2002,

DATE("1-1-97") evaluates to January 1, 1997.

There is still anomalous behavior with this semantics; it is just distant in time.

DATE("1-1-48") when entered on June 22, 1998, evaluates to January 1, 2048.

DATE("1-1-49"), seemingly one year later, evaluates to January 1, 1949.

The window is the 100 years centered on the current date (for a current date of

June 22, 1998, the window extends from June 22, 1948 to June 22, 2048) and the

jump date is each day. Actually, this brings up a slight unspeci�cation of closest

semantics. Because 2000 is a leap year, any 100-year window between 1900 and

2100 will contain an odd number of days (36,525); hence, there will be a (single)

closest value. However, when the present date is after the year 2100, the current

window will contain an even number of days (36,524), and there may occur two

potential dates equidistant from the current date. As an example, if the current

date is January 1, 2105, the current semantics provides for the value DATE("1-

1-55") January 1, 2055, January 1, 2155, and January 1, 2255. The last date is

certainly out of consideration, but the �rst two are exactly 18,262 days from

the current date, and so neither is preferred (or worse, both are preferred). We
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simply don't know which date will be returned when this literal is evaluated on

that date.

It seems that the closest semantics provides the most intuitive behavior, in that the

anomalies occur with distant dates.

The year 2000 is considered a leap year by Informix.

� DATE("2/29/2000") is a valid SQLServer DATETIME.

� DATE("3/1/2000") - DATE("2/1/2000") yields 29 days.

� DATE("2/28/2000") + INTERVAL(1) DAY yields February 29, 2000.

� DATE("3/1/2000") - INTERVAL(1) DAY yields February 29, 2000.

3.6.5 Microsoft Access

Microsoft's de�nition of year 2000 compliance is as follows:

A Year 2000 Compliant product fromMicrosoft will not produce errors processing
date data in connection with the year change from December 31, 1999 to January
1, 2000 when used with accurate date data in accordance with its documentation
and the recommendations and exceptions set forth in the Microsoft Year 2000
Product Guide, provided all other products (e.g., other software, �rmware and
hardware) used with it properly exchange date data with the Microsoft product.
A Year 2000 Compliant product from Microsoft will recognize the Year 2000 as a
leap year.

Microsoft classi�es its products into �ve categories.

� Compliant The product fully meets Microsoft's standard of compliance. May

have prerequisite patch or service pack for compliance.

� Compliant with minor issues The product meets Microsoft's standard of

compliance with some disclosed exceptions that constitute minor date issues.

� Not compliant The product does not meet Microsoft's standard of compliance.

� Testing yet to be completed Product test is not yet complete or has not

started but will be tested.

� Will not test The product will not be tested for compliance.

Microsoft considers both Access 95 and Access 97 to be year 2000 compliant, in

terms of the above de�nition.

Access Date/Time values have a range of 9899 years (100 A.D. to 9999 A.D.).

However, Access 95 and Access 97 differ on the interpretation of two-digit dates.

Access 95 by default allows two-digit and four-digit years on input. The user can

de�ne formats, via an input mask. Included in the prede�ned formats is a Short

Date format, which forces users to enter dates in a two-digit year format.

Parsing of dates is controlled by the OLEAUT32.DLL �le in the system folder. The

interpretation of the two-digit dates depends on the version of this �le.
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For version 2.20.4048 and lower, two-digit dates are considered to be in the same

century. Hence, DateValue(�01/01/00�) will be interpreted as January 1, 1900.

For version 2.20.2049 and higher, dates 1/1/00 through 12/31/29 are inter-

preted as being in the next century. So these dates would be interpreted in 1998

as 1/1/2000 through 12/31/2029. Dates 1/1/30 through 12/31/99 are interpreted

in the current century, so would be interpreted in 1998 as 1/1/1930 through

12/31/1999. Effectively, this delays the year 2000 problem until the year 2030.

For Access 97, there is only one possible interpretation: the window is from year

30 of this century to year 29 of the next century, and shifts at the year 2000.

The year 2000 is considered a leap year by Access.

� DateValue(�2000-02-29�) is a valid Access Date/Time.

� DateValue(�2000-03-01�) - DateValue(�2000-02-01�) yields 29 days.

� DateAdd("m", DateValue(�2000-02-01�), 1) yields March 1, 2000.

� DateAdd("m", DateValue(�2000-03-01�), -1) yields February 1, 2000.

� DateAdd("d", DateValue(�2000-02-28�), 1) yields February 29, 2000.

� DateAdd("d", DateValue(�2000-03-01�), -1) yields February 29, 2000.

3.6.6 Microsoft SQL Server

Microsoft considers SQL Server 6.5 and 7.0 to be year 2000 compliant.

Microsoft SQL Server supports two temporal data types, DATETIME, with a range

of 1753 to 9999, and SMALLDATETIME, with a range of January 1, 1900 to June 6,

2079. Either data type allows you to specify only the last two digits of the year, with

values less than 50 interpreted as 20yy (e.g., 17 is interpreted as 2017) and values

greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957). Put another

way, the window starts at 1950 and is �xed, representing a �year 2050 problem,� as

well as a �year 2079 problem,� beyond which SMALLDATETIMEs are not de�ned.

Concerning the year 2000 being considered a leap year, several bugs in this

regard were �xed in Service Packs 2 and 5 of SQL Server 6.5.

� CONVERT(DATETIME, "2000-02-29", 102) is a valid SQL Server DATETIME.

� DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102), CONVERT(DATETIME,

"2000-03-01", 102)) yields 29 days.

� DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields March 1,

2000.

� DateAdd(month, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields

February 1, 2000.

� DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields

February 29, 2000.

� DateAdd(day, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields

February 29, 2000.
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3.6.7 Sybase SQLServer

Sybase's de�nition of �century compliant� is as follows:

� �General Integrity: No value for the current date will interrupt normal opera-
tion: the system returns the correct date accurate to century in response to a
request for current date, and the software is unaffected by any value returned.�

� �Date Integrity: Correct results are returned in the operation of all legal and
calendar operations of dates that span century marks within the range of the
software.�

� �Explicit Century: The software's internal date storage format explicitly in-
cludes the century and reporting formats allow date representation in the full
century format.�

� �Implicit Century: On encountering data that does not include the century
either from transaction input or from an external data source, the century
value is unambiguously inferred by the software.�

Under this de�nition, Sybase considers SQLServer to be century compliant.

Sybase SQLServer supports two temporal data types, DATETIME, with a range

of 1753 to 9999, and SMALLDATETIME, with a range of January 1, 1900 to June 6,

2079. Either data type allows you to specify only the last two digits of the year, with

values less than 50 interpreted as 20yy (e.g., 17 is interpreted as 2017) and values

greater than 50 interpreted as 19yy (e.g., 57 is interpreted as 1957). Put another

way, the window starts at 1950 and is �xed, representing a �year 2050 problem,� as

well as a �year 2079 problem,� beyond which SMALLDATETIMEs are not de�ned.

The year 2000 is considered a leap year by Sybase SQLServer.

� CONVERT(DATETIME, "2000-02-29", 102) is a valid SQLServer DATETIME.

� DateDiff(day, CONVERT(DATETIME, "2000-02-01", 102), CONVERT(DATETIME,

"2000-03-01", 102)) yields 29 days.

� DateAdd(month, 1, CONVERT(DATETIME, "2000-02-01", 102)) yields March 1,

2000.

� DateAdd(month, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields February

1, 2000.

� DateAdd(day, 1, CONVERT(DATETIME, "2000-02-28", 102)) yields February

29, 2000.

� DateAdd(day, -1, CONVERT(DATETIME, "2000-03-01", 102)) yields February

29, 2000.

3.6.8 Oracle8 Server

The Oracle8 Server supports the DATE type, which includes a four-digit year, and so

accommodates the year 2000. However, Oracle8 Server can store a maximum year

of 4712; this raises the impending �year 4712 problem.�

Oracle's TO DATE function takes two strings, a value string and a format string.

Applications using YYYY in the format string are safe; applications using only two
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digits (e.g., a format string of �YY-MM-DD�) will need to be examined, as the func-

tion will interpret such value strings as being in the current century. For example,

TO DATE(�450123�, �YYMMDD�) when evaluated today (June 19, 1998) returns the

value denoting January 23, 1945. This means that TO DATE(�000101�, �YYMMDD�)

will evaluate to January 1, 1900.

For such applications, the Oracle7 Server and the Oracle8 Server provide a special

year format mask, RR. Values with years between 0 and 49 that are stored in 1998

with the RR format are interpreted to be in the twenty-�rst century; for example,

TO DATE(�000101�, �RRMMDD�) will evaluate to January 1, 2000. This format still

experiences a shift in semantics at the millennium. Say in 1998 an application

attempts to store a future date of 2051, using a value string of �550101� and a

format of RR. This will be interpreted as 1955. Two years later, that same value

string will be interpreted as 2055. This raises a �year 2050 problem.�

Summarizing, the YY format uses centuries (years having the same �rst two digits

are in the same century) as both the window and the window transition. The RR

format has a window starting at year 50 and going to year 49, with the window

transition occurring at year 0 of the century.

The year 2000 is considered a leap year by Oracle8 Server.

� TO DATE(�2000-02-29�, �YYYY-MM-DD�) is a valid Oracle DATE.

� TO DATE(�2000-03-01�, �YYYY-MM-DD�) - TO DATE(�2000-02-01�,

�YYYY-MM-DD�) yields 29 Julian days.

� ADD MONTHS(TO DATE(�2000-02-01�, �YYYY-MM-DD�), 1) yields March 1, 2000.

� ADD MONTHS(TO DATE(�2000-03-01�, �YYYY-MM-DD�), -1) yields

February 1, 2000.

� ADD DAYS(TO DATE(�2000-02-28�, �YYYY-MM-DD�), 1) yields February 29, 2000.

� ADD DAYS(TO DATE(�2000-03-01�, �YYYY-MM-DD�), -1) yields

February 29, 2000.

3.7 SUBTLETIES*

It is critical that the limitations and subtle rami�cations of the representation of in-

stants provided by the DBMS be understood. As we'll see, the meaning of a temporal

value is somewhat arbitrary, with the application providing some of the semantics.

3.7.1 Datetimes

While an instant is, well, instantaneous, SQL and all DBMSs assume a discrete time

line of various granularities, such as second, day, and year, and indicate only the

particular granule in which the instant is located. The event of an individual well

sample extraction occurred at a speci�c instant, but we may care to record only the
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B.C., A.D., B.C.E., C.E., and B.P.

The prevailing system before the use of B.C.�A.D.,

at least in the Western world, was A.U.C. (ab urbe

condita, literally, �from the foundation of the city,�

which, being in Latin, of course meant Rome).

Dionysius (see page 27) pegged 1 A.D. at 754

A.U.C. There is the slight problem that King Herod

died in 750 A.U.C., which translates to 4 B.C. Since

Herod was ostensibly alive at the birth of Jesus,

we have the interesting oxymoron of Christ be-

ing alive in 4 B.C., that is, four years before the

birth of Christ. In an effort to be less parochial,

B.C. has been retermed B.C.E. (�Before the Chris-

tian Era,� or even better, �Before the Common

Era�), with A.D. renamed C.E. (�Common Era�).

Even more PC is B.P. (�Before the Present�), that is,

interpreted with reference to the year of publica-

tion of the source. This book will have a copyright

date of 1999 (as will all books published between

July 1, 1998, and June 30, 1999), so the millen-

nium will reputedly end at �1 B.P. (since it is after

the present). The problem with this scheme is that

it carries with it an extra obligation for the author:

if this book is delayed but a few months, I will have

to adjust that B.P. date above, as well as all others

that appear herein.

An instant has no duration, but

its representation as a particular

granule always does.

day granule in which that event occurred. If multiple tests are

performed during the day on a well sample, a time granularity,

say, hour or even second, may be appropriate. An instant has no

duration, but its representation, as a particular granule, always

does (when utilizing a discrete time line).

The concept of an instant is independent of any particular calendar. SQL has cho-

sen the Gregorian calendar for its representation of an instant. The use of a speci�c

calendar, especially one so infused with politics, brings with it subtle dif�culties.

The Gregorian calendar was proclaimed by Pope Gregory XIII in 1582, with adop-

tion by the Catholic states within a year. However, in some places adoption was

very slow. The Protestant German states adopted the Gregorian calendar in 1699,

Japan in 1873, and Greece only in 1923. Muslim countries tend to retain calen-

dars based on Islam, and Asian countries generally use lunar or hybrid (solar/lunar)

calendars.

Consider an art dealer who has in hand a letter written by the artist Enoch

Seeman stating that his �Portrait of the Countess of Berkeley� was completed on

�March 23, 1735.� The art dealer entering this date in SQL as DATE �1735-03-23�

would in fact be specifying a day some 11 days before the painting was �nished.

The reason is that before 1752 England and its colonies used the Julian calendar,

which differs from the Gregorian calendar only in the presence of century leap

years (in fact, this difference between the solar year and the calendar year precip-

itated the construction of the Gregorian calendar). So the correct denotation in

SQL is DATE �1735-04-03�. Had the letter been written in, say, Paris, the same day,
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rather than at Berkeley Castle, it would have recorded the date �April 3, 1735.� The

geographical location of the historical reference supplies the calendar in force,

which then implies the correction, if any, required before the date can be speci�ed

in SQL.

As the Gregorian calendar was unde�ned before 1582, SQL presumably extrap-

olates this calendar backwards using its rules to 1 C.E., obtaining what some have

called the �proleptic Gregorian calendar� (which as has been noted is a misnomer,

because �proleptic� refers to a future act). Problems occur in the opposite direction.

Because the tropical year is 365.242,191 days, and the Gregorian year (due to the

rather complex leap year rules, see page 37) is 365.2425 days, the calendar year will

be one day longer than the astronomical year in 4000 C.E. and two days longer in

8000 C.E. A further re�nement to the Gregorian calendar designating years evenly

divisible by 4000 as common (not leap) years would ensure accuracy to within one

day in 20,000 years. If this re�nement was legislated, dates after 4000 C.E. stored in

the database would be off by one or two days. As it is, the vernal equinox will occur

on DATE �1997-03-21�, DATE �4000-03-22�, and DATE �8000-03-23�.

While my watch tells me in which second (approximately) the current instant

occurs, we desire a more precise and universal de�nition. As mentioned, SQL uses

UTC. UTC is based on cesium atomic clocks, which are accurate to within a second

in a million years. A step adjustment of a fraction of a second at the beginning

of each month correlates UTC with mean solar time (the average time between

noons, when the sun is directly overhead). In October 1967, the second in the

International System of Weights and Measures was de�ned to be 9,192,631,770

periods of the radiation emitted by the transition between two hyper�ne states of

the cesium 133 atom in the ground state. On January 1, 1972, the atomic second

became the practical unit of time. The UTC clock runs just a little fast with respect

to mean solar time, gaining about a second a year. UTC is adjusted by applying leap

seconds on January 1 or July 1 to keep UTC within 0.7 seconds of solar time.

So, what does this mean for an SQL user? The database is a model of reality. An

event in reality occurs at a particular instant. The representation of that instant

in the database should identify the particular day, or second, or microsecond, in

which the instant occurred, to the precision chosen by the user.

Say that TIMESTAMP(0) is speci�ed. Then the user is satis�ed if the instant can

be characterized to within a second. Alternatively, if the database speci�es that an

event happened at a particular timestamp value, the user would like to identify the

second in reality during which the event occurred.

For times between 1958 and about 1998, this correspondence between reality

and its representation in an SQL-compliant database is well de�ned. The problem

with future time is that leap seconds are determined by a committee, after review-

ing astronomical records indicating how far apart solar time is from atomic time.

When the differential gets too great, a leap second is mandated. Since January 1972,
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22 leap seconds have been added, the last inserted just before 12:00 A.M., January 1,

1999 (do you remember?). Speci�cally, the sequence of UTCmarkers was �1998-12-

31 23:59:59�, �1998-12-31 23:59:60�, �1999-01-01 00:00:00�. While it is proba-

ble that a leap second will be added in 2000, exactly when future ones will be

added is a bureaucratic decision, informed by changes, which cannot be precisely

predicted, that are slowing down the earth's spin. The decision is generally made

around �ve months before the leap second is effected.

Leap seconds imply that some minutes, such as the last minute of the year 1995,

contain 61 seconds. In fact, UTC allows two leap seconds to be added, so the sec-

onds value of a TIMESTAMP is restricted to 0.0 through 61.999. . .. UTC also allows

the omission of a leap second; such minutes will only contain 59 seconds. However,

a leap second has not yet been omitted in the more than two decades since UTC

was de�ned.

Since UTC is coordinated with solar time, the sun will be directly overhead

within 0.7 second of �2222-01-01 12:00:00�. However, the number of seconds be-

tween TIMESTAMP �1997-01-15 11:35:29.123456� and that instant is not known. As

we will see later, the DBMS will provide a number that should be close, within 300

seconds or so: the DBMS will assume no leap seconds in the intervening time. The

number of intervening minutes is known precisely, 118,843,224, because there are

no leap minutes. Leap seconds extend the minute to which they are assigned (such

as �1999-12-31 23:59:60�, above); they do not accumulate into a leap minute.

Which second an SQL timestamp

before 1958 denotes is not

adequately speci�ed in the

standard.

Before 1958, UTC is not de�ned. One possibility is that the de�nition of UTC is

extrapolated backward to 1 C.E. The de�nition of UTC in 1958 is ephemeris seconds

as measured with an atomic clock, with adjustments for changes

in the earth's rotation. So there are at least two possibilities. One

is that the proper adjustment is made each month, in that the

�rst second of each month is a little longer or shorter than the

other seconds, so that the solar day is coordinated with UTC.

The problem with this approach is that it is impossible to cor-

relate SQL timestamps with any other time, such as unadjusted

ephemeris time, used by astronomers. A second possibility is that we can assume

that each minute contains exactly 60 (unadjusted) ephemeris seconds, which em-

phasizes equal-sized seconds but which becomes uncorrelated with the solar day as

we go back in time.

The moral is that no one really knows which second in reality is denoted by an

SQL timestamp before 1958. Returning to the letter written by our artist Enoch

Seeman, that day could have started on the second denoted by TIMESTAMP �1735-

03-23 00:00:00�, or perhaps it started at �1735-03-23 00:00:10�, or perhaps even

at �1735-03-22 23:55:04�. Such uncertainty is frustrating. Ideally, that date should

start precisely at midnight: �1735-03-23 00:00:00�. But the standard is surprisingly

silent on precisely what instant in reality such a value means.
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Given this imprecision in the standard, it is the responsibility of the applica-

tion designer to supply the semantics for SQL timestamp values. When a value

in a speci�c system�be it atomic (TAI), barycentric coordinate (TCB), barycentric

dynamical (TDB), ephemeris, geocentric coordinate (TCG), mean solar, sidereal, ter-

restrial (TT), universal (UT0, UT1, UTC), or some other system�is stored in an SQL

database, it must be converted to the semantics chosen for the application. When

information from two databases, with different semantics, are combined or com-

pared, the timestamp values must be converted to a common representation. It may

very well be the case that one timestamp �1735-03-23 00:00:00� from a database

and a second timestamp �1735-03-22 23:55:04� from another database denote the

same exact instant!

Recall that an instant is an anchored location on the time line. So, which instant

is denoted by TIME �11:35:29�? On this, perhaps the most critical question, the

standard is entirely silent. Here is the entire speci�cation [44, pp. 24�25]:

Section 4.5.1 Datetimes Therefore, datetime data types that contain time
�elds (TIME and TIMESTAMP) are maintained in Universal Coordinated Time
(UTC), with an explicit or implicit time zone part. . . . A TIME or TIMESTAMP
that does not specify WITH TIME ZONE has an implicit time zone equal to the
local time zone for the SQL-session. However, themeaning [italics retained] of the
time does not change, because it is effectively in UTC.

An aside: the draft Technical Corrigendum 3 replaces this explanation with an

equally laconic speci�cation [19, pp. 10�11]:

Section 4.5.1 Datetimes, Draft Corrigendum The surface of the earth is
divided into zones, called time zones, in which every correct clock tells the same
time, known as local time [italics retained]. Local time is equal to UTC (Coor-
dinated Universal Time) plus the time zone displacement [italics retained]. . . . A
datetime value, of data type TIME or TIMESTAMP, may represent a local time or
UTC.

Let's assume that the user is in the Mountain Standard time zone (seven hours be-

hind Greenwich). She speci�es in her SQL code the literal TIME �11:35:29�. This

particular time occurs exactly once each day in the UTC de�nition. So perhaps the

implied meaning is that the meaning of a TIME literal (or data value) is relative

to the current day. But this assumption has two unfortunate rami�cations. Some

TIME values are de�ned for only about 1 in every 500 days: leap seconds, TIME

�23:59:60�, have occurred 22 times thus far. So if I happen to retrieve this TIME

value on one of those days, everything is well de�ned, but if I retrieve the same

value any other day, the value indicates a nonexistent instant. The second prob-

lem is that the particular instant denoted by the value is dependent on when the

value is used or retrieved from the database. Consider a transaction that starts a few

minutes before midnight on Monday, January 13, 1997, and runs until a few min-

utes after midnight on Tuesday. The literal TIME �11:35:29� when �rst retrieved by

the transaction denotes the instant TIMESTAMP �1997-01-13 11:35:29�. Just a few
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More on the Start of the Millennium

This confusion between anchored and unanchored

values also appears in discussions of �the millen-

nium.� That word translated from the Latin means

simply �one thousand years,� and hence is an

unanchored duration: an interval. So the years 998

and 1998 differ by a millennium. However, Web-

ster's Dictionary notes the connection with �bien-

nium� (�a period of two years�), de�ning millen-

nium to be �a period of 1000 years,� in particular,

�the thousand years mentioned in Revelation 20

during which holiness is to prevail and Christ is to

reign on earth.� Many different interpretations of

the millennium have been given [18]: it is unclear

when this thousand years will start. This confusion

between interval and period thus seems to underlie

the doomsayers who claim that the world will end

or other fantastic happenings will occur on January

1, 2000 (or is it January 1, 2001�see page 63).

Others have started the millennial clock at the

supposed start of the world. It has been calcu-

lated that Jesus was born on 4000 A.M. (Annus

Mundi, or �year of the world�). Given that Jesus

was born in 4 B.C. (see page 75), you may want

to ponder where you were at the start of the sixth

millennium, or 6000 A.M., which started Mon-

day, October 27, 1997. (Surely you remember that

momentous transition!)

minutes later, the same value denotes a different instant, TIMESTAMP �1997-01-14

11:35:29�, that is, an instant 24 hours later.

Values with an explicit UTC offset are safer to use. Consider again Enoch See-

man's letter; say it was written on TIMESTAMP �1735-03-23 13:23:45�, in the early

afternoon. Now the letter was written in Berkeley Castle, which is in the same time

zone as Greenwich (using time zones as they are speci�ed today; there were no

time zones in Seeman's day). However, a user in Los Angeles who retrieved this

value from the database and printed it relative to GMT would see it as having been

written in the wee hours of the morning. On the other hand, had the offset (in this

case, +0:00) been stored with the timestamp, the desired instant would have been

correctly speci�ed and would print out correctly in GMT.

An SQL-92 TIME value is really

an interval that can be added to

midnight of a particular day to

specify an instant.

In conclusion, only DATE and TIMESTAMP WITH TIME

ZONE adequately specify an instant, an anchored location on

the time line. TIME is relative to an unspeci�ed midnight, and

TIMESTAMP without an associated offset acquires the time zone

of the user when the value is manipulated.

As another subtlety, the standard states:

Subclause 6.8 hdatetime value functioni General Rule 1. The hdatetime
value functionis CURRENT DATE, CURRENT TIME, and CURRENT TIMESTAMP
respectively return the current date, current time, and current timestamp.
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However, that subclause goes on to state:

Subclause 6.8 hdatetime value functioni General Rule 3. If an SQL-
statement generally contains more than one reference to one or more hdatetime
value functionis, then all such references are effectively evaluated simultane-
ously. The time of evaluation of the hdatetime value functioni during the
execution of the SQL-statement is implementation-dependent.

So an implementation is free to adopt whatever de�nition of �current� it wishes,

including perhaps when the statement was presented to the system, or perhaps

when the database was �rst de�ned.

3.7.2 Time Zones

As we saw above, TIMEWITH TIME ZONE values are safer than TIME values. A care-

ful reading of the SQL-92 standard indicates that implicit time zone displacement

�is defective, in at least one respect, is imprecisely speci�ed, does not fully imple-

ment the approach proposed [in a prior standards meeting] and leaves unsolved

a problem that was acknowledged to need a solution as long ago as 1988� [101,

pp. 1�2]. In the current SQL-92 standard, for a TIME value without an explicit time

zone, either AT LOCAL or GMT was assumed; the standard is unclear on which is

to be used.

Use TIME (without time zones)

exceedingly carefully, as the

standard is imprecise and

defective in its application of

implicit time zones.

Technical Corrigendum 3 (at the time this is being written,

this document is a working draft approaching ISO approval)

speci�es that a TIME (without the time zone) value does not

have an implicit time zone; indeed, nothing is assumed about

the nonexistent time zone. While some of the identi�ed de�-

ciencies have been addressed in this way by the Technical Cor-

rigendum, it is doubtful that the changes have migrated into

commercial products.

Use TIME WITH TIME ZONE

carefully, as the time zone

stored in such a value is often

ignored.

Even when the TIME WITH TIME ZONE type is used, the user should

be careful. For example, given two values v1 and v2 of type TIME

WITH TIME ZONE, it is possible that v1 = v2 while EXTRACT(TIMEZONE

HOUR FROM v1) <> EXTRACT(TIMEZONE HOUR FROM v2), and

CAST(v1 TO TIME) <> CAST(v2 TO TIME). This unintuitive seman-

tics results from the time zone being ignored in the equality, but

not in the latter two expressions. Since many other predicates,

such as OVERLAPS, are de�ned in terms of equality, often the

time zone stored in a value is ignored.

3.7.3 Intervals

The reason given for the distinction between year-month intervals and day-time

intervals is that months are not an integral number of days. Melton and Simon

[71] ask the question, �What is the result of 1 year, 3 months, 19 days divided by



3 . 7 SUBTLET I ES * 81

3?� They correctly state that the answer cannot be determined unless we know the

dates spanned by that interval. However, minutes are not an integral number of

seconds, due to leap seconds. What if we ask the question, �What is the result of

1 minute divided by 4, in seconds?� The answer could be 14, 15, or 16, depending

on which particular times were spanned by that interval (up to 2 leap seconds can

be added or subtracted from aminute). So, what does the standard have to say about

this? The expression INTERVAL �1� MINUTE / 4 evaluates to INTERVAL �0� MINUTE;

fractional minutes are lost. However, we can explicitly request that the calculation

be done in terms of seconds, either with INTERVAL �1:00� MINUTE TO SECOND / 4 or

CAST(INTERVAL �1� MINUTE TO INTERVAL MINUTE TO SECOND) / 4, with the cast being

implicit or explicit. Now the question is, What does cast return? Here is the entire

speci�cation [44, p. 122].

Subclause 6.10 hcast speci�cationi General Rule 13.d. If SD [the data type
of the source expression SV, here INTERVAL �2� MINUTE] is interval and TD [the
target data type, here INTERVAL MINUTE TO SECOND] and SD have different
interval precisions, then let Q be the least signi�cant hdatetime �eldi of TD [that
is, SECOND]. Let Y be the result of converting SV to a scalar in units Q according
to the natural rules for intervals as de�ned in the Gregorian calendar. Normalize
Y to conform to the datetime quali�er �P TO Q� of TD.

The rub lies in deciding exactly what the �natural rules for intervals as de�ned in

the Gregorian calendar� are in the presence of leap seconds. Presumably this ex-

pression would always evaluate to 15 seconds (assuming that the �average� minute

contains 60 seconds), but the speci�cation is not clear. However, using the same

logic, �What is the result of 1 year, 3 months, 19 days divided by 3?� could just as

easily be interpreted to yield 3 months, 17 days, using an average length, in days,

of a year and a month in the Gregorian calendar.

There are at least two ways the SQL could be interpreted in its handling of in-

tervals in a consistent manner. One is to use �average� months, and minutes, in

interval conversions, and do away with the distinction between year-month and

day-time intervals. The other is to not use average months or minutes, and ex-

pand the kinds of intervals to year-month, day-minute, and second (and fractions

thereof) variants.

Another problem surfaces as to what values are allowed for SQL intervals. The

speci�cation is laconic on this as well [44, p. 75]:

Subclause 5.3 hliterali Syntax Rule 23.Within the de�nition of an hinterval
literali, the hdatetime valueis are constrained by the natural rules for intervals
according to the Gregorian calendar.

Whether or not leap seconds are

included in day-time intervals is

not speci�ed in the SQL-92

standard.

Most days have 24 hours. The day in April that daylight sav-

ing time kicks in has only 23 hours; the day in October that

daylight saving time ends contains 25 hours. Similarly, minutes

can have 62 seconds (though up to 1999 only one leap second

has ever been added to any particular minute), as mentioned in

this standard [44, p. 25].
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Section 4.5.1 Datetimes Note: On occasion, UTC is adjusted by the omission
of a second or the insertion of a �leap second� in order to maintain synchroniza-
tion with sidereal time. This implies that sometimes, but very rarely, a particular
minute will contain exactly 59, 61 or 62 seconds.

However, no such mention is made of days with 25 hours. Hence, the standard

is not clear as to whether the maximum value of the hours �eld is 24 or 25, or

whether the maximum value of the seconds �eld is 60, 61, or 62.

3.7.4 Predicates

The OVERLAPS predicate could have been easily generalized, but wasn't. For exam-

ple, the following forms are not permitted, even though they make perfect sense:

BirthDate OVERLAPS DATE �1970-01-01�

BirthDate OVERLAPS (DATE �1970-01-01�, INTERVAL �0� DAY)

(DATE �1970-01-01�, INTERVAL �0� DAY) OVERLAPS BirthDate

We could argue that all three are equivalent to

BirthDate = DATE �1970-01-01�

but the discussion in Section 3.3 shows that orthogonality was not a priority in

SQL's design. If the intervals in the last two are replaced with a nonempty interval,

say, INTERVAL �7� DAY (within a week), then they are not equivalent to the �rst.

Again, we could argue that those would be equivalent to

(BirthDate, INTERVAL �0� DAY)

OVERLAPS (DATE �1970-01-01�, INTERVAL �7� DAY)

(DATE �1970-01-01�, INTERVAL �7� DAY)

OVERLAPS (BirthDate, INTERVAL �0� DAY)

or

(BirthDate, NULL) OVERLAPS (DATE �1970-01-01�, INTERVAL �7� DAY)

(DATE �1970-01-01�, INTERVAL �7� DAY) OVERLAPS (BirthDate, NULL)

but it seems less desirable to require an empty or null interval.

In the same vein, it would have been nice to allow equality and inequality

comparisons between these period information values, such as

(BirthDate, INTERVAL �7� DAY)

= (DATE �1970-01-01�, INTERVAL �7� DAY)

(DATE �1970-01-01�, INTERVAL �7� DAY)

<= (BirthDate, INTERVAL �9� DAY)

As it is, SQL-92 introduces these period information values with their concomitant

complex syntax rules just for the OVERLAP predicate.
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3.7.5 Constructors

The CAST function is not symmetric, in the following way. This is being written at

4:57 P.M. on July 23, 1997. The expression CAST(TIME �12:34:56� AS TIMESTAMP(0))

yields �1997-07-23 12:34:56�, that is, that time today, but CAST(DATE �1997-01-

01� AS TIMESTAMP(0)) yields TIMESTAMP �1997-01-01 00:00:00�. This asymmetry

appears to be a reasonable design decision, as chances are that something that hap-

pened at some other date probably did not happen at exactly the same time of day

as �now.�

3.8 IMPLEMENTATION CONSIDERATIONS*

Here we consider subtleties of instants and intervals in speci�c DBMSs.

3.8.1 IBM DB2 Universal Database

IBM DB2 UDB will generate an error if a �eld value (e.g., 60 seconds, 24 hours) was

out of range. Hence, every minute in DB2 contains exactly 60 seconds; leap seconds

are not accommodated.

3.8.2 Microsoft Access

Access interprets the fractional portion of a DATE as a fraction of a day, effectively

dividing each day into 86,400 seconds. Hence, every minute in Access contains

exactly 60 seconds; Access DATEs do not take into account leap seconds. Access

will generate a runtime error if the �eld value (e.g., 60 seconds, 24 hours) was out

of range.

3.8.3 Oracle8 Server

Oracle8 Server date arithmetic takes into account the (Catholic) switch from the

Julian to the Gregorian calendar, which eliminated 10 days in October 1582 (Octo-

ber 5 through October 14). Missing dates can be entered into the database, but are

ignored in date arithmetic and treated as the next date. For example, the next day

after October 4, 1582, is October 15, 1582, and the day following October 5, 1582,

is October 15, 1582. Speci�cally, all the dates between October 5 and October 14

are mapped identically to October 15.

As the maximum number of seconds in a minute in Oracle8 Server is 60, Oracle

DATEs do not take into account leap seconds. Instead, Oracle8 Server will generate

a runtime error if the �eld value (e.g., 60 seconds, 24 hours) was out of range.
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The Adoption of the Gregorian Calendar

As the Gregorian calendar was imposed by �at by

a sitting pope (see page 37), adoption was quick

in Roman Catholic countries, but decidedly unen-

thusiastic in Protestant countries. Britain and its

colonies (which includes what is now the United

States) didn't adopt the Gregorian calendar until

1752. Because it waited so long, Parliament had

to drop 11 days (September 3�13, 1752) in or-

der to catch up. George Washington's birthday

was recorded at the time as February 11, 1731;

this is a Julian date because Britain hadn't yet

switched over. However, President George Wash-

ington's birthday is celebrated in the United States

on February 22, its Gregorian date (at least un-

til a Presidents' Day was instituted covering for

both Washington's birthday and Lincoln's birthday,

which occurred after the switch).

The U.S.S.R. didn't join the bandwagon until

1918. The �October Revolution� happened in a Ju-

lian October; until recently it has been celebrated

in Gregorian November. In fact, there are many

different switchover dates (e.g., Sweden, 1753;

Turkey, 1927), rendering �the Gregorian calendar�

an oxymoron.

3.8.4 CD-ROMMaterials

Detailed explanations of the temporal types in Microsoft Access 2000, Microsoft

SQL Server, IBM DB2 UDB, Informix�Universal Server, Oracle8 Server, Sybase SQL-

Server, and UniSQL are provided, as well as sample SQL statements illustrating op-

erations on instants and intervals. For some of the operations that are not possible

in IBM DB2 strictly in SQL, the equivalents are given as embedded SQL.

A detailed explanation of Ingres is also included on the CD-ROM, but the

examples have not been tested.

3.9 SUMMARY

Temporal values are the stuff of which time-varying applications are made. In order

to record the history of the modeled reality, it is �rst necessary to be able to record

the �when.�

Instants are the most basic data type. An instant is a position on the time line.

Virtually all DBMSs support this data type. In SQL-92, �ve related data types en-

code instants, to various granularities: DATE, TIME, TIMESTAMP, TIMEWITH TIME

ZONE, and TIMESTAMP WITH TIME ZONE.

Intervals are unanchored, directed portions of the time line; an interval can be

added to an instant to displace that instant either into the future or back into the

past. SQL-92 supports two kinds of intervals, year-month intervals and day-time

intervals.
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A rich set of operators and predicates applies to temporal values. SQL-92 provides

the following classes of predicates: equality, inequality, is null, and overlaps. It also

provides arithmetic operators (`+', `-', `*', `/'), unary plus andminus, time zone con-

version (AT), �now� (CURRENT TIME, CURRENT DATE, CURRENT TIMESTAMP), a

variety of conversions (CAST), and �eld extraction (EXTRACT).

Speci�c DBMSs vary greatly in their support of the standard, from quite strict

adherence (e.g., IBM DB2) to studied apathy (most DBMSs). While most temporal

operations in SQL-92 can be simulated in the facilities of the various DBMSs (and

vice versa), that simulation is often unnecessarily convoluted.

Despite the care with which the SQL-92 standard has been developed and doc-

umented, it still contains dark corners and seemingly arbitrary design decisions.

Most DATE and TIMESTAMP values are unde�ned, as the standard is based on UTC,

which doesn't apply before 1958. SQL-92, and virtually all DBMSs, utilize the Gre-

gorian calendar, which was adopted in different parts of the world over a 350-year

period. A TIME value does not actually represent an instant; rather, it represents

a special kind of interval. Leap seconds may or may not be accommodated (the

standard doesn't say); most DBMSs ignore this subtlety.

3.10 READINGS

Information on the Public Petroleum Data Model can be found at www.ppdm.org.

Datetime literals are based on an ISO standard, �Representation of Dates and

Times� [43]. This standard uses the Gregorian calendar as well as a 24-hour clock,

which also serve as the basis for SQL datetimes.

While the SQL-92 standard [44] is quite lengthy, at 580 pages, only a small por-

tion, about 30 pages, or 5 percent, concerns temporal data types and their opera-

tors. However, this portion in some ways is more complex than other parts of SQL,

as evidenced by over 12 pages (almost 10 percent) of the Technical Corrigendum

3 [19]. Even with these numerous corrections, many of the de�ciencies discussed in

Section 3.7 remain. Sykes provides a cogent discussion of the problems, and partial

solutions, to time zone support in SQL-92 [101].

The temporal constructs are included in the Intermediate SQL and Full SQL lev-

els of conformance to SQL-92; the Entry SQL level of conformance includes no

temporal types. Conformance testing was initially done by the National Institute

of Standards and Technology (NIST), a U.S. Department of Commerce agency. As

of July 1, 1997, when NIST ceased SQL conformance testing, 11 products had been

validated for conformance to FIPS publication 127-2 [73]: IBM (2 con�gurations),

Informix (5 con�gurations), NCR, and Sybase (3 con�gurations). Unfortunately, all

of these validations were at Entry FIPS 127-2, which includes no time support. The

National Software Testing Laboratories (NSTL), an independent organization not
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associated with the government, has established a testing and certi�cation program

for SQL at www.nstl.com/html/press nstl establishes sql conformance testing.html.

Unfortunately, according to NSTL, �All of NSTL's testing services are conducted on

a strictly con�dential basis. Clients. . . have used NSTL test results for promotional

purposes,� so information about which products conform to the standard will come

only from the vendors themselves.

Books and articles on the year 2000 problem could �ll an entire shelf of your

library. A quick search on amazon.com turned up over several dozen titles; there

is even a Year 2000 for Dummies [16]. (Some book titles to the contrary, the proper

spelling is �millennium,� with two ns, from the Latinmille, �one thousand,� and an-

nus, �year,� whereby the two ns.) The following are some useful Web sites providing

further pointers:

� The Year 2000 Information Center: www.year2000.com

� U.S. Federal Government Gateway for Year 2000 Information Directories:

www.itpolicy.gsa.gov/mks/yr2000/y2khome.htm

� National Institute of Standards and Technology: www.nist.gov/y2k/

� Information Technology Association of America (ITAA):

www.itaa.org/year2000.htm

� Mitre's Year 2000 home page: www.mitre.org/technology/y2k/

� The Federal Technology Service of the General Service Administration (GSA) of

the U.S. Federal Government: www.fts.gsa.gov

� The IEEE Technical Activities Board (TAC) New Technologies Development

Committee: www.mindspring.com/�pci-inc/Year2000/y2ktech.htm

� IBM's Year 2000 home page: www.ibm.com/IBM/year2000/

� Microsoft Year 2000 Resource Center: microsoft.com/year2000/

� Newsgroup: comp.software.year-2000

The year 2000 problem isn't unique to computers. The July 1998 issue of Con-

sumer Reports (p. 67) describes a (manual) Mead 10-year date stamp that had been

purchased in March of that year. The reader subsequently found out that the date

stamp was good only until December 31, 2000. As the packaging copyright says

1993, this was at best an 8-year date stamp when it was manufactured. Perhaps at

the turn of the century there will be a run on of�ce supply stores when all of the

10-year date stamps expire.

Jones [59] lists other year 2000�like problems, many of which in a cruel irony

just happen to fall right around the same time: the conversion of the euro, which

started January 1, 1999, the Global Positioning System (GPS) week-counter rollover,

which occurs at midnight on August 21, 1999, the use of the value 9999 as a �le

termination code, which might be misinterpreted as September 9, 1999, and the

use in Unix of the number 999999999 as end-of-�le, which can be interpreted as a
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Unix date of September 8, 2001. Neumann [75] provided the Multics observation

on page 65.

The SQL standards are denoted SQL-86, SQL-89, and SQL-92. You might think

that the next standard, due out in 1999, would be named SQL-99. Logically, then,

the standard following that might be named SQL-02, which might be confused

with SQL2 (the project name under which SQL-92 was developed). The resolution

was to term the next standard SQL:1999, thereby avoiding a year 2000 problem

with the name of the standard [30].

An impressive amount of information on UTC and leap seconds can be found

at tycho.usno.navy.mil/time.html. Papers by Dyreson, Howse, Quinn, and the au-

thor provide details on UTC and ephemeris time [28, 42, 79]. While UTC is de-

�ned relative to an atomic clock, an ephemeris second is a constant duration of

time: 1/31,556,925.9747 of the period of time between the passage in 1899 and

the passage in 1900 of the sun through the vernal equinox, when the duration

of sunlight and darkness are the same. While this may seem an odd de�nition,

the ephemeris second is actually the average value of a second calculated from

astronomical observations over the 18th and 19th centuries.

HAL was the computer featured prominently in Arthur C. Clarke's 2001: A Space

Odyssey. Its (his?) birth date, January 12, 1997, was occasioned by the release of a

book on HAL's legacy [100].

Oracle's temporal support is described well in Koch and Loney's encyclopedic

reference book [63, ch. 7].

See bert.cs.pitt.edu/�taw�g/convert/introduction.html for a discussion of the Hijri

calendar, supported by Microsoft Access.

Dershowitz and Reingold's beautiful book, Calendrical Calculations [27], presents

in completely algorithmic form a description of 14 calendars: the present civil cal-

endar (Gregorian), the recent ISO commercial calendar (ISO 8061), the old civil

calendar (Julian), the Coptic and Ethiopic calendars, the Islamic (Moslem) calen-

dar, the modern Persian (solar) calendar, the Bahá'�́ calendar, the Hebrew (Jewish)

calendar, the Mayan calendar, the French Revolutionary calendar, the Chinese cal-

endar, and both the old (mean) and new (true) Hindu (Indian) calendars. Included

is a wealth of historical material. The mere existence of Dershowitz and Reingold's

book is illustrative of the inherent complexities of the subject.
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A period is a segment of the time line, starting

at one instant and terminating at a later instant.

While there are a variety of representations

of periods, one particular representation is

preferable.

Periods are more complex than instants, be-

cause there is no total order on periods, unlike

instants.

SQL-92 has essentially one construct, OVER-

LAPS, that is relevant to periods. However, the

draft SQL3 standard includes a period type con-

structor, period literals, predicates, and value

constructors.



Periods

A
n instant has no duration. Yet facts in the database are true over a duration

of time. To express when a fact holds in the enterprise, a period is associated

with that fact.

A period is an anchored duration

of the time line.

A period is an anchored duration of the time line. The Fall 1997 academic semes-

ter at the University of Arizona comprises the period from August 25, 1997 to De-

cember 19, 1997. This data type, while quite useful, is not sup-

ported directly by any commercial DBMS, nor is it in the SQL-

92 standard. However, periods are in the SQL3 draft standard, as

will be discussed in Section 12.4.

Perhaps the reason that periods were not included with the other temporal types

in SQL-92 is that they are relatively easy to simulate with datetimes. The most

common representation is with a pair of instants, the �rst specifying the �rst day

(second, microsecond) of the period and the second specifying the last day (sec-

ond, microsecond) of the period. Generally the delimiting datetimes are of identical

granularity.

Jim Barnett utilized periods in several places in the FINDER schema. The Create

Date and Last Update columns indicate when the data was stored in the database.

Many tables also have Start Date and End Date columns to specify when the data

was valid in reality. These two, quite different notions are explored in detail in

Chapters 8 and 5, respectively.

There are several variants possible even with an instant-pair representation

of periods. One common representation is termed a closed-closed representation

because both delimiting datetimes are in the period. For the Fall 1997 semester, the

pair of dates would be [DATE �1997-08-25�, DATE �1997-12-19�], with the square

brackets denoting a closed representation.

An alternative is the closed-open representation, in which the second datetime

of the pair represents the granule immediately following the last granule of the

period. Our example in a closed-open representation is thus [DATE �1997-08-25�,
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DATE �1997-12-20�). The ending parenthesis indicates that the ending is open.

We'll examine the relative advantages of each of these representations shortly.

The primary representations of

periods are closed-closed and

closed-open pairs of datetimes,

and a pair of a starting datetime

and an interval, with both

components of the same

granularity.

Two less often used alternatives are open-closed and open-

open.

Yet another alternative is the starting datetime and an in-

terval specifying the duration of the period. In this approach,

the Fall 1997 semester becomes (DATE �1997-08-25�, INTERVAL

�117� DAY). Finally, for completeness, we might use the termi-

nating datetime and the duration, for example, (INTERVAL �117�

DAY, DATE �1997-12-19�). We could also consider open variants

thereof, but that is not productive.

The time zone of a period, if any,

should be stored with the �rst

datetime of the representation.

The delimiting datetime(s) of a period may include a time zone, if their granular-

ity is to the hour or smaller. The Fall 1997 semester to the second granularity in the

closed-open representation with a time zone of Mountain Standard Time is [TIME-

STAMP �1997-08-25 08:00:00-07:00�, TIMESTAMP �1997-12-19 17:00:00-07:00�).

This example hints at the utility of the closed-open representation. In the closed-

closed representation, the terminating timestamp would be an

awkward TIMESTAMP �1997-12-19 16:59:59-07:00�. The two de-

limiting datetimes of a stored period should have an identical

time zone, for the reasons given in Section 3.7.2.

4.1 LITERALS

As SQL-92 does not provide a period data type, there are no period literals in

that language. Periods must instead be speci�ed by their constituent datetime and

interval literals.

4.2 PREDICATES

As we saw in the previous chapter, SQL-92 supports only four classes of predicates

on datetimes and intervals: equality, less-than, is null, and overlaps.

Equality testing on periods is

highly dependent on their

underlying representation.

Equality on periods can be implemented using their under-

lying components, as shown in Table 4.1. Here, the expres-

sion �+ 1� denotes adding one granule at the granularity of

the period. At a granularity of day, this expression would be �+

INTERVAL �1� DAY�.

Testing for is null is straightforward in any of these representations: simply apply

IS NULL to the �rst component, which is always a datetime. If the �rst component

is null, the value of the second component is irrelevant.
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Table 4.1 The equality predicate on periods.

Representation Equality Predicate

[a1, a2] equals [b1, b2] a1 = b1 AND a2 = b2

[a1, a2] equals [b1, b2) a1 = b1 AND a2 + 1 = b2

[a1, a2] equals (b1, b i) a1 = b1 + 1 AND a2 + 1 = b1 + b i

[a1, a2) equals [b1, b2] a1 = b1 AND a2 = b2 + 1

[a1, a2) equals [b1, b2) a1 = b1 AND a2 = b2

[a1, a2) equals (b1, b i) a1 = b1 + 1 AND a2 = b1 + b i

(a1, a i) equals [a2, b1] a1 + 1 = a2 AND a1 + a i = b1 + 1

(a1, a i) equals [a2, b1) a1 + 1 = a2 AND a1 + a i = b1

(a1, a i1
) equals (a2, a i2

) a1 = a2 AND a i1
= a i2

Unlike datetimes and intervals, periods are not ordered. There is only a par-

tial order between periods. Consider the Fall 1997 semester and the calendar year

1997. The calendar year both starts before the semester and ends after the semester.

However, the month of July 1997 de�nitely precedes the Fall 1997 semester.

While datetimes and intervals

are totally ordered, periods are

only partially ordered, with 13

possible relationships between

two periods.

While two datetimes or intervals can be related in three ways

(before, equal, and after), two periods can have one of 13 rela-

tionships, shown in Figure 4.1. In this �gure, time proceeds from

left to right. These relationships are disjoint: only one can hold

between any two given periods. Note also that a overlaps b is

more restrictive than SQL's OVERLAPS, which will be discussed

shortly.

These relationships can be expressed in terms of comparisons on the compo-

nents of the underlying periods. Table 4.2 provides the SQL-92 equivalents for the

relationships, except for equals, which was provided before, and the inverse rela-

tionships (e.g., before�1), which can be easily derived. This table assumes both argu-

ment periods are in the same representation, with the same granularity. Here, ai is

the interval component of the period a, and a1 and a2 are its datetime components.

The preferred representation of

a period is a closed-open pair of

datetimes.

Note the niggling �+ 1� and �<=� that keep popping up with

the closed-closed representation, and the interval addition that

is present with the interval representation. It is for these reasons

that the closed-open representation is generally preferred.

As mentioned in the previous chapter, SQL-92 provides an OVERLAPS predicate,

on pairs of two datetimes, corresponding to a closed-open representation, or pairs

of a datetime and an interval (see page 35). In our terminology, p OVERLAPS q (the

SQL-92 predicate) is equivalent to the following using the basic predicates just in-

troduced: p overlaps q _ p overlaps�1 q _ p starts q _ p starts�1 q _ p �nishes q _

p �nishes�1 q _ p during q _ p during�1 q _ p equals q.
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a before b

b before -1a

a meets b

b meets -1a

a overlaps b

b overlaps -1a

a equals b

a starts b

b starts -1a

a finishes b

b finishes -1a

a during b

b during -1a

a b

a

a

a

b

b

b

a

a

a

b

b

b

Figure 4.1 Relationships between two periods.

SQL-92 also permits a BETWEEN predicate for datetimes and intervals (see

page 35). Such a predicate doesn't strictly apply to periods, as it is de�ned in terms

of less-than. We might wish to de�ne a between predicate on periods based on before.

When comparing a datetime

with a period, consider the

datetime to be a period of a

single granule in duration.

A period can also be compared with a datetime of identi-

cal granularity. Conceptually, a datetime is simply a very short

period, comprising one granule. Five of the predicates are not

possible between a datetime and a period: overlaps, overlaps�1,

during�1, starts�1, and �nishes�1, due to the existence of only

one granule in a datetime. The rest are listed in Table 4.3. Note

that a datetime is considered to be analogous to a closed-closed period.

In the remainder of this book, we will utilize the preferred representation of a

period, that of a closed-open pair of datetimes, of identical granularity.
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Table 4.2 The inequality predicates on periods.

Relationship SQL-92 Predicate

[a1, a2] before [b1, b2] a2 + 1 < b1

[a1, a2) before [b1, b2) a2 < b1

(a1, a i) before (b1, b i) a1 + a i < b1

[a1, a2] meets [b1, b2] a2 + 1 = b1

[a1, a2) meets [b1, b2) a2 = b1

(a1, a i) meets (b1, b i) a1 + a i = b1

[a1, a2] overlaps [b1, b2] a1 < b1 AND a2 < b2 AND b1 <= a2

[a1, a2) overlaps [b1, b2) a1 < b1 AND a2 < b2 AND b1 < a2

(a1, a i) overlaps (b1, b i) a1 < b1 AND a1 + a i < b1 + b i

AND b1 <= a1 + a i

[a1, a2] during [b1, b2] b1 < a1 AND a2 < b2

[a1, a2) during [b1, b2) b1 < a1 AND a2 < b2

(a1, a i) during (b1, b i) b1 < a1 AND a1 + a i < b1 + b i

[a1, a2] starts [b1, b2] a1 = b1 AND a2 < b2

[a1, a2) starts [b1, b2) a1 = b1 AND a2 < b2

(a1, a i) starts (b1, b i) a1 = b1 AND a i < b i

[a1, a2] �nishes [b1, b2] b1 < a1 AND a2 = b2

[a1, a2) �nishes [b1, b2) b1 < a1 AND a2 = b2

(a1, a i) �nishes (b1, b i) b1 < a1 AND a1 + a i = b1 + b i

4.3 CONSTRUCTORS

Periods may participate in, or be returned by, temporal constructors. We organize

this discussion along the types that such constructors can return.

4.3.1 Datetime Constructors

The datetime constructors that involve periods are also called instant extractors, as

they identify the delimiting instants of the argument period. Note especially here

that the semantics of such constructors (and indeed, of all constructors, and all

predicates) is independent of the representation, though their implementation is

certainly highly dependent on the representation.

Four such delimiting instants are relevant: the beginning instant, the last instant,

the ending instant (that immediately following the last instant), and the previous

instant (that immediately preceding the beginning instant). For our closed-open

representation p = [a1, a2), these instants can be extracted in the following fashion.

Here we use the period of the Fall 1997 semester, p = [DATE�1997-08-25�, DATE

�1997-12-20�).
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Table 4.3 Predicates on a period and a datetime.

Relationship SQL-92 Predicate

a equals [b1, b2] a = b1 AND a = b2

a equals [b1, b2) a = b1 AND a + 1 = b2

a equals (b1, b i) a = b1 AND bi = 1

a before [b1, b2] a + 1 < b1

a before [b1, b2) a + 1 < b1

a before (b1, b i) a < b1

a before�1 [b1, b2] b2 + 1 < a

a before�1 [b1, b2) b2 < a

a before�1 (b1, b i) b1 + b i < a

a meets [b1, b2] a + 1 = b1

a meets [b1, b2) a + 1 = b1

a meets (b1, b i) a = b1

a meets�1 [b1, b2] b2 + 1 = a

a meets�1 [b1, b2) b2 = a

a meets�1 (b1, b i) b1 + b i = a

a during [b1, b2] b1 < a AND a < b2

a during [b1, b2) b1 < a AND a + 1 < b2

a during (b1, b i) b1 < a AND a < b1 + bi

a starts [b1, b2] a = b1 AND a < b2

a starts [b1, b2) a = b1 AND a + 1 < b2

a starts (b1, b i) a = b1 AND b i > 1

a �nishes [b1, b2] a = b2 AND b1 < a

a �nishes [b1, b2) a + 1 = b2 AND b1 < a

a �nishes (b1, b i) a + 1 = b1 + bi AND b i > 1

� beginning: a1 (the �rst day in the period)

beginning(p) = DATE �1997-08-25�

� previous: a1 - 1 (the day immediately preceding the period)

previous(p) = DATE �1997-08-24�

� last: a2 - 1 (the last day in the period)

last(p) = DATE �1997-12-19�

� ending: a2 (the day immediately following the period)

ending(p) = DATE �1997-12-20�

4.3.2 Interval Constructors

There are two useful interval constructors that take a period as an argument. The

�rst, duration, can be computed from [a1, a2) as (a2 - a1) qual. As an example, the

period of the Fall 1997 semester has a duration of

(DATE �1997-12-20� - DATE �1997-08-25�) DAY
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True and Sidereal Days

Observing the rising and setting of distant stars

yields a sidereal day, or one full spin of the earth,

of 23 hours and 56 minutes. But it is perhaps more

natural to judge the day by the apparent motion

of the sun. The true solar time or true time is the

hour-angle of the sun starting from noon.

The rotation of the earth around the sun adds

4 minutes to the true, or solar day: this small addi-

tional spin is necessary to return the sun to directly

overhead. The true day is thus 24 hours long. Over

the course of a year, the small rotations add up to a

single full rotation. A sidereal year is thus composed

of one more (sidereal) day than a tropical year; it is

366.2422 sidereal days long.

The other useful interval constructor is

time zone extraction, which returns the

time zone of the argument interval, if the

delimiting datetimes have an associated

time zone. In SQL, this can be done by

extracting the time zone hour and minute

from the initial datetime, then converting

to an interval:

CAST(EXTRACT(TIMEZONE HOUR

FROM a1) AS HOUR) +

CAST(EXTRACT(TIMEZONE MINUTE

FROM a1) AS MINUTE)

The result is an interval of granularity HOUR

TO MINUTE.

4.3.3 Period Constructors

There are several constructors that return a period value. Figure 4.2 illustrates some

of these.

� [a, a + 1) converts the datetime a into a period of one granule.

� [a1, a2) + INTERVAL i yields [a1 + i, a2 + i). This shifts the period later by the

interval, or earlier, if the interval is negative.

� INTERVAL i + [a1, a2) yields [a1 + i, a2 + i), as addition is symmetric.

� [a1, a2) - INTERVAL i yields [a1 - i, a2 - i). This shifts the period earlier by the

speci�ed interval.

� a1 extend a2 yields [a1, a2 + 1), that is, the period from a1 to a2.

� [a1, a2) extend [b1, b2) yields [min(a1, b1), max(a2, b2)), that is, the period that

starts the earlier of periods a and b and �nishes the later of periods a and b.

� a extend [b1, b2) yields [min(a, b1), max(a, b2)), that is, the period that starts the

earlier of instant a and period b and �nishes the later of instant a and period b.

� [a1, a2) extend b yields [min(a1, b), max(a2, b)), because extend is symmetric.

� By using AT LOCAL and AT TIME ZONE on the initial datetime in the period

representation, the time zone offset of a period can be changed.

� By CASTing each of the constituent components, the granularity of a period can

be changed.
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a

a

a

a

a - b

a    b

a    b

a extend b

a

b

b

b

b

b

Figure 4.2 Period operations.

The following constructors impose restrictions on the argument periods:

� [a1, a2) \ [b1, b2) yields [max(a1, b1), min(a2, b2)), that is, the period that starts

the later of the beginning of periods a and b and �nishes the earlier of the end

of periods a and b. Note that this constructor is de�ned only if a OVERLAPS b;

otherwise, an invalid period is returned, one in which the starting delimiting

instant occurs after the ending delimiting instant.

� [a1, a2) - [b1, b2) yields

� [b2, a2) if a starts�1 b or a overlaps�1 b,

� [a1, b1) if a �nishes�1 b or a overlaps b, or

� a, if a before b or a meets b or a meets�1 b or a before�1 b.

Period difference results in the portion of a not overlapping with b . Note that

this constructor is unde�ned if a during b because then there are two subperiods
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of a that are not in b. This constructor is also unde�ned if a equals b or a during

b , or a starts b, or a �nishes b because then the result is the empty period.

� [a1, a2) [ [b1, b2) yields [min(a1, b1), max(a2, b2)), that is, the period that starts

the earlier of the starting delimiters of periods a and b and �nishes the later of the

ending delimiters of periods a and b. This constructor is unde�ned if a before b or

a before�1
b; otherwise, an invalid period is returned, one that contains instants

that are not in either a or b . Note that under this restriction, [a1, a2) [ [b1, b2)

= [a1, a2) extend [b1, b2).

4.3.4 Character Constructors

A period can be cast into a character string via casts on its constituent parts and

string concatenation (�jj�).

�[� jj CAST( a1 AS CHARACTER) jj � - � jj CAST( a2 AS CHARACTER) jj �)�

4.4 IMPLEMENTATION CONSIDERATIONS

A period data type is not included in the SQL-92 standard, and no vendor offers sup-

port for such a data type. In the following, we show how periods can be simulated

using a pair of instants.

4.4.1 IBM DB2 Universal Database

We use the closed-open representation of a pair of IBM DB2 UDB DATEs (or TIMEs,

or TIMESTAMPs). Table 4.4 shows how the period operations can be implemented

in DB2. In the �rst column, a and b denote datetime values. In the DB2 column,

p1 and p2 denote the two components of the representation of the period p, a and

b denote DB2 UDB DATE values (we use a day granularity here), and i denotes a

DB2 UDB DECIMAL(8,0) representing a date duration. A constraint can be used to

ensure that the starting date of a period is before the ending date.

4.4.2 Informix�Universal Server

We use the closed-open representation of a pair of DATEs (or DATETIMEs). Table 4.5

shows how the period operations can be implemented in Informix�Universal Server.

In the �rst column, a and b denote instant values. In the Informix�Universal Server

column, p1 and p2 denote the two components of the representation of the pe-

riod p, a and b denote Informix DATE values (we use a day granularity here), and i

denotes an Informix INTERVAL DAY representing a date duration. Some of the tem-

poral predicates can be conveniently de�ned as SPL PROCEDUREs. A constraint can

be used to ensure that the starting date of a period is before the ending date.



98 CHAPTER FOUR : PER IODS

Table 4.4 Period operations in IBM DB2 UDB.

Period Operations IBM DB2 UDB Equivalent

Types:

period [DATE, DATE)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p OVERLAPS q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) p1 - 1 DAY

last(p) p2 - 1 DAY

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [p1 + i, p2 + i)

i + p [p1 + i, p2 + i)

p - i [p1 - i, p2 - i)

p extend q [ CASE WHEN p1 < q1
THEN p1 ELSE q1 END,

CASE WHEN p2 < q2
THEN q2 ELSE p2 END )

p extend a [ CASE WHEN p1 < a THEN p1 ELSE a END,

CASE WHEN p2 <= a

THEN a + 1 DAY

ELSE p2 END )

a extend p [ CASE WHEN p1 < a THEN p1 ELSE a END,

CASE WHEN p2 <= a

THEN a + 1 DAY

ELSE p2 END )
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Table 4.4 (continued)

Period Operations IBM DB2 UDB Equivalent

Period Constructors, continued:

a extend b [ CASE WHEN a < b THEN a ELSE b END,

CASE WHEN a < b

THEN b + 1 DAY

ELSE a + 1 DAY END )

p \ q [ CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

WHEN p1 < q1 THEN q1
ELSE p1 END,

CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

WHEN p2 < q2 THEN p2
ELSE q2 END )

p - q [ CASE WHEN q1 <= p1 AND p2 <= q2
THEN NULL

WHEN p1 < q1 AND q2 < p2
THEN NULL

WHEN p2 > q2 AND p1 < q2
THEN q2

ELSE p1 END,

CASE WHEN q1 <= p1 AND p2 <= q2
THEN NULL

WHEN p1 < q1 AND q2 < p2
THEN NULL

WHEN q1 < p2 AND p2 > q1
THEN q1

ELSE p2 END )

p [ q [ CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

WHEN p1 < q1 THEN p1
ELSE q1 END,

CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

WHEN p2 < q2 THEN q2
ELSE p2 END )

p AT TIME ZONE i not supported

p AT LOCAL [p1 + CURRENT TIMEZONE,

p2 + CURRENT TIMEZONE)

Other Operators:

CAST(a AS PERIOD) [ a, a + 1 DAY )

CAST(p AS CHAR) �[� CONCAT CHAR(p1) CONCAT �-�

CONCAT CHAR(p2) CONCAT �)�
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Table 4.5 Period operations in Informix�Universal Server.

Period Operations Informix�Universal Server Equivalent

Types:

period [DATETIME, DATETIME)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p OVERLAPS q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) p1 - INTERVAL(1) DAY

last(p) p2 - INTERVAL(1) DAY

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [p1 + i, p2 + i)

i + p [p1 + i, p2 + i)

p - i [p1 - i, p2 - i)

p extend a not possible

p \ q not possible

p - q not possible

p [ q not possible

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, a + INTERVAL(1) DAY)

CAST(p AS CHAR) not possible
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4.4.3 Microsoft Access

We use the closed-open representation of a pair of Microsoft Access DATEs, which

are at the second granularity. Table 4.6 shows how the period operations can be

implemented in Microsoft Access 2000. In the �rst column, a and b denote date-

time values. In the Access column, p1 and p2 denote the two components of the

representation of the period p, a and b denote Access DATE values, and j denotes

an Access NUMBER representing Julian days (and fractional days).

4.4.4 Microsoft SQL Server

We use the closed-open representation of a pair of Microsoft SQL Server DATE-

TIMEs, which are at the subsecond granularity (1/300 second). Table 4.7 shows

how the period operations can be implemented in SQL Server. In the �rst column,

a and b denote datetime values. In the Microsoft SQL Server column, p1 and p2

denote the two components of the representation of the period p, a and b denote

SQL Server DATETIME values, and i denotes an SQL Server INTEGER representing

an integral number of seconds.

4.4.5 Sybase SQLServer

We use the closed-open representation of a pair of Sybase SQLServer DATETIMEs,

which are at the subsecond granularity. Table 4.8 shows how the period operations

can be implemented in Sybase. In the �rst column, a and b denote datetime values.

In the Sybase column, p1 and p2 denote the two components of the representation

of the period p, a and b denote SQLServer DATETIME values, and i denotes an

SQLServer INTEGER representing an integral number of seconds.

4.4.6 Oracle8 Server

We use the closed-open representation of a pair of Oracle DATEs, which are at the

second granularity. Table 4.9 shows how the period operations can be implemented

in Oracle8 Server. In the �rst column, a and b denote datetime values. In the Oracle8

Server column, p1 and p2 denote the two components of the representation of the

period p, a and b denote Oracle DATE values, and j denotes an Oracle NUMBER

representing Julian days.

4.4.7 UniSQL

We use the closed-open representation of a pair of UniSQL TIMESTAMPs, which

are at the second granularity. Table 4.10 shows how the period operations can be

implemented in UniSQL. In the �rst column, a and b denote datetime values. In

the UniSQL column, p1 and p2 denote the two components of the representation
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Table 4.6 Period operations in Microsoft Access 2000.

Period Operations Microsoft Access 2000 Equivalent

Types:

period [DATE, DATE)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p OVERLAPS q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) DateAdd("D", -1, p1)

last(p) DateAdd("D", -1, p2)

ending(p) p2

Interval Constructors:

duration(p) p2-p1 or

DateDiff("D", p1, p2) (integral number of

days)

extract time zone(p) not supported

Period Constructors:

p + i [DateAdd("D", j, p1), DateAdd("D", j, p2))

i + p [DateAdd("D", j, p1), DateAdd("D", j, p2))

p - i [DateAdd("D", -j, p1), DateAdd("D", -j, p2))

p extend q not possible

p \ q not possible

p - q not possible

p [ q not possible

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, DateAdd("D", 1, a))

CAST(p AS CHAR) CONCAT("[" & Cstr(p1) & "-" & Cstr(p2) & ")")
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Table 4.7 Period operations in Microsoft SQL Server.

Period Operations Microsoft SQL Server Equivalent

Types:

period [DATETIME, DATETIME)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p OVERLAPS q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) dateadd(second, -1, p1)

last(p) dateadd(second, -1, p2)

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [dateadd(second, i, p1),

dateadd(second, i, p2))

i + p [dateadd(second, i, p1),

dateadd(second, i, p2))

p - i [dateadd(second, -i, p1),

dateadd(second, -i, p2))

p extend q [ CASE WHEN p1 < q1
THEN p1 ELSE q1 END,

CASE WHEN p2 < q2
THEN q2 ELSE p2 END )

p extend a [ CASE WHEN p1 < a THEN p1 ELSE a END,

CASE WHEN p2 <= a

THEN dateadd(day, 1, a) ELSE p2 END

)

a extend p [ CASE WHEN p1 < a THEN p1 ELSE a END,

CASE WHEN p2 <= a

THEN dateadd(day, 1, a) ELSE p2 END

)
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Table 4.7 (continued)

Period Operations Microsoft SQL Server Equivalent

Period Constructors, continued:

a extend b [ CASE WHEN a < b THEN a ELSE b END,

CASE WHEN a < b

THEN dateadd(day, 1, b)

ELSE dateadd(day, 1, a) END )

p \ q [ CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

ELSE CASE WHEN p1 < q1
THEN q1 ELSE p1 END END,

CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

ELSE CASE WHEN p2 < q2
THEN p2 ELSE q2 END END )

p - q [ CASE WHEN q1 <= p1 AND p2 <= q2
THEN NULL

ELSE CASE WHEN p1 < q1 AND q2 < p2
THEN NULL

ELSE CASE WHEN p2 > q2 AND p1 < q2
THEN q2
ELSE p1 END

END

END,

CASE WHEN q1 <= p1 AND p2 <= q2
THEN NULL

ELSE CASE WHEN p1 < q1 AND q2 < p2
THEN NULL

ELSE CASE WHEN q1 < p2 AND p2 > q1
THEN q1
ELSE p2 END

END

END )

p [ q [ CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

ELSE CASE WHEN p1 < q1
THEN p1 ELSE q1 END END,

CASE WHEN p2 <= q1 OR q2 <= p1
THEN NULL

ELSE CASE WHEN p2 < q2
THEN q2 ELSE p2 END END )

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, dateadd(second,1,a))

CAST(p AS CHAR) "[" + convert(char(11), p1) + "-"

+ convert(char(11), p2) + ")"
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Table 4.8 Period operations in Sybase SQLServer.

Period Operations Sybase SQLServer Equivalent

Types:

period [DATETIME, DATETIME)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) dateadd(second, -1, p1)

last(p) dateadd(second, -1, p2)

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [dateadd(second, i, p1),

dateadd(second, i, p2))

i + p [dateadd(second, i, p1),

dateadd(second, i, p2))

p - i [dateadd(second, -i, p1),

dateadd(second, -i, p2))

p extend q not possible

p \ q not possible

p - q not possible

p [ q not possible

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, dateadd(second, 1, a))

CAST(p AS CHAR) "[" + convert(char(11), p1) + "-"

+ convert(char(11), p2) + ")"
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Table 4.9 Period operations in Oracle8 Server.

Period Operations Oracle8 Server Equivalent

Types:

period [DATE, DATE)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p q p1 < q2 AND q1 < p2

p NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) p1 - 1

last(p) p2 - 1

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [p1 + j, p2 + j)

i + p [p1 + j, p2 + j)

p - i [p1 - j, p2 - j)

a extend b [LEAST(a, b), GREATEST(a + 1, b + 1))

p extend q [LEAST(p1, q1), GREATEST(p2, q2))

p extend a [LEAST(p1, a), GREATEST(p2, a + 1))

a extend p [LEAST(a, p1), GREATEST(a + 1, p2))

p \ q [GREATEST(p1, q1), LEAST(p2, q2))

p - q not possible

p [ q [LEAST(p1, q1), GREATEST(p2, q2))

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, a + 1/86400)
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Table 4.10 Period operations in UniSQL.

Period Operations UniSQL Equivalent

Types:

period [TIMESTAMP, TIMESTAMP)

Predicates:

p equals q p1 = q1 AND p2 = q2

p before q p2 < q1

p before�1 q q2 < p1

p meets q p2 = q1

p meets�1 q q2 = p1

p overlaps q p1 < q1 AND q1 < p2

p overlaps�1 q q1 < p1 AND p1 < q2

p during q q1 < p1 AND p2 < q2

p during�1 q p1 < q1 AND q2 < p2

p starts q p1 = q1 AND p2 < q2

p starts�1 q2 p1 = q1 AND q2 < p2

p �nishes q q1 < p1 AND p2 = q2

p �nishes�1 q p1 < q1 AND p2 = q2

p q p1 < q2 AND q1 < p2

p IS NULL p1 IS NULL

Datetime Constructors:

beginning(p) p1

previous(p) p1 - 1

last(p) p2 - 1

ending(p) p2

Interval Constructors:

duration(p) p2 - p1

extract time zone(p) not supported

Period Constructors:

p + i [p1 + i, p2 + i)

i + p [p1 + i, p2 + i)

p - i [p1 - i, p2 - i)

p extend q not possible

p \ q not possible

p - q not possible

p [ q not possible

p AT TIME ZONE i not supported

p AT LOCAL not supported

Other Operators:

CAST(a AS PERIOD) [a, a + 1)

CAST(p AS CHAR) not possible
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of the period p, a and b denote UniSQL TIMESTAMP values, and i denotes a UniSQL

INTEGER representing seconds.

4.4.8 CD-ROMMaterials

The CD-ROM contains example queries in IBM DB2 UDB, Informix�Universal Ser-

ver, Microsoft Access 2000, Microsoft SQL Server, Sybase SQLServer, Oracle8 Server,

and UniSQL illustrating how periods may be simulated using a pair of dates. For

some of the operations that are not possible in IBM DB2 UDB strictly in SQL, the

equivalents are given as embedded SQL.

A detailed explanation of Ingres is also included, but the examples have not been

tested.

4.5 SUMMARY

A period is an anchored duration of the time line. It extends from a beginning

instant to a last instant.

Although a variety of representations are possible, including closed-closed,

closed-open, open-closed, open-open, a pair of starting instant and duration, and

a pair of last instant and duration, the most convenient representation is a closed-

open pair of instants.

Predicates are complex for periods, as they are not totally ordered. There are 13

possible relationships between two periods.

The delimiting timestamps can be extracted from a period. Two periods can be

unioned and intersected, and a period can be subtracted from another period. A

period can be shifted by adding or subtracting an interval.

SQL/Temporal, part of SQL3, provides built-in support for periods, including the

period type constructor, period literals, predicates, and value constructors. Addi-

tional constructs break a period into its constituent granules and normalize a set of

periods into a set of disjoint, nonadjacent periods.

4.6 READINGS

James Allen showed that there are exactly 13 disjoint binary relationships possible

between two periods [2]; these are now termed the Allen relations.
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A valid-time state table records the history of the

enterprise. Such a table is easily speci�ed by ap-

pending two timestamp columns, one specify-

ing when the row became valid and one spec-

ifying when the row stopped being valid. The

intervening time is termed the period of validity

of the row.

The primary key must be changed when

these timestamp columns are added. There are

several kinds of temporal primary keys. The

most natural variant is the sequenced primary

key, which states that the value of the indicated

columns is unique at every instant of time.

There are analogous kinds of referential in-

tegrity constraints, with the most natural being

again the sequenced variant. Unfortunately,

this kind is the most challenging to express in

SQL.



De�ning State Tables

I
n 1992 the University of Arizona was confronted with a knotty dilemma. Its

data was managed by a suite of COBOL legacy systems, each with its own

underlying DBMS or �le structure. Personnel records were (and continue to

be) managed by PSOS (Personnel Operating System), using the Transact DBMS. Fi-

nancial records, including purchasing, reorders, property management, �xed assets,

and the ledger, are managed by FRS (Financial Records System), which uses IDMS.

Student records are contained in yet another system, SIS (Student Information Sys-

tem), which uses VSAM. To obtain information from a speci�c system, someone in

the Center for Computing and Information Technology (CCIT) who was familiar

with that system would be tasked to write a report program, which often took sev-

eral weeks. Getting an integrated report across two or more of these databases was

exceedingly dif�cult. About the only positive thing that could be said about this

situation was that it guaranteed job security for CCIT personnel.

Cheryl Bach, an impassioned and imaginative seven-year CCIT veteran, had a

better idea. She proposed that a data warehouse be created in a relational DBMS,

gathering sanitized information from all of these systems into a single, consistent

database. Perhaps predictably, this suggestion was not embraced by the the CCIT

rank and �le. So Larry Rapagnani, then CCIT director, let Cheryl start a somewhat

clandestine project to develop this system, to be called the University Information

System (UIS), using a VAX-2000 and Rdb, which the university had been given by

Digital Equipment Corporation. The hope was that this minimally funded project

would produce an initial system that demonstrated the many bene�ts of a uni�ed

database, thereby reducing the resistance encountered initially.

Cheryl, working with Htay Lay and later with Chris Janton, eventually de�ned

some 300 tables. Some tables were copied over daily from the legacy systems; others

were added each pay period, each month, or even each 12 months (for those tables

summarizing the �scal year). The loading phase requires most of each night; access

is permitted from 8 A.M. to 8 P.M.
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UIS employs a client-server architecture. Users could connect over the network

to the server and run queries directly using interactive SQL, access it via COBOL

programs running on their client machine, or use the graphical query facilities of

their local machine. The system was initially released in December 1992. University

staff were encouraged to use the system, and training was provided in the graphical

user interface so that users could write their own queries. Access was also given to

CCIT personnel, so that they could try it out on their own. While the response

from users of direct access to this information was enthusiastic, not a single person

within CCIT tried the system for the �rst two and a half years. Decentralization can

be quite threatening.

5.1 INITIAL SCHEMA

Merging the data from each system into UIS required many technical decisions,

especially as the data generally wasn't stored in tabular format in the legacy systems.

We start with four tables, the EMPLOYEES table, the INCUMBENTS table, the POSITIONS

table, and the JOB TITLES table. The EMPLOYEES table contains 88 columns, of which

4 are germane to this discussion: SSN, LAST NAME, FIRST NAME, and ANNUAL SALARY.

The INCUMBENTS table contains 12 columns, including SSN and PCN (position control

number). The POSITIONS table contains 16 columns, including PCN and JOB TITLE

CODE1. The JOB TITLES table contains 11 columns. This last table is quite sizable;

there are over 7000 job titles de�ned. The University is certainly prepared for future

growth: 10 digits are allocated to the job title code!

We focus on the following columns:

EMPLOYEES(SSN, LAST_NAME, FIRST_NAME, ANNUAL_SALARY)

INCUMBENTS(SSN, PCN)

POSITIONS(PCN, JOB_TITLE_CODE1)

JOB_TITLES(JOB_TITLE_CODE, JOB_TITLE)

Each row of the �rst table provides information on one employee, each row of the

second table provides information on a job assignment for a current employee,

each row of the third table describes a particular position (which can be associated

with multiple job titles), and each row of the last table describes a particular job

title code. The primary key of EMPLOYEES is SSN, the primary key of INCUMBENTS

is (SSN, PCN), and the primary key of POSITIONS is PCN. INCUMBENTS.SSN is a for-

eign key to EMPLOYEES.SSN, INCUMBENTS.PCN is a foreign key to POSITIONS.PCN, and

POSITIONS.JOB TITLE CODE1 is a foreign key to JOB TITLES.JOB TITLE CODE.

Given these tables, �nding the employee's salary is easy when a relational query

language such as SQL is used:
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Code Fragment 5.1 What is Bob's salary?

SELECT ANNUAL_SALARY

FROM EMPLOYEES

WHERE FIRST_NAME = �Bob�

To determine the employee's position, all three tables need to be consulted:

Code Fragment 5.2 What is Bob's position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

Cheryl also wished to record the date of birth. To do so, she added a column to

the EMPLOYEES table, yielding the following schema:

EMPLOYEES(SSN, LAST_NAME, FIRST_NAME, ANNUAL_SALARY, BIRTH_DATE)

Finding the employee's date of birth is analogous to determining the salary:

Code Fragment 5.3 What is Bob's date of birth?

SELECT BIRTH_DATE

FROM EMPLOYEES

WHERE FIRST_NAME = �Bob�

SQL is adequate to handle

queries on isolated temporal

columns.

This illustrates the (limited) temporal support available in SQL (more precisely, in

the SQL-92 standard, as well as in all major commercial DBMSs),

that of the column type DATE. As we saw in Chapter 3, other

temporal types are available for columns. This chapter will in-

vestigate how such temporal columns can be used to indicate

the period of validity of the other columns.

5.2 ADDING HISTORY

To the INCUMBENTS table, Cheryl appended two columns. The �rst column indicates

when the information in the row became valid, that is, when the employee was

assigned to that position. The second column indicates when the information was

no longer valid, that is, when the employee was assigned to another position or left

the university. (Cheryl would have preferred using a period data type, but as we saw

before, such a type is not available in SQL-92, nor in Rdb. So a period is simulated

with two DATEs.)
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Code Fragment 5.4 Add a period timestamp to INCUMBENTS.

ALTER TABLE INCUMBENTS ADD START_DATE DATE

ALTER TABLE INCUMBENTS ADD END_DATE DATE

To the data model, these new columns are identical to the BIRTH DATE column, in

that they are of data type DATE. However, their meaning is quite different. The

BIRTH DATE column is independent of the rest of the table, except for the primary

key. However, the timestamp columns (START DATE and END DATE) interact closely

with the other columns, in that they specify the period of validity of the values of

these columns. In the INCUMBENTS table, the timestamp columns specify the period

of validity of the PCN column. This difference between the semantics of the BIRTH

DATE column and the other timestamp columns has far-ranging consequences and

is the primary impetus for this entire book.

You might argue that the BIRTH DATE column is the start of validity of the em-

ployee, with a (not included) column DEATH DATE providing the end of validity of

the employee. However, the period of validity is with respect to the fact modeled

by the entire row and applies to the information of that row. The EMPLOYEES table

records the employee's social security number (SSN), �rst name, last name, and an-

nual salary. Taking the SSN to be time-invariant, which is a common assumption,

a row of this table associates a �rst name, a last name, an annual salary, and a birth

date with that SSN. The period of validity would then record when that combina-

tion of four values was valid for that SSN. If any of the four values changed�for

example, a salary raise or changing the last name of the employee (say, if he or she

got married)�the period of validity would be terminated and another row would

state the new value. For this reason, the BIRTH DATE is simply another column and

should not be considered to start the period of validity of the row.

Such a table is called a valid-time table. This table records the history of the mod-

eled reality. The original table, without temporal support, is termed a snapshot table,

as it logically captures the state of the enterprise at a single point in time, much as a

photographic snapshot does. Snapshot tables are generally kept up-to-date, and so

capture reality �as of now.� (Jim Melton's compelling metaphor is the �last� frame

of a movie still being shot.)

In contrast with valid time, a column that just happens to be of a datetime

data type, but that does not indicate when other columns were valid, is termed a

user-de�ned time column. BIRTH DATE is a user-de�ned time column in INCUMBENTS.

Table 5.1 is an excerpt of the INCUMBENTS table. The �rst row speci�es that

employee 111-22-3333 (Bob) had a position 90025 (Senior Vice President, Research)

starting at the beginning of 1996, and extending to June 1 of that year, when he

transferred to position 120033. He stayed in that position for a total of four months,

until October 1, when he transferred to position 137112, where he continues to this

day (as we will see, the special date �3000-01-01� denotes �currently valid�). An-
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Table 5.1 An excerpt from the INCUMBENTS valid-time state table.

SSN PCN START DATE END DATE

111223333 900225 1996-01-01 1996-06-01

111223333 120033 1996-06-01 1996-08-01

111223333 120033 1996-08-01 1996-10-01

111223333 137112 1996-10-01 3000-06-01

444332222 120033 1997-01-01 3000-01-01

other employee, 444-33-2222, has remained in the same position since being hired

the beginning of the following year.

This table has several interesting features. First, although Bob appears in four

rows, he had only one position at any point in time (note that closed-open periods

are used in this table). The candidate keys for this particular table are (SSN, PCN,

START DATE), (SSN, PCN, END DATE), and (SSN, PCN, START DATE, END DATE). As we will

see shortly, none of these capture the desired constraint.

Second, neither employee has gaps in their position history (a gap represents

times when there was no PCN associated with their SSN); disallowing gaps may be

appropriate or unacceptable, depending on the semantics of the application.

The third observation is that this table can be viewed as a compact representation

of a sequence of snapshot tables, each valid on a particular day. The snapshot table

valid on January 1, 1996, contains one

row, (111223333, 900225). The snapshot

table valid on September 13, 1996, also

contains one row, (111223333, 120033).

The table valid on February 22, 1997, con-

tains two rows: (111223333, 137112) and

(444332222, 120033). This long sequence

of snapshot tables is very ef�ciently en-

coded in these �ve rows, by associating a

period with each row.

Also note that the second and third rows

have identical SSN and PCN values, yet

do not represent a duplicate in any of the

snapshot tables, as the periods associated

with these two rows do not overlap. In-

deed, it might be possible to replace these

rows with a single row, associated with the

period [1996-06-01 � 1996-10-01).

Water Clocks

A sundial is useless at night and on overcast days.

The Mesopotamians invented the clepsydra, or wa-

ter clock, for just such situations. This clock is based

on the principle that it takes an approximately �xed

amount of time for a given amount of water to

drain through a small hole, drop by drop. (This

same principle�with a different material, sand�

is the basis for the hourglass.) Because the length

of a day, and thus an hour (see the Hours sidebar

in Chapter 2), can vary when measured by a sun-

dial, but is of constant length when measured with

a clepsydra, the standard hour was de�ned based

on an equinoctial day, in which the daylight and

nocturnal portions were equal, and thus the hours

were also of equal length.
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EMPLOYEES.ANNUAL SALARY records only the most recent salary the employee

received. The table as it is in the personnel system is quite a bit more complicated.

It also includes STATUS BEGIN DATE and STATUS END DATE, which together indicate

when another included column, EMPLM STATUS, was valid, though only the most

recent status is retained in the table. EMPLOYEES also includes the PRIOR SSN, as well

as 17 dates, indicating when important events occurred, such as PAY CHANGE DATE.

As discussed above, none of these date �elds constitute the commencement or end

of the period of validity. In fact, the EMPLOYEES table doesn't even have a period of

validity; it is a snapshot table. When examining a particular table, you must deter-

mine which DATE columns apply to the row as a whole, via the period of validity

for that row, and which DATE columns merely provide information, such as the

employee's date of birth or their most recent promotion date.

The PSOS legacy system, however, does record the employment history. The

salary history information is included in UIS in the ZPSOS COMPENSATION HISTORY

table. The compensation history table is quite dif�cult to decipher. Its key is

(CHRONOLOGY KEY, SSN), the former a 16-character string specifying the date and

time the record was inserted. There are also HISTORY START DATE and HISTORY END

DATE columns, indicating when the information in the record applied (the period

of validity).

To get at the information desired, we de�ne a view that eliminates most of the

columns. The WHERE clause extracts the most recently stored row for each period

of validity. We are interested only in full-time employees (full-time equivalent = 1),

for which the hourly rate is actually the annual salary.

Code Fragment 5.5 Extract the relevant information.

CREATE VIEW SAL_HISTORY

AS SELECT SSN, SALARY_HOUR_RATE AS AMOUNT,

HISTORY_START_DATE, HISTORY_END_DATE

FROM ZPOS_COMPENSATION_HISTORY AS Z

WHERE CHRONOLOGY_KEY = MAX(SELECT CHRONOLOGY_KEY

FROM ZPOS_COMPENSATION AS Z2

WHERE Z2.SSN = Z.SSN

AND Z2.HISTORY_START_DATE < Z.HISTORY_END_DATE

AND Z.HISTORY_START_DATE < Z2.HISTORY_END_DATE)

AND EMPLOYEE_FTE = 1.00

A valid-time table records the

history of the modeled reality.

The history can be retained by

adding timestamp column(s).

The value of the column(s) specifying the period of validity

of a row is called the timestamp of the row; the columns them-

selves are called the timestamp columns, or the timestamps of the

table. This term, in lowercase letters, should be distinguished

from SQL-92's TIMESTAMP data type.
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5.3 TEMPORAL KEYS

The �rst consequence of adding valid-time support to a table is that the primary

key of such tables needs to take the timestamp into consideration. The value of the

primary key of a table must be unique; that is, each value must be contained in

at most one row of the table. For the original INCUMBENTS table, the value of the

(SSN, PCN) pair of columns is unique, at any point in time. Hence, the following table

constraint works �ne.

Code Fragment 5.6 The primary key of INCUMBENTS is (SSN, PCN).

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

Informally, this says that no employee (identi�ed by an SSN value) can have the

same position more than once simultaneously.

The original primary key is not,

by itself, a primary key of the

temporal table.

When history is added, there may well be several rows with

the same SSN and PCN. To handle this, one or both of the new

temporal columns can be appended to the key. Cheryl speci-

�ed the primary key of INCUMBENTS as (SSN, PCN, END DATE); the

primary key of SAL HISTORY is (SSN, HISTORY START DATE).

Cheryl could have just as easily used the start date, rather than the end date. She

could also have used both the start and end dates in the primary key. Unfortunately,

none of these three alternatives is suf�ciently restrictive. The problem arises if there

are overlapping periods associated with the same SSN. Consider the following table,

which is consistent with all three of the possible primary keys just discussed. This

table uses a closed-open representation of periods, and so, for example, the period

of validity of the �rst row includes the last day in May, but not the �rst day in June.

SSN PCN START DATE END DATE

111223333 900225 1996-01-01 1996-06-01

111223333 900225 1996-04-01 1996-10-01

We wish to specify that there can be only one (SSN, PCN) pair, at any given time.

Put another way, no one can have a particular position twice at the same time.

The above table violates this constraint: in May of 1996, Bob has position code

900225 twice. The primary key constraint should have disallowed this because

two rows have the same SSN and PCN for any speci�c day during the months of

April and May. Unfortunately, none of the following attempts prevent the above

(INCUMBENTS) table.
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Code Fragment 5.7 Attempting to specify a primary key at any point in time.

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, START_DATE)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, END_DATE)

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN, START_DATE,

END_DATE)

Adding the timestamp does not

serve to convert a nontemporal

key to a temporal key.

A sequenced constraint is one

that is applied independently at

each point in time.

Including the start date, the end date, or both in the primary

key does not prevent Bob from having a position (in this case,

position 900225) twice in May 1996 because the rows have dif-

ferent values for both of these columns.

What is needed is a sequenced constraint, which is applied at

each point in time. The constraint desired is that no two rows

have the same value for the SSN and the PCN. Because we want

this constraint to be satis�ed at every point in time, it becomes

a sequenced constraint. All constraints speci�ed on a snapshot

table have sequenced counterparts, speci�ed on the analogous

valid-time state table. A sequenced primary key constraint can be speci�ed in SQL

as follows:

Code Fragment 5.8 (SSN, PCN) is a sequenced primary key for INCUMBENTS.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE))

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL OR I.PCN IS NULL)

)

A sequenced primary key can be

expressed as an SQL assertion or

table constraint.

The last two predicates in the WHERE clause constitute the over-

lap predicate on two periods de�ned by their delimiting dates.

We use a COUNT aggregate to ensure that I1 and I2 aren't the

exact same row. The intuition of this sequenced constraint is

�no employee can have the same position more than once si-

multaneously.�

In the nested SELECT, we could have used the SQL-92 OVERLAPS predicate,

instead of the last two lines:
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AND (I1.START_DATE, I1.END_DATE) OVERLAPS (I2.START_DATE, I1.END_DATE)

If a closed-closed representation for the period of validity is used (in which case

the END DATE of the above table would be the last day that PCN was valid, or 1996-

05-30), the predicate must be altered slightly:

Code Fragment 5.9 (SSN, PCN) is a sequenced primary key for INCUMBENTS, assuming a

closed-closed timestamp representation.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE <= I2.END_DATE

AND I2.START_DATE <= I1.END_DATE))

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL OR I.PCN IS NULL)

)

All the tables shown in this book use a closed-open representation for the period

of validity, unless otherwise indicated. The code fragments will also make this as-

sumption. If some other representation for the period of validity is used, the SQL

predicates must be examined and possibly changed.

5.4 HANDLING NOW

It's the fabulous castle of Now.

You can walk in and wander about,

But it's so very thin,

Once you are, then you've been�

And soon as you're in, you're out.

�Shel Silverstein, �The Castle�

The special value �now� can be

stored as a speci�c instant value

that will not occur otherwise.

What should the timestamp be for current data? In the PSOS legacy system, cur-

rent data is indicated with an end date of 00-00-00, which is the code for �not

applicable.� The extraction utility replaces this with January 1,

1860. (In Rdb, the minimum value for a VMS DATE type is 1858-

11-17. However, the designers wanted this value to be a little

more recognizable, so they chose the �rst day of the following

decade. They are thinking about using 1859-12-31 to represent

a date that could not be correctly interpreted, such as a YYMMDD format date with
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a value of 990001.) Hence, Bob's current salary in INCUMBENTS has a START DATE

of July 1, 1996, and an END DATE of January 1, 1860. One advantage is that when

records are ordered by end date, current row(s) show up �rst.

Using this date for current data requires that the applications and queries that

use UIS have to treat such values specially. Speci�cally, to identify the current

records, the following predicate can be used:

WHERE INCUMBENTS.END_DATE = DATE �1860-01-01�

Anyone using the database would have to be told early on about this special, and

prevalent, time value. And clearly, taking this at face value is a blatantly false model

of the enterprise.

There are several somewhat more appealing alternatives. Rather than resorting

to a particular date, NULL can be used. This yields a slightly more readable predicate.

WHERE INCUMBENTS.END_DATE IS NULL

�Now� can also be represented

with a null value, but this

complicates queries.

The disadvantages are (1) users sometimes get confused when

they encounter a date of NULL, (2) SQL states that any compar-

ison with a null value returns false, with the implication that

rows with null values will simply be absent from the result of

most queries that contain predicates on the timestamps, which

would confuse users, and (3) other uses of NULL are no longer available. We can-

not state, for example, that the end date is unknown, which is quite different from

stating that the end date is �now.�

Another approach, one that is used extensively, is to set the end date to the

largest value in the timestamp domain (termed the end of time). The legacy �nancial

system, FRS, uses 99-99-99 for this purpose. The extraction process for UIS converts

this to 3000-01-01. Why not 9999-12-31? The Sybase DBMS was being considered

for UIS, and it doesn't support that date. Chris Janton wanted this date to be within

the range of acceptable dates for all the prominent database systems available then

and to be visually apparent. So he picked a millennium date that was far into the

future, thereby creating the year 3000 problem. However, the designers will be long

gone when this problem rears its head. Using a date (far) into the future allows

CURRENT DATE to be used to identify current records:

WHERE INCUMBENTS.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < INCUMBENTS.END_DATE

�Now� can be represented with

�forever,� or a close

approximation. However, it still

renders the data a rather

inaccurate model of reality.

The problem is that this model is also conspicuously fallacious.

We can safely state that Bob will not have this position in the

year 3000, though that is exactly what the current row records.

With the lack of an entirely acceptable solution, we will use

3000-01-01 in all of our UIS examples to represent both �now�

and �forever.�
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5.5 UNIQUENESS REEXAMINED

A primary key constraint states two things about the associated table. First, the

value of each of the key columns in any row cannot be null. Second, there can be

no two rows with the same values for the key columns. In fact, a primary key can

be expressed in another way, as a pair of constraints, NOT NULL and UNIQUE.

Two rows are value-equivalent

if the values of their

nontimestamp columns are

identical. Value equivalence is a

weak form of duplication.

Let's examine the uniqueness constraint in the context of the

INCUMBENTS table shown in Table 5.2, considering for now the

entire row. While in this case all columns are either key columns

or timestamp columns, the following de�nitions hold even in

the presence of other, data columns.

There are four kinds of duplicates involved, all but one of

which are present in Table 5.2. All of the rows are considered

value-equivalent, in that the values of all of the columns except

for the timestamp columns are identical. Value equivalence is a weak form of

duplication.

Two rows are sequenced

duplicates if they are duplicates

at some instant.

The �rst two rows illustrate a sequenced duplicate. Here, the

values of nontimestamp columns, in this case SSN and PCN, are

value-equivalent and the periods of validity overlap, in this case

for the months of April and May of 1996. As with primary keys,

the adjective sequencedmeans that the operation or constraint is

applied independently at every point in time. Here, Bob has two salaries for these

two months, as well as for the month of December 1997.

Two rows are current duplicates

if they are sequenced duplicates

at the current instant.

A variant of sequenced duplicate is a current duplicate, in which there are du-

plicate rows in the current state. It is currently March 20, 1997; there are no cur-

rent duplicates because only one row, the last, is currently valid.

Interestingly, whether a table contains current duplicate rows

can change over time, even if no modi�cations are made to

the table. In December 1997, a current duplicate will suddenly

appear in Table 5.2.

Table 5.2 A table containing several kinds of duplicates.

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1996-06-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1996-10-01 1998-01-01

111223333 120033 1997-12-01 1998-01-01
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Table 5.3 Implications among duplicate variants.

Sequenced Current Value-equivalent Nonsequenced

Sequenced

p p

Current

p p p

Value-equivalent

p

Nonsequenced

p p p

Two rows are nonsequenced

duplicates if the values of all

columns are identical.

Finally, the second and third rows are nonsequenced duplicates,

in which the values of all of the columns, including the time-

stamp columns, are identical. This adjective emphasizes that the

property (in this case, duplicates) is not applied independently

at each point in time, but rather is applied to the table as a

whole, ignoring its temporal nature.

Table 5.3 indicates how these variants interact. Each entry speci�es whether two

rows satisfying the variant on the left will also satisfy the variant listed across the

top. A check mark states that the top variant will be satis�ed; an empty entry

states that it may not. For example, if two rows are nonsequenced duplicates, they

will also be sequenced duplicates, for the entire period of validity. However, two

rows that are sequenced duplicates are not necessarily nonsequenced duplicates, as

illustrated by the �rst two rows of the above INCUMBENTS table.

The least restrictive form of duplication is value equivalence, as it simply ignores

the timestamps. Note that in Table 5.3 this form implies no other. The most re-

strictive is nonsequenced duplication, as it requires all the column values to match

exactly. It implies all but current duplication.

SQL's UNIQUE constraint prevents value-equivalent rows.

Code Fragment 5.10 Prevent value-equivalent rows in INCUMBENTS.

CREATE TABLE INCUMBENTS (

. . .

UNIQUE (SSN, PCN)

)

The SQL UNIQUE constraint

prevents nonsequenced

duplicates.

Intuitively, a value-equivalent constraint (or a value-equivalent

primary key constraint) states that �once a position is assigned

to an employee, it can never be repeated later,� because doing

so would result in a value-equivalent row.

We can also use a UNIQUE constraint to prevent nonsequenced duplicates, by

simply including the timestamp columns.
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Code Fragment 5.11 Prevent nonsequenced duplicates in INCUMBENTS.

CREATE TABLE INCUMBENTS (

. . .

UNIQUE (SSN, PCN, START_DATE, END_DATE)

)

Nonsequenced uniqueness

constraints are easy to specify in

SQL, but do not correspond to a

naturally stated condition on the

modeled reality.

While nonsequenced duplicates are easy to prevent via SQL

statements, such constraints are not that useful in practice. The

intuitive meaning of the above nonsequenced unique constraint

(or the closely related nonsequenced primary key constraint) is

something like �an employee cannot have the same position

twice over identical periods.� However, this constraint can be

satis�ed by simply starting one of the assignments a day earlier or later; the em-

ployee can still have two identical positions for overlapping periods.

Current duplicates involve just a little more effort.

Code Fragment 5.12 Prevent current duplicates in INCUMBENTS.

CREATE TABLE INCUMBENTS (

. . .

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < I1.END_DATE

AND I2.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < I2.END_DATE)))

)

Current uniqueness constraints

require an SQL constraint or

assertion, and are rather fragile.

Here the intuition is that no employee can have two identical

positions. The present tense is used to indicate �at the current

time.�

As mentioned above, the problem with a current uniqueness

constraint is that it can be satis�ed today but violated tomorrow,

even if there are no changes made to the underlying table.

If we know that the application will never store future data, we can approximate

a current uniqueness constraint by simply appending the END DATE.

Code Fragment 5.13 Prevent currentduplicates inINCUMBENTS, assumingno futuredata.

CREATE TABLE INCUMBENTS (

. . .

UNIQUE (SSN, PCN, END_DATE)

)



124 CHAPTER F IVE : DEF IN ING STATE TABLES

The SQL UNIQUE constraint with

the end date prevents current

duplicates, if future data is never

stored.

This works because all current data will have the same END DATE

(the special value DATE �3000-01-01�).

As a primary key is just a combination of UNIQUE and NOT

NULL, we can prevent sequenced duplicates by removing the

NOT NULL portion from CF-5.8.

Code Fragment 5.14 Prevent sequenced duplicates in INCUMBENTS.

CREATE TABLE INCUMBENTS (

. . .

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE)))

)

Sequenced uniqueness

constraints are also speci�ed

with an SQL constraint or

assertion. Such constraints are

analogous to conventional

uniqueness constraints on

nontemporal tables.

The intuition behind a sequenced unique (or sequenced primary key) constraint is

that �at no time can an employee have two identical positions.� This constraint is

a natural one. A sequenced constraint is the logical extension of

a conventional constraint on a nontemporal table.

If we know that the application will make only current modi-

�cations, that is, will only modify the current state, then we can

express a sequenced constraint via a current constraint. There

are three cases to consider to see that this holds: past, current,

and future. Future data cannot be stored, and so the sequenced

constraint will never be violated in the future. For current data,

the current constraint will ensure the sequenced constraint. For

past data, that data at one time was current data, and so satis-

�es the constraint. Hence, a current constraint will imply a sequenced constraint,

if only current modi�cations were made, and if the current constraint was present

from the de�nition of the table. For sequenced uniqueness, we saw above (CF-5.13)

that current uniqueness could be speci�ed by appending the END DATE. This also

works for sequenced duplicates, under the stated assumptions.

Code Fragment 5.15 Prevent sequenced duplicates in INCUMBENTS, assuming only cur-

rent modi�cations.

CREATE TABLE INCUMBENTS (

. . .

UNIQUE (SSN, PCN, END_DATE)

)
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To review, let's consider brie�y the integrity constraint �Each employee has at

most one position.� (Contrast this with the constraint discussed above: �Each

employee can have a position at most once,� which allows an employee to have

two positions at one time.) On a snapshot table, this is expressed with

UNIQUE(SSN)

The sequenced variety, �At any time, an employee has at most one position,� is

violated by the following temporal table:

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1996-06-01

111223333 900225 1996-04-01 1996-10-01

To avoid such situations, the following expresses the sequenced constraint.

Code Fragment 5.16 INCUMBENTS.SSN is sequenced unique.

CREATE ASSERTION seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE))

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL)

)

The nonsequenced variant is �an employee cannot have more than one position

over two identical periods.� This is expressed as follows:

Code Fragment 5.17 INCUMBENTS.SSN is nonsequenced unique.

UNIQUE(SSN, START_DATE, END_DATE)

Finally, the current variant is �an employee has [note present tense] at most one

position,� expressed as follows:
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Code Fragment 5.18 INCUMBENTS.SSN is current unique.

CHECK (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I1

WHERE AND START_DATE <= CURRENT_DATE

AND CURRENT_DATE < END_DATE

AND 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN

AND I2.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < I2.END_DATE)))

5.6 REFERENTIAL INTEGRITY

A referential integrity constraint speci�es that the value of the speci�ed column in

every row of the referencing table appears as the value of a speci�ed column in a

row of the referenced column. How such constraints are expressed depends heavily

on whether the referencing and referenced tables are temporal tables. There are

four cases, depending on whether the referencing table is temporal and whether

the referenced table is temporal.

Case 1 Neither table is temporal.

If neither table is temporal, then SQL's constructs are perfectly adequate. Assum-

ing for the moment that the INCUMBENTS table has no timestamp columns, the fact

that INCUMBENTS.PCN is a foreign key for POSITIONS.PCN can be expressed as follows:

Code Fragment 5.19 INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table

is temporal).

CREATE TABLE INCUMBENTS (

. . .

PCN CHAR(6) REFERENCES POSITIONS,

. . .

)

Case 2 Only the referencing table is temporal.

If the referencing table is temporal, but the referenced table is not, the same code

works as well. Returning to INCUMBENTS being a valid-time state table, with columns

START DATE and END DATE, the above REFERENCES fragment works �ne. Here the

assumption is that the nontemporal table contains time-invariant data, that is, data

that doesn't vary over time.
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Case 3 Both tables are temporal.

If the referenced table is temporal, the situation is considerably more complex.

In order to discuss this, we render POSITIONS temporal by adding START DATE and

END DATE columns. It turns out that in UIS position code numbers are sometimes

invalidated, and occasionally a PCN is reused. However, UIS only maintains the

current state of the POSITIONS table, so when a PCN is reused, an old value will

incorrectly be matched to a new job title code. The same holds for the job title code.

In fact, there are (at the time this was written) 881 job titles that appear in POSI-

TIONS.JOB TITLE CODE1 that are not associated with any rows in JOB TITLES. We

wish to avoid this situation by de�ning appropriate referential integrity constraints.

As with keys and duplicates, there are three kinds of referential integrity con-

straints on temporal tables: current, sequenced, and nonsequenced.

Current referential integrity (�the PCN of all current incumbents must be listed

in the current positions�) is straightforward, using the trick of converting a predi-

cate of the form 8P into :9(:P). For a current foreign key, P is �a current incumbent

that has a current position,� and :P is �a current incumbent whose position is not

current.�

Code Fragment 5.20 INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both

tables are temporal).

CREATE ASSERTION INCUMBENTS_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM INCUMBENTS AS I

WHERE I.END_DATE = DATE �3000-01-01�

AND NOT EXISTS (

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.END_DATE = DATE �3000-01-01�))

)

Current referential integrity

requires an SQL constraint or

assertion.

Here we just extract the current state on which to apply the constraint. Mirroring

the current uniqueness constraint, current referential integrity can be satis�ed to-

day yet be violated tomorrow, even if no changes are made to either table.

As with primary keys and duplicates, if future data is never

present, current referential integrity still requires the above as-

sertion because the referenced and referencing tables can change

independently. For the nonsequenced referential integrity con-

straint (�for each value of INCUMBENTS.PCN, there existed at some,

possibly different, time that value in POSITIONS.PCN�), CF-5.19 works perfectly well.

The fact that POSITIONS is temporal means that past positions have become
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invalid. Nonsequenced referential integrity ignores this time-varying behavior and

is content to match current incumbents with out-of-date positions.

Nonsequenced referential

integrity is easy to express, but

is unnatural.

The temporal analog of a nontemporal referential integrity

constraint is the sequenced constraint: �At each point in time,

each incumbent's PCN is valid at that time.� This statement

applies the intuition of referential integrity to time-varying in-

formation. As with primary keys and duplicates, stating a se-

quenced referential integrity constraint in English is natural, but stating it in SQL

is challenging.

Asserting a sequenced foreign key

The key is a sequenced foreign key if, for all rows r in the referencing table,

� there is a row with that key value valid in the referenced table when r started,

� there is a row with that key value valid in the referenced table when r stopped,

� and there are no gaps when there are no rows in the referenced table,

during r's period of validity, that have that key value.

Code Fragment 5.21 INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN

(both tables are temporal).

CREATE ASSERTION INCUMBENTS_Sequenced_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM INCUMBENTS AS I

-- there was a row valid in POSITIONS when I started

WHERE NOT EXISTS (

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.START_DATE <= I.START_DATE

AND I.START_DATE < P.END_DATE)

-- there was a row valid in POSITIONS when I ended

OR NOT EXISTS (

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.START_DATE < I.END_DATE

AND I.END_DATE <= P.END_DATE)

-- there are no gaps in POSITIONS during I�s period of validity

OR EXISTS (
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SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND I.START_DATE < P.END_DATE

AND P.END_DATE < I.END_DATE

AND NOT EXISTS (

SELECT *

FROM POSITIONS AS P2

WHERE P2.PCN = P.PCN

AND P2.START_DATE <= P.END_DATE

AND P.END_DATE < P2.END_DATE)))

)

Sequenced referential integrity

is the natural extension to

time-varying tables, but

requires a complex SQL

assertion.

This assertion may be read as follows. The outermost NOT EX-

ISTS states that no row I of INCUMBENTS fails the referential in-

tegrity test. The three predicates in the WHERE clause provide

ways for row I to fail the test. First, the test fails if there is no

row in POSITIONS valid at the start of row I's period of validity.

Second, the test fails if there is no row in POSITIONS valid at the

end of row I's period of validity. Third, the test fails if there is

a gap during row I's period of validity, a time when no row of

POSITIONS was valid. A gap exists if there is a row P that ends during row I's period

of validity that is not �extended� (towards I.END DATE) by another row.

If we are assured that the histories in the referenced table are contiguous, that

is, that there are no gaps in these histories, then sequenced referential integrity is

easier to express as two assertions.

Code Fragment 5.22 POSITIONS.PCNde�nes a contiguous history.

CREATE ASSERTION POSITIONS_Contiguous_History

CHECK (NOT EXISTS (

SELECT *

FROM POSITIONS AS P, POSITIONS AS P2

WHERE P.END_DATE < P2.START_DATE

AND P.PCN = P2.PCN

AND NOT EXISTS (

SELECT *

FROM POSITIONS AS P3

WHERE P3.PCN = P.PCN

AND (((P3.START_DATE <= P.END_DATE)

AND (P.END_DATE < P3.END_DATE))

OR ((P3.START_DATE < P2.START_DATE)

AND (P2.START_DATE <= P3.END_DATE)))))

)
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Exploiting contiguous histories

in the referenced table simpli�es

sequenced referential integrity

when both tables are temporal.

Requiring a contiguous history is a nonsequenced constraint.

Unlike a sequenced constraint, which must be true indepen-

dently at each point in time, a nonsequenced constraint requires

examining the table at multiple points of time. The absence of

a PCN on a particular day constitutes a gap in the history only

if there is a PCN for this SSN present both before and after this

date.

Given that there are no gaps, we can check for containment of the referenc-

ing period of validity by the contiguous history in the referenced table by simply

checking the delimiting instants of the referencing period of validity.

Code Fragment 5.23 INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN

(both tables are temporal, version 2).

CREATE ASSERTION INCUMBENTS_Sequenced_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM INCUMBENTS AS I

WHERE NOT EXISTS (

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.START_DATE <= I.START_DATE

AND I.START_DATE < P.END_DATE)

OR NOT EXISTS (

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.START_DATE < I.END_DATE

AND I.END_DATE <= P.END_DATE)))

Case 4 Only the referenced table is temporal.

The �nal case to consider is when the referencing table (here, INCUMBENTS) is a

nontemporal table and the referenced table (here, POSITIONS) is a temporal table.

The current constraint is easy to express.

Code Fragment 5.24 INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN

(only POSITIONS is temporal).

CREATE ASSERTION INCUMBENTS_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM INCUMBENTS AS I

WHERE NOT EXISTS (
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More Water Clocks

Water clocks have their disadvantages. They are

susceptible to frost, and hence are not practical

in Europe or other northern climes. Indeed, it has

been argued that the mechanical clock had to be

invented in Europe, a place where the prior tech-

nology of sundials and water clocks was inadequate

on cloudy, cold days.

Arguably among the most intricate of water

clocks was Su Song's astronomical clock, com-

pleted in 1094 C.E. This clock, which weighed sev-

eral tons and �lled a 40-foot tower, reproduced the

movements of the sun, the moon, and selected

stars, as well as indicating hours and k'o, each of

which equals 14 minutes and 24 seconds of our

time. Mongols invaded some 30 years later and car-

ried away some of the clock, and within 50 years,

this magni�cent clock was forgotten, to await re-

discovery by Joseph Needham in 1954. Although it

would be appealing for Song's clock to be a fore-

runner of the European mechanical clock, no such

connection has yet been uncovered.

SELECT *

FROM POSITIONS AS P

WHERE I.PCN = P.PCN

AND P.END_DATE = DATE �3000-01-01�))

)

The nonsequenced constraint is, again, expressed using CF-5.19.

The case where the referencing

table is nontemporal but the

referenced table is temporal

reduces to the other cases just

described.

For the sequenced constraint, we need to be more precise on

what �at each point in time� means for a nontemporal table.

There are at least two reasonable interpretations. One is that

the nontemporal table records current data, in which case a se-

quenced constraint is equivalent to a current constraint. A dif-

ferent interpretation is that the nontemporal table contains

time-invariant data. In that case, CF-5.19 works �ne.

For the INCUMBENTS table, the most appropriate interpretation is that this table

records current data, in which case CF-5.20 suf�ces.

5.7 CONSTRAINT ATTRIBUTES*

SQL-92 and some DBMSs provide attributes on constraints and assertions. A given

constraint can be speci�ed as DEFERRABLE or NOT DEFERRABLE. It is critical that the

constraints (and assertions) exempli�ed in this chapter be DEFERRABLE. Otherwise,

the constraint is checked at the end of every SQL statement, which is undesirable
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Temporal constraints and

assertions should be

DEFERRABLE INITIALLY

DEFERRED, with each

transaction containing a

modi�cation resetting this via a

SET CONSTRAINTS ALL

DEFERRED.

because most modi�cations on temporal tables require several

SQL statements to implement. As we shall see in Chapter 7, a

single logical deletion requires one or two UPDATE statements,

a DELETE statement, and possibly an INSERT statement. While

the database may be consistent at the end of this series of state-

ments, it most likely will not be at the end of the intermediate

SQL statements.

Similarly, the constraint must be set to INITIALLY DEFERRED

for the same reason (INITIALLY IMMEDIATE requests per-

statement checking).

Neither of these is the default. One must request DEFERRABLE INITIALLY DE-

FERRED for each constraint on a temporal table.

5.8 IMPLEMENTATION CONSIDERATIONS

The code fragments in this chapter were implemented on a variety of DBMSs.

5.8.1 IBM DB2 Universal Database

IBM DB2 supports a UNIQUE constraint (see CF-5.10 and CF-5.11) only in ver-

sion 5 (Universal Database); in prior versions, such constraints must be expressed

as triggers, or as PRIMARY KEY constraints if it is also desired that the indicated

columns are not nullable. Here is the DB2 UDB version of CF-5.10. Even in IBM

UDB 5, UNIQUE requires NOT NULLABLE, and so is equivalent to a primary key

constraint.

Code Fragment 5.25 Prevent value-equivalent rows in INCUMBENTS, in DB2UDB 5.

CREATE TABLE INCUMBENTS (

SSN DECIMAL(9,0) NOT NULL,

PCN DECIMAL(6,0) NOT NULL,

START_DATE DATE,

END_DATE DATE,

PRIMARY KEY (SSN, PCN)

)

IBM DB2 UDB also does not support assertions, nor a SELECT statement within

a CHECK constraint; triggers are used to implement these checks. As an example,

CF-5.8 may be implemented as the following DB2 UDB trigger.
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Code Fragment 5.26 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in DB2UDB.

CREATE TRIGGER seq_primary_key NO CASCADE

BEFORE INSERT ON INCUMBENTS REFERENCING NEW AS N

FOR EACH ROW MODE DB2SQL

WHEN (EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN = N.SSN AND I.PCN = N.PCN

AND I.START_DATE < N.END_DATE

AND N.START_DATE < I.END_DATE)

OR N.SSN IS NULL

OR N.PCN IS NULL)

SIGNAL SQLSTATE �70003� (�Violates Sequenced primary key�)

Using triggers instead of CHECK constraints can signi�cantly complicate mat-

ters. As an example, to specify current referential integrity (CF-5.20) in DB2 UDB

requires four triggers�INSERT and UPDATE triggers on INCUMBENTS and DELETE

and UPDATE triggers on POSITIONS�instead of the single fairly simple CHECK

constraint given earlier.

5.8.2 Microsoft Access

�Forever� in Microsoft Access 97 and Access 2000 is 23:59:59 December 31, 9999

C.E.

Neither version of Microsoft Access supports assertions. Assertion checking can

be implemented in Access via Visual Basic functions that are activated by events

provided in Access forms, in particular, the After Insert event. As an example, the

following is the Visual Basic code to implement a sequenced primary key (CF-5.8).

Code Fragment 5.27 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Access.

Function Sequenced_Primary_Key()

Dim dbs As Database, rst As Recordset

Dim rst2 As Recordset

Set dbs = CurrentDb

Set rst = dbs.OpenRecordset("SELECT I1.SSN " _

& "FROM INCUMBENTS AS I1 " _

& "WHERE 1 < ( SELECT COUNT (SSN) " _

& "FROM INCUMBENTS AS I2 " _

& "WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN " _

& "AND I1.START_DATE < I2.END_DATE " _

& "AND I2.START_DATE < I1.END_DATE); ")

continued on page 134
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continued from page 133

Set rst2 = dbs.OpenRecordset("SELECT * " _

& "FROM INCUMBENTS AS I " _

& "WHERE I.SSN IS NULL " _

& "OR I.PCN IS NULL ;")

If (rst1.EOF And rst1.BOF) Or (rst2.EOF And rst2.BOF) Then

MsgBox ("Insertion completed")

Else

MsgBox ("You entered an invalid input")

End If

End Function

If the result of the query (the OpenRecordset) is empty, then the assertion is

satis�ed.

Microsoft Access 97 also doesn't support full nesting of SQL statements. Some

complex queries have to be divided into several one-statement queries, then com-

bined in Visual Basic functions. For example, here is the Access equivalent of CF-5.21.

Code Fragment 5.28 INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN

(both tables are temporal), in Access.

Function Sequenced_Foreign_Key( )

Dim dbs As Database

Dim rst1 As Recordset

Dim rst2 As Recordset

Dim rst3 As Recordset

Dim Record_Number As Long

Set dbs = CurrentDb

Set rst1 = dbs.OpenRecordset("SELECT * " _

& "FROM INCUMBENTS AS I " _

& "WHERE NOT EXISTS ( SELECT * " _

& "FROM POSITIONS AS P " _

& "WHERE I.PCN = P.PCN " _

& "AND P.START_DATE <= I.START_DATE " _

& "AND I.START_DATE < P.END_DATE ) ")

Set rst2 = dbs.OpenRecordset("SELECT * " _

& "FROM INCUMBENTS AS I " _

& "WHERE NOT EXISTS ( SELECT * " _

& "FROM POSITIONS AS P " _
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& "WHERE I.PCN = P.PCN " _

& "AND P.START_DATE < I.END_DATE " _

& "AND I.END_DATE <= P.END_DATE ) ")

Set rst3 = dbs.OpenRecordset("SELECT * " _

& "FROM INCUMBENTS AS I " _

& "WHERE EXISTS ( SELECT * " _

& "FROM POSITIONS AS P " _

& "WHERE I.PCN = P.PCN " _

& "AND I.START_DATE < P.END_DATE " _

& "AND P.END_DATE < I.END_DATE " _

& "AND NOT EXISTS ( " _

& "SELECT * " _

& "FROM POSITIONS AS P2 " _

& "WHERE P2.PCN = P.PCN " _

& "AND P2.START_DATE <= P.END_DATE " _

& "AND P.END_DATE < P2.END_DATE )) ")

If (rst1.EOF And rst1.BOF) Or (rst2.EOF And rst2.BOF)

Or (rst3.EOF And rst3.BOF) Then

MsgBox ("Insertion completed")

Else

MsgBox ("You entered an invalid input")

End If

End Function

Each OpenRecordset handles one of the NOT EXISTS clauses of CF-5.21. Microsoft

Access 2000 does support nested SQL statements. While the above function will

work in Access 2000, a single OpenRecordset statement is also acceptable.

5.8.3 Microsoft SQL Server

Microsoft SQL Server does not support ASSERTIONs; these must be implemented as

triggers. As an example, CF-5.8 may be implemented as the following SQL Server

trigger.

Code Fragment 5.29 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Microsoft

SQL Server.

CREATE TRIGGER Seq_Primary_Key ON INCUMBENTS

FOR INSERT, UPDATE, DELETE AS

continued on page 136
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continued from page 135

BEGIN

IF (( EXISTS ( SELECT I1.SSN

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(I2.SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE)))

OR ( EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL OR I.PCN IS NULL))

)

RAISERROR(�Transaction violates sequenced constraint�, 1, 2)

ROLLBACK TRANSACTION

END

5.8.4 Sybase SQLServer

Sybase SQLServer does not support ASSERTIONs; these must be implemented as

triggers. As an example, CF-5.8 may be implemented as the following Sybase trigger.

Code Fragment 5.30 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Sybase.

CREATE TRIGGER Seq_Primary_Key ON INCUMBENTS

FOR INSERT, UPDATE, DELETE AS

BEGIN

IF (( EXISTS ( SELECT I1.SSN

FROM INCUMBENTS AS I1

WHERE 1 < (SELECT COUNT(I2.SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE)))

OR ( EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL OR I.PCN IS NULL))

)

RAISERROR(�Transaction violates sequenced constraint�, 1, 2)

ROLLBACK TRANSACTION

END
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Another approach is to use the syb identity function to differentiate rows, sim-

ilar to rowid in Oracle (compare with CF-5.31, below). To use this, �auto identity�

must be turned on via

sp_dboption database name, "auto identity", "true"

Otherwise, a column must be added to the table.

ALTER TABLE INCUMBENTS ADD row_id NUMERIC(5,0) IDENTITY

5.8.5 Oracle8 Server

�Forever� in Oracle8 Server is 23:59:59 December 31, 4712 C.E. This avoids the

year 2000 problem and the year 3000 problem, and even the year 4000 problem.

Oracle8 Server does not support assertions nor complex CHECK constraints; trig-

gers must be used to implement these. As an example, CF-5.8 may be implemented

as the following Oracle trigger.

Code Fragment 5.31 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in Oracle.

CREATE OR REPLACE TRIGGER seq_primary_key

AFTER INSERT OR UPDATE ON INCUMBENTS

DECLARE

valid INTEGER;

BEGIN

SELECT 1

INTO valid

FROM DUAL

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS I1 , INCUMBENTS I2

WHERE I1.SSN = I2.SSN

AND I1.PCN = I2.PCN

AND I1.START_DATE < I2.END_DATE

AND I2.START_DATE < I1.END_DATE

AND I1.rowid <> I2.rowid )

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS I1

WHERE I1.SSN IS NULL OR I1.PCN IS NULL);

EXCEPTION

WHEN NO_DATA_FOUND THEN

RAISE_APPLICATION_ERROR ( -20001 ,

�SSN and PCN are sequenced primary keys� );

END;
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In this trigger, if the WHERE clause is not satis�ed, then the exception will be

raised, causing the transaction to abort. (DUAL is a dummy system table provided by

Oracle8 Server for exactly this kind of situation.)

This example also illustrates the use of Oracle8 Server's rowid facility, which

eliminates the need of COUNT (which appeared in the original CF-5.8) to ensure

no duplicates.

Another relevant limitation is that there can be only one INSERT/UPDATE trigger

per table in Oracle8 Server, so multiple CHECK constraints or ASSERTIONs on a

table must be merged into a single trigger.

5.8.6 UniSQL

UniSQL does not support ASSERTIONs; these must be implemented as triggers. As

an example, CF-5.8 may be implemented as the following UniSQL trigger.

Code Fragment 5.32 (SSN, PCN) is a sequenced primary key for INCUMBENTS, in UniSQL.

CREATE TRIGGER seq_primary_key

BEFORE COMMIT

IF (EXISTS ( SELECT I1.SSN

FROM Incumbents AS I1

WHERE 1 < (SELECT COUNT(SSN)

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN AND I1.PCN = I2.PCN

AND I1.StartDate < I2.EndDate

AND I2.StartDate < I1.EndDate))

OR EXISTS ( SELECT *

FROM INCUMBENTS AS I

WHERE I.SSN IS NULL OR I.PCN IS NULL)

)

EXECUTE REJECT;

5.8.7 CD-ROMMaterials

The CD-ROM contains all the code fragments in this chapter in IBM DB2 UDB,

Microsoft Access 2000, Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and

UniSQL.
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5.9 SUMMARY

A valid-time state table retains the history of the modeled reality. A table is rendered

temporal by appending one or more timestamp columns, to specify the period of

validity of each row. As SQL doesn't (yet) provide a period data type, generally two

datetime columns are appended, indicating the start and end of the period. The

representation can be closed-closed or closed-open, with the latter preferred.

The end time for current data should be the logical value �now.� SQL supports

CURRENT DATE in queries, but not as a stored value. Possibilities include using a

distinguished value (UIS uses 1860-01-01 and 3000-01-01) or the value NULL. The

best approach is to use a value approximating �forever.� In Section 7.5 we will see

another approach that obviates the need to store �now.�

The original primary key of the table is not the primary key of the temporal table.

Unfortunately, adding the start column, or the end column, or both, generally does

not suf�ce to de�ne the primary key. The central notion of a key is the absence of

duplicates. There are four kinds of uniqueness constraints:

1. Current: No two currently valid rows have the same value for the key columns.

2. Value-equivalent: No two rows have the same value for their nontimestamp

columns.

3. Sequenced: No two rows have the same value for the key columns at any instant.

4. Nonsequenced: No two rows have the same value for all their columns.

The database designer should �rst determine which uniqueness constraint is re-

quired by the application. Then the appropriate code fragment can be used as a

template. Value-equivalent and nonsequenced uniqueness can be speci�ed using

the UNIQUE construct. An SQL constraint or assertion is required to specify cur-

rent and sequenced constraints. (In the restricted case where future information

will never be stored, adding the end column suf�ces for a current primary key.)

A sequenced primary key is the natural analog of a primary key on a nontem-

poral table and is what is usually desired. If the application only modi�es the cur-

rent state, then column(s) that comprise a current primary key will also satisfy

the sequenced primary key constraint. In that case, the end time should be in-

cluded in the constraint (see CF-5.13). If any application will store future or past

data, then the general constraint for sequenced primary keys (CF-5.8) or sequenced

uniqueness (CF-5.14) is required.
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Table 5.4 Referential integrity code fragments.

Referenced Table

Nontemporal Temporal

Current Nonsequenced Sequenced

Referencing Nontemporal 5.19 5.24 5.19 5.20 or 5.19

Table Temporal 5.19 5.20 5.19 5.21

or 5.22 + 5.23

How to express a referential integrity constraint depends on whether the refer-

encing and referenced tables are temporal tables. Six code fragments were given to

illustrate the possibilities. Table 5.4 identi�es which code fragment applies in each

situation.

In many cases, a simple constraint suf�ces. However, when both tables are tem-

poral, the most natural referential constraint is a sequenced one, where a com-

plex assertion (CF-5.21) or pair of assertions (CF-5.22, CF-5.23) is required. All such

constraints should be speci�ed as DEFERRABLE INITIALLY DEFERRED.

5.10 READINGS

Ensor and Stevenson [32] recommend storing a distant date for now, as do we in

Section 5.4. They recommend that the end date column be used for a primary key.

As we saw in Section 5.5, this works only when future data will never be inserted

into the table, and then, only to enforce a current primary key. They also recom-

mend that the end date column be added for referential integrity, which has the

same problems as using this approach with the primary key. They also consider the

related problem of avoiding gaps in the history of an entity. If gaps cannot occur,

then referential integrity reduces to ensuring that the combined period of validity

for the entity in the referenced table (identi�ed by the foreign key) contains the

period of validity of the row that references it (see CF-5.23).
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Clifford et al. show how CURRENT DATE can be stored directly as a column

value, thereby providing support for �now� [23]. This approach requires a few

changes to the underlying DBMS.

Böhlen differentiates between intrastate integrity constraints, which �enforce the

consistency of (all) snapshots of a valid time database,� and interstate integrity

constraints, which �relate and restrict arbitrary snapshots of a valid time data-

base,� [11]. (A snapshot of a valid-time table at a speci�c time instant consists of the

rows that were valid at that time.) A sequenced constraint is thus an intrastate con-

straint, and a nonsequenced constraint is thus an interstate constraint. We discuss

Böhlen's taxonomy in more detail on page 341.

Barnert et al. provide an analysis of the checking required during various kinds

of modi�cations to ensure sequenced referential integrity [4].

David Landes tells the exciting story of Needham's discovery of Su Song's clep-

sydra [65].
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With the history stored in a valid-time state

table, the most prevalent queries are still of the

form �What is true now?� Such current queries

are easy to convert into SQL. A related kind of

query is, �What is true at a point in time other

than now?� These time-slice queries are also

easy to convert.

For each current query, for example, �Who

makes more than $50,000 annually?� there is

an analogous sequenced query that asks for the

history, for example, �Who makes or has made

more than $50,000 annually, and when?� Con-

verting such queries to SQL can be challenging.



Querying State Tables

I
n the previous chapter, we saw that there are three kinds of constraints you

can specify for a temporal table: current, sequenced, and nonsequenced, with

nonsequenced constraints the easiest to specify yet the least useful. A similar

situation exists for queries and modi�cations applied to temporal tables.

Here we examine common queries over temporal tables, from extracting the

current state, to extracting previous states, to evaluating several kinds of sequenced

queries. In the following chapter, we then turn to modi�cations, examining the

three variants there. We assume that the INCUMBENTS and SAL HISTORY tables are

valid-time state tables.

6.1 EXTRACTING THE CURRENT STATE

Executing a query on the current

state of a temporal table

requires an additional predicate.

Queries on the original table (before it was timestamped to ren-

der it as a valid-time table) correspond to queries that extract the

current state of the valid-time table. To determine Bob's (current)

position, we take the original query (CF-5.2) and add a predicate

to the WHERE clause.

Code Fragment 6.1 What is Bob's current position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND END_DATE = DATE �3000-01-01�
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Note that only one of the tables used in this query is temporal: INCUMBENTS. Hence

the test for the particular date need only be applied to that table. We could use the

same approach when �now� is represented with NULL.

The query on a table using the end of time (�forever�) to represent �now� is more

general, as it will work even after the year 3000, thus avoiding the Y3K problem.

Code Fragment 6.2 What is Bob's current position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND START_DATE <= CURRENT_DATE

AND CURRENT_DATE < END_DATE

The last two lines of the predicate are equivalent to requiring that the current date

overlap the period of validity. Note that BETWEEN cannot be used here, because it

would permit the END DATE to equal CURRENT TIMESTAMP, which is incorrect because

we are using a closed-open representation for period timestamps.

Current joins over two temporal

tables are not that much harder.

Joins over the current state of temporal tables can be han-

dled similarly to queries involving one temporal table. To obtain

the employee's (current) position and salary, the current state of

both the INCUMBENTS and the SAL HISTORY tables must be used.

(We could have also gotten the current salary from the EMPLOYEES table, but that

wouldn't have been as fun.)

Code Fragment 6.3 What is Bob's current position and salary?

SELECT JOB_TITLE_CODE1, AMOUNT

FROM EMPLOYEES, INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND START_DATE <= CURRENT_DATE

AND CURRENT_DATE < END_DATE

AND HISTORY_START_DATE <= CURRENT_DATE

AND CURRENT_DATE < HISTORY_END_DATE

AND SAL_HISTORY.SSN = EMPLOYEES.SSN

This same trick works for more complex queries, including those with subqueries.

Code Fragment 6.4 What employees currently have no position?

SELECT FIRST_NAME

FROM EMPLOYEES

WHERE NOT EXISTS ( SELECT *
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FROM INCUMBENTS

WHERE EMPLOYEES.SSN = INCUMBENTS.SSN

AND START_DATE <= CURRENT_DATE

AND CURRENT_DATE < END_DATE)

In such queries, every temporal table has to be restricted to the current state.

6.2 EXTRACTING PRIOR STATES

The queries just discussed are termed current time-slice queries. More accurately, the

class is termed a current valid time-slice query, as such queries select the state valid

at a particular time. Time-slice queries need not be restricted to the current state. A

common query requests information valid at the beginning of the year.

Code Fragment 6.5 What was Bob's position at the beginning of 1997?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND START_DATE <= DATE �1997-01-01�

AND DATE �1997-01-01� < END_DATE

If �now� is represented with a particular value, we have to augment the predicate,

replacing the last line with

AND (DATE �1997-01-01� <= END_DATE OR END_DATE = DATE �1860-01-01�)

Time-slice queries, over a

previous state, require an

additional predicate for each

temporal table.

Using NULL as a proxy for �now� is handled analogously in such

queries:

AND (DATE �1997-01-01� <= END_DATE OR END_DATE IS NULL)

For queries involving multiple temporal tables, the WHERE

clause most closely associated with the FROM clause that de�nes

a correlation name over a temporal table should be augmented

as shown above to select the previous state of that table.

6.3 SEQUENCED QUERIES

The above queries take time-varying tables and extract a state at a particular point

in time. Once that state is available, it can be manipulated conventionally.
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We now consider queries in which the resulting table is a valid-time table. The

query will be over one or more temporal tables and produce a temporal result. Here

we consider sequenced variants of basic operations: selection, projection, union,

sorting, join, difference, and duplicate elimination.

Sequenced selection is particularly easy: no change is necessary.

Code Fragment 6.6 Whomakes or hasmademore than $50,000 annually?

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

A selection (a predicate over a

nontimestamp column) is a

sequenced selection on a

temporal table.

In this code fragment we focus on selection by using a target list of `*', which

will return all the columns, including the desired timestamp

columns. This is in contrast to a current query, which should

return a snapshot state, without timestamp columns (compare

with CF-6.3 and CF-6.4), or with a prior valid time-slice query

(e.g, CF-6.5, which also doesn't include the timestamp columns).

Sequenced projection is also easy: simply include the timestamp column(s) in

the select list. The following query performs a projection on SSN.

Code Fragment 6.7 List the social security numbers of current and past employees.

SELECT SSN, HISTORY_START_DATE, HISTORY_END_DATE

FROM SAL_HISTORY

A sequenced projection of

speci�ed columns in the SELECT

clause can be effected by

including the timestamp

columns.

Note that duplicates resulting from the projection are retained.

Adding DISTINCT will remove these duplicates, but is proba-

bly not what is desired. Section 6.5 will examine the fascinating

subtleties of removing duplicates from temporal tables, includ-

ing describing why adding DISTINCT is not suf�cient.

Sequenced sorting requires the result to be ordered, at each

point in time. This can easily be accomplished by appending

the start and end times to the sort columns in the ORDER BY

clause.

Code Fragment 6.8 Sequenced sort INCUMBENTS on the position code (�rst version).

SELECT *

FROM INCUMBENTS

ORDER BY PCN, START_DATE, END_DATE

Table 6.1 shows the result for �ve sample rows. For each point in time, the state at

that time, taken in the same sequence as the underlying table, will be ordered by

PCN.
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Table 6.1 An excerpt of INCUMBENTS.

SSN PCN START DATE END DATE

111223333 120033 1996-10-01 1997-06-01

111223333 137112 1996-01-01 1996-10-01

111223333 341288 1995-03-01 1996-01-01

111223333 723401 1997-10-01 1998-01-01

111223333 908654 1997-06-01 1998-01-01

Table 6.2 A sorted version of Table 6.1.

SSN PCN START DATE END DATE

111223333 341288 1995-03-01 1996-01-01

111223333 137112 1996-01-01 1996-10-01

111223333 120033 1996-10-01 1997-06-01

111223333 908654 1997-06-01 1998-01-01

111223333 723401 1997-10-01 1998-01-01

The valid time-slice over this table on November 19, 1997 will be the following,

which indeed is ordered by PCN:

SSN PCN

111223333 723401

111223333 908654

Putting the timestamp columns �rst,

ORDER BY START_DATE, END_DATE, PCN

will not work. Applying such an order to Table 6.1 results in Table 6.2. Now take a

valid time-slice on November 19, 1997, preserving the underlying order. Two rows

result,

SSN PCN

111223333 908654

111223333 723401

which are not correctly sorted.
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So, our conclusion is that appending the timestamp columns to the end of the

composite sort key results in a sequenced sort. Interestingly, sequenced sorting can

also be accomplished by omitting the timestamp columns.

Code Fragment 6.9 Sequenced sort INCUMBENTS on the position code (second version).

SELECT *

FROM INCUMBENTS

ORDER BY PCN

A query using ORDER BY is

automatically sequenced,

whether or not the timestamp

columns are retained.

The result is still ordered by the sort columns at all points in

time. This can be argued by contradiction. Take a valid time-slice

at any point in time of the result of CF-6.9, respecting the order

of that table. If the PCN of two successive rows of that time-slice

are not ordered by PCN, then the associated rows of the result of

CF-6.9 must also not be ordered by PCN, which is impossible.

The same considerations hold for sequenced union (if duplicates are retained).

Code Fragment 6.10 Who makes or has made more than $50,000 annually or less than

$10,000?

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT > 50000

UNION ALL

SELECT *

FROM SAL_HISTORY

WHERE AMOUNT < 10000

A UNION ALL over temporal

tables is automatically

sequenced if the timestamp

columns are retained.

It is appealing that the selection, projection (without duplicate

elimination), sorting, and union-all queries are all automatically

sequenced, without change.

A UNION without ALL eliminates duplicates but is surpris-

ingly dif�cult to express in SQL. Section 6.5 will show how to

do that. But before we confront that challenging query, let's

consider sequenced join queries.

6.3.1 Sequenced Joins

In Section 6.1, we showed how you can produce the join of the current states of

two valid-time tables (see CF-6.3). A more challenging query is to perform the join

itself in a temporal fashion. What is desired here is to combine the history from the

two tables, termed a sequenced join.

As an example, to determine the salary and position history for each employee,

we must determine, for each point in time, the employee's salary and position.
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Mean Solar Time

One problem with true solar time (see page 95)

is that the motion of the sun is not uniform be-

cause the orbit of the earth is an ellipse rather

than a circle. Sometimes the earth moves faster,

and sometimes it moves slower, with the result that

some days are slightly shorter or longer than oth-

ers. This variability is vexing to those who use me-

chanical clocks, which when working well tick off

hours that are very similar in duration. Mean solar

time, ormean time, is a calculated time, determined

by averaging true solar time over the year.

The difference between mean solar time and

true solar time, termed the equation of time, peaks

at +14 minutes in February, and is smallest at �16

minutes at the beginning of November (see Fig-

ure 6.1). To calibrate your watch, take the true

time indicated by a sundial and add the value for

the equation of time for the current day. With-

out this correction, a sundial is absolutely accurate

only four times a year�around April 16, June 14,

September 1, and December 25.
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Figure 6.1 The equation of time. (Redrawn from Sundials: History, Theory, and Practice

by René R.J. Rohr. Dover Publications, 1996.)

The salary comes from SAL HISTORY.AMOUNT, and the position is available in INCUM-

BENTS.PCN. However, to do this on a point-by-point basis would be extremely inef-

�cient, as well as wasteful, because the salary and position remain unchanged for

many consecutive days. So we will instead compute the history using the periods

themselves.

We initially assume that there are no duplicate rows in either of the underlying

temporal tables. This is probably the case for the SAL HISTORY table; it is doubtful

that an employee has two salaries at one time. The fact that an employee can have

multiple positions (e.g., a department head who is also a faculty member) is ac-

commodated via the position control number. The POSITIONS table maps each PCN

to JOB TITLE CODE1 through JOB TITLE CODE4; indeed, this is the primary rationale
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SAL_HISTORY

INCUMBENTS

Result

Figure 6.2 First case of a sequenced join.

SAL_HISTORY

INCUMBENTS

Result

Figure 6.3 Second case of a sequenced join.

for that table. On page 112 we listed only the JOB TITLE CODE1 column; we now

mention these other three columns to make the point that no employee has two

PCN values at the same time in the POSITIONS table. In summary, in the case of a se-

quenced join between the SAL HISTORY and POSITIONS tables, there are no duplicate

rows to contend with.

Using SQL, the query must do a case analysis of how the period of validity of

each row of SAL HISTORY overlaps the period of validity of each row of INCUMBENTS;

there are four possible cases.

A sequenced join requires four

SELECT statements and complex

inequality predicates.

In the �rst case, the period associated with the SAL HISTORY

row is entirely contained in the period associated with the IN-

CUMBENTS row. Since we are interested in those times when both

the salary and the department are valid, the intersection of the

two periods is the contained period, that is, the period from

S.HISTORY START DATE to S.HISTORY END DATE. We illustrate this case in Figure 6.2,

with the right end emphasizing the closed-open representation. In the second case,

neither period contains the other (shown in Figure 6.3). The other cases similarly

identify the overlap of the two periods.
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Code Fragment 6.11 Provide the salary and position history for all employees.

SELECT S.SSN, AMOUNT, PCN,

S.HISTORY_START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND INCUMBENTS.START_DATE <= S.HISTORY_START_DATE

AND S.HISTORY_END_DATE <= INCUMBENTS.END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

S.HISTORY_START_DATE, INCUMBENTS.END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND S.HISTORY_START_DATE >= INCUMBENTS.START_DATE

AND INCUMBENTS.END_DATE < S.HISTORY.END_DATE

AND S.HISTORY_START_DATE < INCUMBENTS.END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

INCUMBENTS.START_DATE, S.HISTORY_END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND INCUMBENTS.START_DATE > S.HISTORY_START_DATE

AND S.HISTORY.END_DATE <= INCUMBENTS.END_DATE

AND INCUMBENTS.START_DATE < S.HISTORY_END_DATE

UNION ALL

SELECT S.SSN, AMOUNT, PCN,

INCUMBENTS.START_DATE, INCUMBENTS.END_DATE

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND INCUMBENTS.START_DATE > S.HISTORY_START_DATE

AND INCUMBENTS.END_DATE < S.HISTORY_END_DATE

When a sequenced join is applied to the INCUMBENTS excerpt in Table 6.1 and the

SAL HISTORY excerpt in Table 6.3, Table 6.4 results. The �rst row, for example, results

from the intersection of the period [1995-03-01 � 1996-01-01) from the INCUMBENTS

table and [1995-03-01 � 1996-05-01) from the SAL HISTORY table.

As an alternative way of viewing the result, consider the date January 1, 1997.

One row in the INCUMBENTS table is valid on that day, with a PCN of 120033. One

row from the SAL HISTORY table is also valid on that date, with an amount of 16.25.

This date thus appears once in the result, in the period of validity of row four.

This query requires care to get the 10 inequalities and the four select lists cor-

rect. The cases are designed to partition the possible interactions between the SAL

HISTORY and INCUMBENTS rows. Speci�cally, the �rst case covers s finishes i _

s during i_s starts i_s equals i, the second case s overlaps �1i_s starts �1i,

the third case s overlaps i _ s finishes �1i, and the last case s during �1i (see
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Table 6.3 An excerpt from the SAL HISTORY valid-time state table.

SSN AMOUNT HISTORY START DATE HISTORY END DATE

111223333 15.75 1995-03-01 1996-05-01

111223333 16.25 1996-05-01 1997-06-01

111223333 17.00 1997-06-01 1998-01-01

Table 6.4 Result of the sequenced join.

SSN AMOUNT PCN START DATE END DATE

111223333 15.75 341288 1995-03-01 1996-01-01

111223333 15.75 137112 1996-01-01 1996-05-01

111223333 16.25 137112 1996-05-01 1996-10-01

111223333 16.25 120033 1996-10-01 1997-06-01

111223333 17.00 908654 1997-06-01 1998-01-01

111223333 17.00 723401 1997-10-01 1998-01-01

page 92 for an illustration of these operators). Because none of these relationships

is covered by more than one case, no duplicates will be generated. For this reason,

we use UNION ALL, which is generally more ef�cient than UNION, which does a

lot of work to remove the (nonoccurring) duplicates.

The above code fragments assume that the underlying temporal tables contain

no duplicates. If that assumption does not hold, we have three choices:

1. Retain duplicates in the result.

2. Use CF-6.11, replacing UNION ALL with UNION, and eliminate the duplicates

after the join, as discussed in the next section.

3. Eliminate duplicates before the join, then use CF-6.11.

The SQL-92 CASE expression allows this query to be written as a single statement,

thereby avoiding the complexities of UNION versus UNION ALL.

Code Fragment 6.12 Provide the salary and position history for all employees, using

CASE.

SELECT S.SSN, AMOUNT, PCN,

CASE

WHEN S.HISTORY_START_DATE > INCUMBENTS.START_DATE

THEN S.HISTORY_START_DATE

ELSE INCUMBENTS.START_DATE

END,

CASE

WHEN S.HISTORY_END_DATE > INCUMBENTS.END_DATE

THEN INCUMBENTS.END_DATE
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ELSE S.HISTORY_END_DATE

END

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND (CASE

WHEN S.HISTORY_START_DATE > INCUMBENTS.START_DATE

THEN S.HISTORY_START_DATE

ELSE INCUMBENTS.START_DATE

END) <

(CASE

WHEN S.HISTORY_END_DATE > INCUMBENTS.END_DATE

THEN INCUMBENTS.END_DATE

ELSE S.HISTORY_END_DATE

END)

The �rst CASE expression simulates a last instant function of two arguments; the

second, a �rst instant function of the two arguments. The additional WHERE pred-

icate ensures the period of validity is well formed, that its starting instant occurs

before its ending instant.

As we will see later, the �rst instant and last instant functions are available (un-

der different names) from some vendors as SQL extensions. They can also be imple-

mented as SQL/PSM (persistent stored module) FUNCTIONs.

Code Fragment 6.13 De�ne a first instant function.

CREATE FUNCTION first_instant (one DATE, two DATE)

RETURNS DATE

LANGUAGE SQL

RETURN CASE WHEN one > two THEN one ELSE two END

A last instant function can be similarly de�ned. In fact, we can exploit polymor-

phism in SQL/PSM by de�ning a host of first instant and last instant func-

tions, each taking two parameters of each of the various temporal types (e.g., TIME,

TIMESTAMP, TIMESTAMP(3)) and returning the same type.

With these functions, the sequenced join is considerably simpli�ed.

Code Fragment 6.14 Provide the salary and position history for all employees, using

first instant and last instant.

SELECT S.SSN, AMOUNT, PCN,

last_instant(S.HISTORY_START_DATE, INCUMBENTS.START_DATE),

first_instant(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

FROM SAL_HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND last_instant(S.HISTORY_START_DATE, INCUMBENTS.START_DATE)

< first_instant(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)
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6.3.2 Sequenced EXCEPT

A join of two tables repeatedly takes a row from each and applies a predicate to

both to determine whether the rows contribute to the result. The NOT EXISTS con-

struct of SQL is similar, with the critical distinction that the row from the sec-

ond table must not exist. This distinction renders the sequenced NOT EXISTS more

challenging than a sequenced join.

As before, let's start with a nontemporal query and convert it to its sequenced

analog. Assume that employees have multiple positions, as an example, a depart-

ment head (a PCN of 455332) who is also a professor (a PCN of 821197). We wish to

identify the exceptions, that is, the department heads who are not also professors.

Code Fragment 6.15 List the employeeswho aredepartment heads but are not also pro-

fessors (nontemporal version).

SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

AND NOT EXISTS (SELECT *

FROM INCUMBENTS AS I2

WHERE I2.SSN = I1.SSN

AND I2.PCN = 821197)

For the sequenced version, we wish to identify when the department heads were

not professors. Employees are promoted to department head, remain a few years,

then someone else becomes department head. Somewhat independently, employ-

ees are promoted to the rank of professor; very occasionally, they are demoted to

associate professor. Hence, the two SELECT clauses in the above code fragment eval-

uate to time-varying tables; the NOT EXISTS must perform the relational difference

conceptually at each point in time. The result will be a valid-time state table; the

challenge is to restate the query so that it computes the timestamps of this table

correctly.

As an aside, the SQL NOT EXISTS is closely tied to the EXCEPT construct:

Code Fragment 6.16 List the employeeswho aredepartment heads but are not also pro-

fessors (an equivalent nontemporal version).

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197
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This is the relational difference operator, expressed in SQL. The transformation we

give for NOT EXISTS is also applicable for EXCEPT.

NOT EXISTS is also closely related to NOT IN:

Code Fragment 6.17 List the employeeswho are department heads but are not also pro-

fessors (an equivalent nontemporal version).

SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

AND 821197 NOT IN (SELECT PCN

FROM INCUMBENTS AS I2

WHERE I1.SSN = I2.SSN)

A sequenced NOT EXISTS

(EXCEPT, NOT IN) requires four

SELECT statements, each with a

nested NOT EXISTS.

Returning to the EXCEPT query (CF-6.15), let's focus on a row

output by the sequenced version of this query. As illustrated in

Figure 6.4, there are four ways in which an output row could

result. In the �rst case, the employee starts being a department

head when he or she is still an associate professor; the output

row ends when the person is promoted to professor. In the sec-

ond case, the department head, who was a professor, was for some reason demoted.

The third case is a combination of the �rst two: the department head was demoted,

then subsequently promoted back to professor. In all three cases, there must not

exist another row with a rank of professor that overlaps the resulting row (other-

wise, the NOT EXISTS would not hold). In the last case, the department head was

never a professor during his or her tenure, so the entire period of validity should be

returned.

These cases allow us to compute the delimiting timestamps of the resulting row.

Each of these cases requires a separate SELECT statement in the sequenced version.

Code Fragment 6.18 List the employeeswhoare orweredepartment headsbutwerenot

also professors (sequenced version).

SELECT I1.SSN, I1.START_DATE, I3.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I3

WHERE I1.PCN = 455332

AND I3.PCN = 821197

AND I1.SSN = I3.SSN

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I4

WHERE I4.SSN = I1.SSN

AND I4.PCN = 821197

AND I1.START_DATE < I4.END_DATE

AND I4.START_DATE < I3.START_DATE)

continued on page 156
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continued from page 155

UNION

SELECT I1.SSN, I2.END_DATE AS START_DATE, I1.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I2

WHERE I1.PCN = 455332

AND I2.PCN = 821197

AND I1.SSN = I2.SSN

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I4

WHERE I4.SSN = I1.SSN

AND I4.PCN = 821197

AND I2.END_DATE < I4.END_DATE

AND I4.START_DATE < I1.END_DATE)

UNION

SELECT I1.SSN, I1.END_DATE AS START_DATE, I3.START_DATE AS END_DATE

FROM INCUMBENTS AS I1, INCUMBENTS AS I2, INCUMBENTS AS I3

WHERE I1.PCN = 455332

AND I2.PCN = 821197 AND I3.PCN = 821197

AND I1.SSN = I2.SSN AND I1.SSN = I3.SSN

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I4

WHERE I4.SSN = I1.SSN

AND I4.PCN = 821197

AND I2.END_DATE < I4.END_DATE

AND I4.START_DATE < I3.START_DATE)

UNION

SELECT SSN, START_DATE, END_DATE

FROM INCUMBENTS AS I1

WHERE PCN = 455332

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I4

WHERE I4.SSN = I1.SSN

AND I4.PCN = 821197

AND I1.START_DATE < I4.END_DATE

AND I4.START_DATE < I1.END_DATE)

The cases are quite similar; they differ in the speci�c timestamps chosen in the

target lists and in the timestamps used in the NOT EXISTS subqueries.

6.4 NONSEQUENCED VARIANTS

We have seen current and sequenced versions of selection, projection, join, union,

and sorting. As with the integrity constraints discussed in the previous chapter,

nonsequenced versions of these operators on temporal tables are straightforward.

Such queries ignore the time-varying nature of the tables.
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Figure 6.4 Current update cases, with the period of validity of the row shown.

Code Fragment 6.19 List all the salaries, past and present, of employees who had been

a hazardous waste specialist at some time.

SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL_HISTORY

WHERE INCUMBENTS.SSN = SAL_HISTORY.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND JOB_TITLE_CODE1 = 20730
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The phrases �past and present� and �at some time� indicate that the query is a

nonsequenced one. The periods of validity of both INCUMBENTS and SAL HISTORY

are simply ignored in this query.

Some nonsequenced queries do examine the timestamps. However, they are eval-

uated all at once, rather than at a speci�ed time (a time-slice query) or at each point

in time (a sequenced query). A common example is determining when change

occurred by observing consecutive periods that signify that change.

Code Fragment 6.20 When did employees receive raises?

SELECT S2.SSN, S2.HISTORY_START_DATE AS RAISE_DATE

FROM SAL_HISTORY AS S1, SAL_HISTORY AS S2

WHERE S2.AMOUNT > S1.AMOUNT

AND S1.SSN = S2.SSN

AND S1.HISTORY_END_DATE = S2.HISTORY_START_DATE

A nonsequenced query considers

the timestamp columns as just

additional columns.

This is not a sequenced query because each result row is derived

from information from two different times. The query does not

view the underlying table as a sequence of states; rather, it views

the underlying table as one with additional timestamp columns

that can be used in the query. When evaluated on the SAL

HISTORY excerpt in Table 6.3, the following result is returned:

SSN RAISE DATE

111223333 1996-05-01

111223333 1997-06-01

Sequenced, current, and nonsequenced variants also exist for other operators. As

shown in Section 6.1, any conventional query can be converted into a current query

by adding a predicate for each correlation name. Sequenced variants of many opera-

tions were given in Sections 6.3 and 6.3.1. For selection, projection, union, and sort-

ing, the sequenced and nonsequenced variants are identical. For joins, difference

(EXCEPT, NOT EXISTS, NOT IN), aggregates, and subqueries, the sequenced and

nonsequenced variants are quite different. For duplicate elimination, the analysis

is more subtle; we now turn to this intriguing topic.

6.5 ELIMINATING DUPLICATES

Duplicates may be present in the underlying table or may arise in the result of op-

erations such as union, projection, and some implementations of sequenced join.
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In some cases, the presence of duplicates will change the result of the query, as in

the COUNT aggregate.

One approach to duplicate elimination is to use the SQL facilities directly. How-

ever, that didn't work for the analogous situation of de�ning a primary key, which

as a side effect prevents duplicates. In Section 5.3 we saw that the primary key must

be changed when valid-time support is added to a table. We also saw that it wasn't

suf�cient to simply add either the start time or the end time, or both, to the pri-

mary key. Section 5.5 ampli�ed on this, by showing that there were four different

kinds of uniqueness constraints.

Such considerations also come into play in duplicate elimination.

6.5.1 Easy Duplicate Elimination

SQL is perfectly adequate to remove some duplicate variants.

Code Fragment 6.21 Remove nonsequenced duplicates from INCUMBENTS.

SELECT DISTINCT *

FROM INCUMBENTS

Value equivalence, which is more useful, is handled similarly, except that the

timestamps are not included.

Code Fragment 6.22 Remove value-equivalent rows from INCUMBENTS.

SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

Current duplicates involve just a little more effort. Recall that a row is currently

valid in the INCUMBENTS table if its END DATE is the special value DATE �3000-01-01�.

Code Fragment 6.23 Remove current duplicates from INCUMBENTS.

SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

WHERE END_DATE = DATE �3000-01-01�

Removing sequenced duplicates turns out to be quite dif�cult. Before we show

how to do this, we discuss coalescing, which is closely related to duplicate elimina-

tion.

6.5.2 Coalescing

Consider again Table 5.2, copied here as Table 6.5. All �ve rows have the same

values for the SSN and PCN columns, and hence are value-equivalent. The second

and third rows also have the same values for the START DATE and END DATE columns,

making them nonsequenced duplicates.
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Table 6.5 A table containing several kinds of duplicates.

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1996-06-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1996-10-01 1998-01-01

111223333 120033 1997-12-01 1998-01-01

Coalescing reduces the number

of rows by merging the periods

of validity of value-equivalent

rows.

Now consider the third and fourth rows. As just observed,

these rows are value-equivalent, yet are neither sequenced dupli-

cates (the periods of validity do not overlap) nor nonsequenced

duplicates (their periods of validity are not identical) nor cur-

rent duplicates. We focus on these rows because their periods of

validity meet (that is, the END DATE of the third row equals the

START DATE of the fourth row), and so the two rows could be merged. Coalescing

combines value-equivalent rows into a single row with a combined period of valid-

ity. Coalescing would merge these two rows into a single row valid from April 1,

1996 to December 31, 1997.

Duplicate elimination and coalescing are somewhat orthogonal because in most

cases eliminating duplicates (of whatever variant) does not result in a coalesced

table, and coalescing can be done without removing duplicates.

Coalescing may remove or retain

sequenced duplicates.

There are two variants of coalescing: removing and retaining

(sequenced) duplicates. After the former is done, there will be

no sequenced, current, or nonsequenced duplicates. The latter

retains the sequenced duplicates present at each point in time.

It changes the timestamps, eliminating value-equivalent rows whose periods of va-

lidity meet. The objective is to pare down the table to the minimum number of

rows necessary to represent the number of duplicates present at each point in time.

To illustrate this, let's apply coalescing and duplicate elimination separately on

Table 6.5.

Coalescing Table 6.5 while removing duplicates results in the following table,

merging the �ve rows into one:

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1998-01-01

Note that the resulting table happens to have no duplicates of any kind, though in

general value-equivalent rows are possible (such rows will not overlap or meet).

Coalescing Table 6.5 while retaining duplicates results instead in Table 6.6.
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Table 6.6 Retaining duplicates while coalescing.

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1996-06-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1996-04-01 1998-01-01

111223333 120033 1997-12-01 1998-01-01

Table 6.7 Another way to retain duplicates while coalescing.

SSN PCN START DATE END DATE

111223333 120033 1996-01-01 1998-01-01

111223333 120033 1996-04-01 1996-06-01

111223333 120033 1996-04-01 1996-10-01

111223333 120033 1997-12-01 1998-01-01

The original table and the coalesced table are snapshot-equivalent: all of their

snapshots, resulting from a time-slice at a single instant, are identical. Since du-

plicates are retained, the snapshot of the result at each instant will have the same

number of duplicates as the snapshot of the original table at that instant.

Consider a time-slice at January 3, 1996, of Table 6.5. The snapshot contains a

single row, (111223333, 120033). The time-slice at that day on Table 6.6 also contains

that single row. Now consider May 25, 1996. The time-slice on that date of Table 6.5

contains three rows (you should verify this), as does the time-slice of Table 6.6.

In the original table, Table 6.5, and in the coalesced table, Table 6.6, there is one

row in the snapshots valid from January 1, 1996 to March 30, 1996, then three

rows valid until May 31, 1996, then two rows valid until September 30, 1996, then

one row valid until November 30, 1997, then two rows valid until December 31,

1997. These two tables are snapshot-equivalent. Informally, they model the same

information, the same history of the enterprise. The only difference: Table 6.6 has

fewer rows and thus requires less space on disk.

When duplicates are retained, there will be at least as many rows in the resulting

table as the maximum number of rows valid at any one time. In this case, the result

does not happen to have any nonsequenced duplicates, though such duplicates are

possible.

When coalescing while removing sequenced duplicates, only one resulting table

is possible. However, when coalescing while retaining duplicates, the resulting table

is not always unique. Table 6.7 retains the duplicates from Table 6.5 and also

contains the minimum number of rows possible: four.
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Table 6.6 resulted from merging pairs of value-equivalent rows that met. In

Table 6.7, the timestamps experience a more radical adjustment. The one remain-

ing question is, How do you guarantee that the coalesced table is minimized and

thus contains the smallest number of rows possible? The answer is simple. It turns

out that (repeatedly) merging pairs of value-equivalent rows that meet will always

result in a coalesced table with the minimum number of rows.

To summarize, we have described three operations that minimize the number of

rows: remove sequenced duplicates, coalesce while removing sequenced duplicates,

and coalesce while retaining duplicates. If you are going to eliminate duplicates in

the �rst place, it is just as easy to coalesce at the same time.

6.5.3 Coalescing While Removing Duplicates

One intuition behind coalescing is that we identify those time periods with the

same SSN and PCN values that overlap or are adjacent, and merge those periods

by extending the earlier period. This process is repeated until maximal periods are

constructed. The nonmaximal periods are then removed.

Coalescing while removing duplicates

Repeat, until no rows are updated,

Change a row's end date to that of the value-equivalent row that overlaps it that

extends the furthest in the future.

Remove those rows whose period of validity is entirely contained in that of a value-

equivalent row.

Remove those rows that are nonsequenced duplicates.

Code Fragment 6.24 Coalesce INCUMBENTSwhile removing duplicates (in PSM).

PROCEDURE Do_COALESCE () LANGUAGE SQL;

CREATE TABLE Temp(SSN CHAR(9), PCN INT,

START_DATE DATE, END_DATE DATE);

INSERT INTO Temp

SELECT *

FROM INCUMBENTS;

-- Extend row�s end date

BEGIN

DECLARE EXIT HANDLER FOR NOT FOUND

BEGIN END;
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LOOP

UPDATE Temp AS T1

SET (T1.END_DATE) = (SELECT MAX(T2.END_DATE)

FROM Temp AS T2

WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN

AND T1.START_DATE < T2.START_DATE

AND T1.END_DATE >= T2.START_DATE

AND T1.END_DATE < T2.END_DATE)

-- Make sure there is at least one end date to extend the row

WHERE EXISTS (SELECT *

FROM Temp AS T2

WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN

AND T1.START_DATE < T2.START_DATE

AND T1.END_DATE >= T2.START_DATE

AND T1.END_DATE < T2.END_DATE)

END LOOP;

END;

-- Remove wholly contained rows

DELETE FROM Temp AS T1

WHERE EXISTS (SELECT *

FROM Temp AS T2

WHERE T1.SSN = T2.SSN AND T1.PCN = T2.PCN

AND ((T1.START_DATE > T2.START_DATE

AND T1.END_DATE <= T2.END_DATE)

OR (T1.START_DATE >= T2.START_DATE

AND T1.END_DATE < T2.END_DATE)));

CREATE TABLE Temp2 (SSN CHAR(9), PCN INT,

START_DATE DATE, END_DATE DATE);

INSERT INTO Temp2

SELECT DISTINCT *;

FROM Temp;

END;

The loop maximally extends a row's end date. This loop terminates when no row is

updated (the exit handler accomplishes this).

To illustrate, we apply this algorithm to Table 6.5. The Temp table would initially

contain the value-equivalent rows shown in Figure 6.5.

After the �rst iteration of the repeat-until loop, the Temp table would contain

the rows shown in Figure 6.6. Note how the end time is extended when a value-

equivalent row meets or overlaps it. After the second iteration, some periods are

further extended (Figure 6.7).

The next iteration does not change any end time, and so the repeat-until loop

is terminated. The DELETE statement removes the nonmaximal value-equivalent

periods, retaining only the �rst one shown in Figure 6.7.
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96-1 96-6

96-4 96-10

96-4 96-10

96-10 98-1

97-12 98-1

Figure 6.5 Initial Temp table.

Figure 6.6 After the �rst iteration.

Figure 6.7 After the second iteration.
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One problem with this approach is that it uses a PSM PROCEDURE. For a time,

it was thought impossible to express this query completely in SQL. A solution was

discovered independently by several people just a few years ago, involving complex,

multiply nested NOT EXISTS subclauses.

Coalesce entirely in SQL

Select those start and end dates such that

� there are no gaps between these dates,

� no value-equivalent row overlaps the period between the selected start and end

dates and has an earlier start date or a later end date.

Code Fragment 6.25 Coalesce INCUMBENTSwhile removing duplicates (entirely in SQL).

CREATE TABLE Temp(SSN CHAR(9), PCN INT,

START_DATE DATE, END_DATE DATE)

INSERT INTO Temp

SELECT *

FROM INCUMBENTS;

SELECT DISTINCT F.SSN, F.PCN, F.START_DATE, L.END_DATE

FROM Temp AS F, Temp AS L

WHERE F.START_DATE < L.END_DATE

AND F.SSN = L.SSN AND F.PCN = L.PCN

-- There are no gaps between F.END_DATE and L.START_DATE

AND NOT XISTS (SELECT *

FROM Temp AS M

WHERE M.SSN = F.SSN AND M.PCN = F.PCN

AND F.END_DATE < M.START_DATE

AND M.START_DATE < L.START_DATE

AND NOT EXISTS (SELECT *

FROM Temp AS T1

WHERE T1.SSN = F.SSN AND T1.PCN = F.PCN

AND T1.START_DATE < M.START_DATE

AND M.START_DATE <= T1.END_DATE))

-- Can�t be extended further

continued on page 166
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F

T1

L

M

Figure 6.8 A common scenario.

continued from page 165

AND NOT EXISTS (SELECT *

FROM Temp AS T2

WHERE T2.SSN = F.SSN AND T2.PCN = F.PCN

AND ((T2.START_DATE < F.START_DATE

AND F.START_DATE <= T2.END_DATE)

OR (T2.START_DATE <= L.END_DATE

AND L.END_DATE < T2.END_DATE)))

Coalescing with duplicate

removal can be done with a

single (complex) SQL statement.

In this query, we search for two (possibly the same) value-equivalent rows (rep-

resented by the correlation names F, for �rst, and L, for last) de�ning start point

F.START DATE and end point L.END DATE of a coalesced row. The

�rst NOT EXISTS ensures that there are no gaps between F.END

DATE and L.START DATE (i.e., no time points where the respective

fact does not hold). This guarantees that all start points M.START

DATE between F.END DATE and L.START DATE of value-equivalent

rows are extended (towards F.END DATE) by a value-equivalent row, T1. This is illus-

trated in Figure 6.8. In this subclause, T1 may in fact be F. It may also be the case

that F itself overlaps L, in which case the NOT EXISTS is certainly true. Finally, M

need not overlap L, in which case there must exist another M that does.

The second NOT EXISTS ensures that only maximal periods result (i.e., F and L

cannot be part of a larger value-equivalent row T2).

It is instructive to compare this code fragment with CF-5.21 on page 128. In both

cases, a nested NOT EXISTS is used to detect a gap in time.

Yet another approach uses a COUNT aggregate in place of the nested NOT EXISTS.

Code Fragment 6.26 Coalesce INCUMBENTS while removing duplicates (entirely in SQL,

using COUNT).

CREATE VIEW V1 (SSN, PCN, START_DATE, END_DATE)

AS SELECT F.SSN, F.PCN, F.START_DATE, L.END_DATE

FROM INCUMBENTS AS F, INCUMBENTS AS L, INCUMBENTS AS E

WHERE F.END_DATE <= L.END_DATE

AND F.SSN = L.SSN AND F.SSN = E.SSN
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AND F.PCN = L.PCN AND F.PCN = E.PCN

GROUP BY F.SSN, F.PCN, F.START_DATE, L.END_DATE

HAVING COUNT(CASE

WHEN (E.START_DATE < F.START_DATE

AND F.START_DATE <= E.END_DATE)

OR (E.START_DATE <= L.END_DATE

AND L.END_DATE < E.END_DATE)

THEN 1 END) = 0

CREATE TABLE Temp(SSN CHAR(9), PCN INT,

START_DATE DATE, END_DATE DATE)

INSERT INTO Temp

SELECT SSN, PCN, START_DATE, MIN(END_DATE)

FROM V1

GROUP BY SSN, PCN, START_DATE

The correlation names in the view denote ��rst� (F), �last� (L), and �extends� (E).

The view collects periods that are maximal, in that there is no row E that extends it

either to the left (the �rst part of the WHEN predicate) or to the right (the second

part of the WHEN predicate). COUNT = 0 is equivalent to NOT EXISTS. The WHERE

predicate ensures that the period is a correct one and that we only consider rows

with the appropriate SSN and PCN. The INSERT command then ensures that there

are no gaps within the period, by selecting the minimum end date.

While this solution, at 19 lines, is somewhat shorter than CF-6.25 at 27 lines,

the three-way join and the grouped aggregate may impact performance.

A fourth alternative is to use SQL only to open a sorted cursor on the table.

Coalesce via a cursor

Retain the initial row in the cursor as the previous row.

While the cursor returns a row:

Output the previous row if there is a gap between it and the start of the row in

the cursor.

Make the row associated with the cursor the previous row.

Output the previous row.

Here we use Oracle's PL/SQL to express the cursor and the WHILE loop.
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Code Fragment 6.27 Coalesce INCUMBENTSwhile removing duplicates (using a cursor in

Oracle PL/SQL).

CREATE TABLE Temp(SSN, PCN, START_DATE, END_DATE);

DECLARE CURSOR INC_CURSOR IS

SELECT *

FROM INCUMBENTS

ORDER BY SSN, PCN, START_DATE;

StartRow INC_CURSOR%ROWTYPE;

PrevRow INC_CURSOR%ROWTYPE;

CurrRow INC_CURSOR%ROWTYPE;

BEGIN

IF NOT INC_CURSOR%ISOPEN

THEN

OPEN INC_CURSOR;

END IF;

FETCH INC_CURSOR INTO PrevRow;

StartRow := PrevRow;

FETCH INC_CURSOR INTO CurrRow;

WHILE INC_CURSOR%FOUND

LOOP

IF (StartRow.SSN <> CurrRow.SSN OR StartRow.PCN <> CurrRow.PCN)

OR (PrevRow.END_DATE < CurrRow.START_DATE)

THEN

INSERT INTO Temp

VALUES (StartRow.SSN, StartRow.PCN,

StartRow.START_DATE, PrevRow.END_DATE);

StartRow := CurrRow;

END IF;

PrevRow := CurrRow;

FETCH INC_CURSOR INTO CurrRow;

END LOOP;

INSERT INTO Temp

VALUES (StartRow.SSN, StartRow.PCN,

StartRow.START_DATE, PrevRow.END_DATE);

CLOSE INC_CURSOR;

END;
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This loop extracts a row from the sorted INCUMBENTS table. If this row (CurrRow) is

value-equivalent with the start row and if the current row overlaps or meets the pre-

vious row, then it should be coalesced with the previous row, which is the default

action. Otherwise, the coalesced row (from StartRow.START DATE to PrevRow.END

DATE) is added to Temp. Because the cursor is sorted, coalescing with duplicate

removal requires but a single scan of the underlying table.

6.5.4 Coalescing While Retaining Duplicates

To coalesce while retaining

duplicates, it is necessary to

merge value-equivalent rows

whose periods of validity meet.

Coalescing while retaining (sequenced) duplicates turns out

to be conceptually simpler, yet is more dif�cult to implement. As

mentioned in Section 6.5.2, a table is coalesced with duplicates if

it has the minimum possible number of rows, while still retain-

ing the duplicates at each point in time. As there may be many

coalesced versions of a temporal table, our task is to produce one

of those versions.

It should be clear that if two value-equivalent rows meet, the table is not coa-

lesced (with duplicates) because these two rows can be merged, thereby reducing

the number of rows by one. More surprising is the stronger result that a coalesced

table results if all pairs of value-equivalent rows that meet (are adjacent) are merged.

Coalescing while retaining duplicates requires iterating over the table several

times via a cursor. Doing so ef�ciently requires highly system-dependent ap-

proaches. As an example, the Oracle8 Server PL/SQL code is some 80 lines long.

6.6 IMPLEMENTATION CONSIDERATIONS

We implemented these code fragments on several DBMSs.

6.6.1 IBM DB2 Universal Database

UDB's recursive queries provide yet another way to effect coalescing with duplicate

elimination.

Code Fragment 6.28 Coalesce INCUMBENTSwhile removing duplicates, in DB2UDB.

WITH DTR (SSN, PCN, START_DATE, END_DATE) AS

(SELECT SSN, PCN, START_DATE, END_DATE

FROM INCUMBENTS

UNION ALL

SELECT I.SSN, I.PCN, I.START_DATE, J.END_DATE

FROM INCUMBENTS I, DTR J

continued on page 170
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continued from page 169

WHERE I.SSN = J.SSN AND I.PCN = J.PCN

AND ((I.START_DATE < J.START_DATE

AND J.START_DATE < I.END_DATE

AND I.END_DATE < J.END_DATE)

OR I.END_DATE = J.START_DATE)

UNION ALL

SELECT I.SSN, I.PCN, I.START_DATE, J.END_DATE

FROM INCUMBENTS J, DTR I

WHERE I.SSN = J.SSN AND I.PCN = J.PCN

AND ((I.START_DATE < J.START_DATE

AND J.START_DATE < I.END_DATE

AND I.END_DATE < J.END_DATE)

OR I.END_DATE = J.START_DATE))

SELECT DISTINCT I.SSN, I.PCN, I.START_DATE, I.END_DATE

FROM DTR I

WHERE NOT EXISTS (SELECT 1

FROM DTR J

WHERE I.SSN = J.SSN AND I.PCN = J.PCN

AND ((J.START_DATE <= I.START_DATE

AND I.END_DATE < J.END_DATE)

OR (J.START_DATE < I.START_DATE

AND I.END_DATE <= J.END_DATE)))

So, what is going on here? The base part of the recursion is the initial SELECT. The

second SELECT is the �rst recursive part, the third SELECT is the second recursive

part, and the �nal SELECT is the main query, evaluated over the result of the recur-

sion. The �rst recursive part combines the periods of value-equivalent rows where

the I row starts before the common row (from the base part, J). The second recursive

part combines the periods where the I row starts after the base part. The recursion

keeps extending the ending time of the base tuples until they change no more.

Then the main query removes those periods that are contained in another period.

The PERIOD abstract data type in IBM DB2 UDB could simplify many of the

algorithms in this chapter, because the overlaps predicate can be done directly.

6.6.2 Informix�Universal Server

While Informix�Universal Server does not support SQL-92's CASE expression, it

does support the user-de�ned procedures first instant and last instant, which

were shown earlier as SQL/PSM functions de�ned in CF-6.13.

Code Fragment 6.29 De�ne first instant and last instant in Informix.

CREATE PROCEDURE first_instant (one DATE, two DATE)
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RETURNING DATE;

IF one < two THEN RETURN one;

ELSE RETURN two;

END IF

END PROCEDURE;

CREATE PROCEDURE last_instant (one DATE, two DATE) RETURNING DATE

IF one > two THEN RETURN one;

ELSE RETURN two;

END IF

END PROCEDURE;

A PERIOD datablade in Informix�Universal Server would simplify many algo-

rithms in this chapter because the OVERLAPS constructor can then be done directly

within the SQL statement.

6.6.3 Microsoft SQL Server

Microsoft SQL Server does not support user-de�ned functions, so CF-6.14 and

CF-6.24 are not possible. A cursor-based approach works for coalescing.

Code Fragment 6.30 Coalesce INCUMBENTSwhile removing duplicates, in Microsoft SQL

Server.

CREATE TABLE Tempo

(SSN CHAR(11),

PCN CHAR(6),

START_DATE DATETIME,

END_DATE DATETIME)

DECLARE Inc_Cursor CURSOR FOR

SELECT *

FROM INCUMBENTS

ORDER BY SSN, PCN, START_DATE

DECLARE @S_SSN CHAR(11)

DECLARE @S_PCN CHAR(6)

DECLARE @S_START_DATE DATETIME

DECLARE @S_END_DATE DATETIME

DECLARE @P_SSN CHAR(11)

DECLARE @P_PCN CHAR(6)

DECLARE @P_START_DATE DATETIME

DECLARE @P_END_DATE DATETIME

DECLARE @C_SSN CHAR(11)

DECLARE @C_PCN CHAR(6)

DECLARE @C_START_DATE DATETIME

continued on page 172
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continued from page 171

DECLARE @C_END_DATE DATETIME

BEGIN

OPEN Inc_Cursor

FETCH NEXT FROM Inc_Cursor

INTO @P_SSN, @P_PCN, @P_START_DATE, @P_END_DATE

SELECT @S_SSN = @P_SSN

SELECT @S_PCN = @P_PCN

SELECT @S_START_DATE = @P_START_DATE

SELECT @S_END_DATE = @P_END_DATE

FETCH NEXT FROM Inc_Cursor

INTO @C_SSN, @C_PCN, @C_START_DATE, @C_END_DATE

WHILE (@@FETCH_STATUS <> -1)

BEGIN

IF ((@S_SSN <> @C_SSN OR @S_PCN <> @C_PCN) OR

(@P_END_DATE < @C_START_DATE))

BEGIN

INSERT INTO Tempo

VALUES (@S_SSN, @S_PCN, @S_START_DATE, @P_END_DATE)

SELECT @S_SSN = @C_SSN

SELECT @S_PCN = @C_PCN

SELECT @S_START_DATE = @C_START_DATE

SELECT @S_END_DATE = @C_END_DATE

END

SELECT @P_SSN = @C_SSN

SELECT @P_PCN = @C_PCN

SELECT @P_START_DATE = @C_START_DATE

SELECT @P_END_DATE = @C_END_DATE

FETCH NEXT FROM Inc_Cursor INTO

@C_SSN, @C_PCN, @C_START_DATE, @C_END_DATE

END

INSERT INTO Tempo

VALUES (@S_SSN, @S_PCN, @S_START_DATE, @P_END_DATE)

CLOSE Inc_Cursor

END
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6.6.4 Sybase SQLServer

Sybase SQLServer does not support user-de�ned functions within SQL statements,

so CF-6.14 and CF-6.24 are not possible.

6.6.5 Oracle8 Server

While Oracle8 Server does not support SQL-92's CASE expression, it does support

the functions GREATEST and LEAST, which are generalizations of the last instant

and first instant SQL/PSM functions de�ned in CF-6.13.

Code Fragment 6.31 Provide the SSN and position history for all employees, using

GREATEST and LEAST.

SELECT S.SSN, AMOUNT, PCN,

GREATEST(S.HISTORY_START_DATE, INCUMBENTS.START_DATE),

LEAST(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

FROM SAL_HISTORY S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

AND GREATEST(S.HISTORY_START_DATE, INCUMBENTS.START_DATE)

< LEAST(S.HISTORY_END_DATE, INCUMBENTS.END_DATE)

6.6.6 UniSQL

UniSQL does not provide CURRENT DATE, so the actual date must be supplied, via

a parameter, in such queries as CF-6.1.

6.6.7 CD-ROMMaterials

The CD-ROM contains the code fragments in this chapter in IBM DB2 UDB, Micro-

soft Access 97 and Access 2000, Microsoft SQL Server, Sybase SQLServer, Oracle8

Server, and UniSQL.

6.7 SUMMARY

This chapter examined a wide variety of useful queries on valid-time state tables. We

�rst naturally ask, What is true now? Queries over the current state, even complex

ones, can be converted to apply to temporal tables with the addition of a predicate

for each correlation name, requesting the overlap with �now.� Queries over a single

prior, or future, state also follow, with the overlap requested at a speci�ed point

in time. Such queries are termed time-slice queries; current queries are time-slice

queries at �now.�
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Sequenced queries are also natural ones. For every query over the current state,

such as �list the salary and position for all employees,� an analogous sequenced

query that asks for the history of that relationship can be speci�ed, such as �provide

the salary and position history for all employees� (CF-6.11). To convert a current

query to a sequenced query requires decomposing that query into its underlying

operations. Each operation is converted, then the query is stitched back together.

Some basic operations are easy to convert: selection (no change is necessary), pro-

jection (simply include the timestamp columns in the SELECT list), sorting (no

change is necessary), and union (no change is necessary). Sequenced join requires

unioning four SELECT statements; sequenced difference (EXCEPT, NOT EXISTS)

requires unioning four SELECT statements, each containing its own NOT EXISTS

subquery.

Duplicate elimination is a topic unto itself. Removing current, value-equivalent,

and nonsequenced duplicates is easy. Coalescing is related to duplicate elimination,

in that both reduce the number of rows by eliminating �extraneous� rows. But

you can coalesce while retaining (sequenced) duplicates, or you can coalesce while

removing such duplicates. Both are challenging in SQL. The cursor-based approach

(CF-6.27) is preferred.

Nonsequenced queries, which treat the timestamps as regular columns, are gen-

erally dif�cult to express in English, but relatively straightforward to express in SQL.

Such queries do not have current analogs.

6.8 READINGS

SQL-92 includes an unrelated COALESCE operator that is shorthand of CASE that

replaces NULL values with other values [71]. SQL's stored procedures (SQL/PSM) is

now an ISO standard [45] and is thoroughly described by Melton [70].

Ensor and Stevenson discuss extracting the current state in Oracle, examining

both SQL and procedural variants [32]. They conclude that the biggest advantage

of the procedural approach is that it can stop when the (single) qualifying row is

found.

Current queries were termed temporally upward compatible queries by Bair et al. [3]

in their discussion of supporting legacy applications when time support was added.

The notion of value equivalence was introduced by the author [86]. That paper also

introduced the notion of snapshot reducibility, which relates two queries, a query qt

on a temporal table and a query qs on a time-slice of that table. As an example,

let qs be CF-6.17 and let qt be CF-6.18. qt is said to be snapshot-reducible to qs if

the time-slice of the result of qt at a time instant i is identical to the result of qs on

the time-slice of the underlying table at instant i, for all possible instants i. This is
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precisely the notion of a sequenced query. The sequenced EXCEPT simulates the

nontemporal EXCEPT at each instant of time.

The terms �sequenced� and �nonsequenced� �rst appeared in a change proposal

for SQL3 [92].

Coalescing was �rst studied in depth by Böhlen et al. [15], though many tem-

poral data models and temporal query languages have implicitly or explicitly as-

sumed or provided coalescing. CF-6.25 uses an idea discovered independently by

Böhlen [10] and by Rozenshtein, Abramovich, and Birger [82]. CF-6.26 uses an idea

proposed by Romley [21]. The recursive query solution using DB2 UDB (CF-6.18)

was suggested by Leung and Pirahesh [66].

There has been some work on implementing temporal joins within the DBMS

[97].

Milton Stoneman's Easy-to-Make Wooden Sundials [99] provides �ve delightful

sundial designs, explaining how to construct these sundials and how to adjust the

sundial to your latitude.



C H A P T E R7
O V E R V I E W

A major thread of this exposition is the classi-

�cation of statements (queries, integrity con-

straints) into current, sequenced, and non-

sequenced variants. This taxonomy also bene-

�ts modi�cations.

SQL has three modi�cation statements: IN-

SERT, DELETE, and UPDATE. Interestingly, a cur-

rent deletion is implemented as an UPDATE

followed by a DELETE, and a sequenced dele-

tion requires an INSERT, two UPDATEs, and

a DELETE. Updates are more complex: a cur-

rent update is implemented as three SQL state-

ments; sequenced updates require �ve SQL

statements. Mentioning other temporal tables

makes things even more exciting. Finally, we

consider the pros and cons of breaking up a

valid-time table into a current portion and a

historical portion, each a separate table.



Modifying State Tables

W
e now turn to implementing modi�cations to a valid-time table. We con-

sider separately current modi�cations (those on the current, and future,

states), sequenced modi�cations (those evaluated, conceptually at least,

at each point in time), and nonsequenced modi�cations (those explicitly men-

tioning the timestamp columns). We apply these modi�cations to the INCUMBENTS

table.

We also examine how primary key and referential integrity constraints can be

maintained across these modi�cations. One approach, exempli�ed in Chapter 5,

is to specify an assertion. Any violating modi�cation results in the rollback of the

transaction (assuming the assertion is immediate; see Section 5.7), thereby guaran-

teeing that the database remains consistent with the integrity constraint. Of course,

the problem is that this is an all-or-nothing proposition: one improper modi�cation

derails the entire transaction.

A second approach is to code the modi�cation to ensure that the integrity con-

straint is not violated, perhaps reducing the execution time required to check the

constraint.

In this chapter, we �rst show how to perform the modi�cation, then consider

additions that also ensure uniqueness, primary key, and referential integrity con-

straints remain satis�ed. We continue with the INCUMBENTS table, repeated as

Table 7.1.

7.1 CURRENT MODIFICATIONS

A current modi�cation concerns

something that happens right

now.

A current modi�cation concerns something that happens now

and applies into the future. In a conventional, nontemporal

table, all modi�cations are current modi�cations.
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Table 7.1 An excerpt from the INCUMBENTS valid-time state table.

SSN PCN START DATE END DATE

111223333 900225 1996-01-01 1996-06-01

111223333 120033 1996-06-01 1996-08-01

111223333 120033 1996-08-01 1996-10-01

111223333 137112 1996-10-01 3000-06-01

444332222 120033 1997-01-01 3000-01-01

In showing how integrity constraints can be ensured within the modi�cation,

we consider two cases: the general case where any modi�cation is allowed and

the restricted case where only current modi�cations are performed on the table.

The cases differentiate the data upon which the modi�cation is performed and

consider whether a noncurrent modi�cation might have been performed in the

past. Often we know a priori that only current modi�cations are possible, which

tells us something about the data we can exploit in the (current) modi�cation now

being performed.

7.1.1 Current Insertions

A current insertion requires only that the start date and end date be speci�ed.

Code Fragment 7.1 Bob joins as associate director of the Computer Center.

INSERT INTO INCUMBENTS

VALUES (111223333, 999071, CURRENT_DATE, DATE �3000-01-01�)

This statement provides a timestamp from �now� to the end of time.

Maintaining a sequenced primary key is easy if only the current state of the table

is ever modi�ed.

Code Fragment 7.2 Bob joins as associate director of the Computer Center, ensuring the

primary key, in the restricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE �3000-01-01�

FROM DUAL

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE SSN = I2.SSN

AND PCN = I2.PCN

AND I2.END_DATE = DATE �3000-01-01�)



7 . 1 CURRENT MODIF ICAT IONS 179

Babylonic and Italic Hours

Babylonian sundials counted the hours since sun-

rise. The Italians of the Middle Ages started a new

day at sunset. In Germany during the Renaissance,

the custom was to count in Babylonic hours during

the day and Italic hours during the night. On many

cathedrals, in particular in Strasbourg and Basel,

sundials indicate both Italic and Babylonic hours. In

fact, with such sundials, you can determine (1) the

number of hours elapsed since sunrise: the Baby-

lonic hour, (2) the number of hours left till sunset:

the Italic hour, (3) the length of the day, by adding

the two together, (4) the day of the year, from the

position of the shadow at high noon, (5) the true

hour of sunrise, from the noon line, and (6) the true

hour of sunset, also from the noon line.

This works because all rows that are current

now extend to �forever�; there are no rows

that start in the future and end before �for-

ever.� As mentioned on page 138, DUAL is

a dummy system table provided by Oracle.

It can be simulated in other DBMSs for use

here by creating a one-column table and

inserting a single row into it.

Alternatively, a sequenced primary key

in the restricted case can be stated as a pri-

mary key constraint, appending the END

DATE, as exempli�ed in CF-5.15.

This statement doesn't insert a row if

Bob currently has that position. An alter-

native approach would be to �rst (current)

delete his position, then perform the in-

sertion. Yet another approach would be to

(current) update his position. Both options

will be discussed shortly.
Ensuring uniqueness requires

a WHERE predicate, an

augmented primary key

constraint, or a uniqueness

constraint.

Ensuring referential integrity in the restricted case is also

straightforward. Only an insertion in the referencing table

can possibly violate referential integrity. (We assume in this

discussion that both tables, referencing and referenced, are

temporal.)

Ensuring uniqueness and referential integrity in the restricted case

Add this row to the table

if a duplicate row is not already present (i.e., no key violation)

and if there is a corresponding row in the referenced table (i.e., no foreign key

violation).

We use as an example the referential integrity constraint from INCUMBENTS.PCN to

POSITIONS.PCN, for which an insertion into the referencing table (here, INCUMBENTS)

can violate the constraint.
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Code Fragment 7.3 Bob joins as associate director of the Computer Center, also ensur-

ing referential integrity, in the restricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE �3000-01-01�

FROM POSITIONS

WHERE PCN = 999071

AND END_DATE = DATE �3000-01-01�

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE SSN = I2.SSN

AND PCN = I2.PCN

AND I2.END_DATE = DATE �3000-01-01�)

Ensuring referential integrity

with a current insertion in the

restricted case requires an

additional WHERE predicate.

If the position is valid at �forever,� it is also valid now, and so

fully covers the period being inserted into INCUMBENTS.

If the referential integrity would have been violated (because

the position isn't current in POSITIONS), the statement inserts

nothing. An alternative strategy is to �ll the gap in the referenced

table (where the PCN is not present in POSITIONS) with null val-

ues for the other columns, effectively de�ning a new position with a null JOB TITLE

CODE1, so that Bob's position can be inserted into INCUMBENTS.

Code Fragment 7.4 Fill the gap (in the restricted case) in the POSITIONS table for the

position of associate director of the Computer Center.

INSERT INTO POSITIONS (PCN, JOB_TITLE_CODE1, START_DATE, END_DATE)

SELECT DISTINCT 999071, NULL, CURRENT_DATE, DATE �3000-01-01�

FROM DUAL

WHERE NOT EXISTS ( SELECT *

FROM POSITIONS

WHERE PCN = 999071

AND END_DATE = DATE �3000-01-01�)

Filling the gap in the referenced

table is an easy way to ensure

referential integrity for current

insertions into the referencing

table.

We need to �ll the period between �now� and �forever� with

this row, but only if there isn't a row already there. If the gap is

�rst �lled, then there is no need to check for referential integrity

in the original INSERT statement (into INCUMBENTS).

We have thus far looked at the restricted case where only cur-

rent modi�cations are allowed. Such a situation is quite com-

mon. Envision an application that operates on a nontemporal

table. Now the table is converted to retain the history, say, by

adding a start and an end date column, and the modi�cations and queries in the

application are also converted. Since the application did not before concern itself

with history, all the modi�cations are current modi�cations, on the current state.
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The Fundamental Insight

The design of early sundials and water clocks re-

�ected the seemingly continuous nature of time.

The gnomon's shadow traced a path across the

etchings of the sundial, and the water (or sand)

�owed in a steady stream. Su Song's water clock,

while simultaneously intricate and massive, was

hobbled in its accuracy by this �ow, which lacked

both precision and power. The European insight,

by some as yet unknown genius, was to abandon

reliance on an accumulative approach, and instead

focus on periodically stopping the fall of a weight

that pulled a rope wound round a cylinder. In this

way, the weight doesn't continue to accelerate in

its descent. If the stops were timed correctly, the

cylinder would rotate slowly, a revolution every

hour or every day. This transition from an analog

model to a digital model was every bit as invigorat-

ing to the society of the 15th century as the tran-

sition from analog electronics (i.e., vacuum tubes)

to digital electronics (i.e., transistors and integrated

circuits) in the 20th century.

Now let's consider the more general case. In the restricted case, all modi�cations

are current modi�cations. This implies that there are only two kinds of rows in the

table: those that started in the past and ended in the past, and those that started in

the past and are still valid, that is, have an END DATE of �forever.�

The general case allows other kinds of modi�cations, thereby permitting two ad-

ditional kinds of rows: those that started in the past and end sometime in the future

(but before �forever�), and those that start sometime in the future and end some-

time in the future, including �forever.� Such rows represent planning information,

or scheduled changes.

These two new kinds of rows are problematic, in that they introduce gaps in the

future behavior. The possibility of gaps in the future impacts the modi�cations that

are applied to the table.

So, the task before us is to implement a current insertion in the general case. We

�rst consider ensuring solely the primary key constraints.

Code Fragment 7.5 Bobwas assigned the position of associate director of the Computer

Center, ensuring the primary key, in the unrestricted case.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, CURRENT_DATE, DATE �3000-01-01�

FROM DUAL

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE SSN = I2.SSN

AND PCN = I2.PCN

AND I2.END_DATE > CURRENT_DATE)
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We don't perform the insertion if doing so would violate the primary key con-

straint. I2 violates this constraint (in the context of the row being inserted) if its

period of validity overlaps that of the inserted row. This will occur if I2 stops in the

future or is currently valid, in which case the end date is �forever,� in this case the

year 3000. (If �forever� was represented with a particular date in the past, such as

1860, the above predicate would not be suf�cient.)

We now turn our attention to the referential integrity constraint. As before, only

an insertion in the referencing table can possibly violate referential integrity. In this

case, a predicate must be added to the WHERE clause of the above code fragment

asserting that there are no gaps in the POSITIONS table for the position code of

999071 for �now� to �forever.� This predicate is a simple modi�cation of CF-5.21

(see also CF-7.14, below).

When unrestricted

modi�cations are possible, such

modi�cations may generate

gaps that must be �lled to

ensure referential integrity.

Alternatively, the gap(s) can be �lled, in which case no such

predicate is required in the current insertion. In the restricted

case, either a row was valid for the entire period from �now� to

�forever,� or the PCN was not valid for the entire period. In the

general case, there can be gaps, due to the possibility of peri-

ods starting or ending sometime in the future. Recall that CO-

ALESCE in SQL-92 evaluates to the value of the �rst argument,

unless that value is NULL, in which case it evaluates to the value of the second

argument, and so on.

Code Fragment 7.6 Fill gaps in the POSITIONS table for the position of associate director

of the Computer Center, in the general case.

INSERT INTO POSITIONS

SELECT 999071, NULL, END_DATE AS START_DATE,

COALESCE((SELECT MIN(START_DATE)

FROM POSITIONS AS P2

WHERE P2.PCN = 999071

AND P2.START_DATE > P.START_DATE),

DATE �3000-01-01�) AS END_DATE

FROM POSITIONS AS P

WHERE P.PCN = 999071

AND P.END_DATE > CURRENT_DATE

AND P.END_DATE < DATE �3000-01-01�

AND NOT EXISTS ( SELECT *

FROM POSITIONS AS P3

WHERE P3.PCN = 999071

AND P3.START_DATE <= P.END_DATE

AND P.END_DATE < P3.END_DATE)
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The start of a gap is identi�ed where a row ends, but there is no overlapping row

that extends the period of validity. The end of the gap is either the start of the �rst

period or, in the absence of such a period, �forever.�

7.1.2 Current Deletions

Current deletions apply from �now� to �forever.� In the restricted case of only cur-

rent modi�cations being allowed on tables, a current deletion is translated into an

update.

Code Fragment 7.7 Bobwas just �red asassociate director of theComputer Center (only

current modi�cations assumed).

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

AND PCN = 999071

AND END_DATE = DATE �3000-01-01�

In the restricted case, a current

deletion is converted into an

update of the end date.

Let's say Bob was previously hired as associate director of the

Computer Center on January 1, 1998. Assuming only current

modi�cations, there cannot be future appointments in the table,

so the most recent appointment in the INCUMBENTS table is

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 3000-01-01

Bob was �red on March 13, 1998 (Friday!). This logical deletion updates that row to

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 1998-03-13

In the general case, deletions are implemented as an update and a delete.

Deletion in the general case

For those rows that started in the past and end in the future, reset the end date to

�now.�

Delete entirely those rows that start in the future.
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Code Fragment 7.8 Bobwas just �red as associate director of the Computer Center.

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < CURRENT_DATE

AND END_DATE > CURRENT_DATE

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE >= CURRENT_DATE

In the general case, a current

deletion is implemented as an

update, for those currently valid

periods, and a delete, for those

periods starting in the future.

These two statements can be performed in either order, as they

affect disjoint sets of rows.

The DELETE statement eliminates those states that become

true in the future. If only current modi�cations are applied to

the INCUMBENTS table, such states cannot occur, and the DELETE

statement is not then necessary. Note also that in the general

case, the UPDATE predicate is more complex.

Ensuring the primary key constraints (speci�cally, no duplicates) is trivial, be-

cause deletions cannot cause duplicates. There is also no problem ensuring referen-

tial integrity for the referencing table. For the referenced table (e.g., deleting a row

of the POSITIONS table), a cascading current delete on the referencing table (in this

case, on the INCUMBENTS table) of all rows referencing that PCN value will ensure

referential integrity.

7.1.3 Current Updates

A current update in the

restricted case is implemented

by an update to end the current

row at �now� and an insertion of

the new values.

An update is logically a delete coupled with an insert. (Things

get complicated in the presence of triggers. In this discussion, we

assume no triggers have been de�ned on the temporal table.)

A current update changes the value for the period of validity

from �now� to �forever.� A current update is the analog of a

nontemporal update, such as the following:

Code Fragment 7.9 Today Bob was promoted to director of the Computer Center (non-

temporal version).

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333



7 . 1 CURRENT MODIF ICAT IONS 185

If only current modi�cations are applied to INCUMBENTS, then all the affected

rows extend to �forever.� We terminate the current position at �now� and insert

the new position, from �now� to �forever.�

Code Fragment 7.10 Today Bob was promoted to director of the Computer Center

(assuming only current modi�cations).

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT SSN, 908739, CURRENT_DATE, DATE �3000-01-01�

FROM INCUMBENTS

WHERE SSN = 111223333

AND END_DATE = DATE �3000-01-01�

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

AND START_DATE < CURRENT_DATE

The update must occur after the insertion. Alternatively, the portion up to �now�

could be inserted and the update could change the explicit column(s) and the start

date to �now.�

As we'll see, simple modi�cations such as CF-7.9 transmute into a series of mod-

i�cations. Here, the temporal version of an update consists of two modi�cation

statements. Later we'll see a six-line nontemporal UPDATE explode into eight (!)

statements and 77 lines of SQL. These statements in concert effect the desired re-

sults. Unfortunately, it is often the case that intermediate states, after some of the

statements have executed but before the rest of the statements, may not satisfy

stated integrity constraints.

As a speci�c example, the sequenced primary key constraint of CF-5.8 on

page 118 is violated between the INSERT and the UPDATE statements of CF-7.10.

For this reason, as discussed in Section 5.7, assertion checking should be delayed

to the end of the transaction, or at least until after all the modi�cation statements

implementing a temporal modi�cation complete.

Let's return to the previous example table, with the following row:

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 3000-01-01
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We promote Bob to director on Friday, March 13 (now this is his lucky day!).

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 1998-03-13

111223333 908739 1998-03-13 3000-01-01

If arbitrary modi�cations are permitted on INCUMBENTS, then there may exist

rows that start in the future, as well as rows that end before �forever.� For the

former, only the PCN need be changed. For the latter, the END DATE must be retained

on the inserted row.

We emphasize that a current update has a period of applicability of �now� to

�forever.� A row that starts in the future may be a planned transfer that shouldn't

be impacted by the update, in which case a sequenced update, to be discussed in

Section 7.2.3, with a shorter period of applicability, is more appropriate.

Figure 7.1 shows the three cases. If a row's period of validity terminates in the

past, then the update will not affect that row. If the row is currently valid, then

the portion before �now� must be terminated at �now,� and a new row, with the

updated values, inserted, with the period of validity starting at �now� and termi-

nating when the original row did. If the row starts in the future, the row can be

updated as usual.

Current update in the general case

Insert new information valid from �now� until the row ended.

Terminate the current row at �now.�

Update any rows that start in the future with the new values.

Code Fragment 7.11 Today Bobwas promoted to director of the Computer Center.

INSERT INTO INCUMBENTS

SELECT SSN, 908739, CURRENT_DATE, END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

AND START_DATE <= CURRENT_DATE

AND END_DATE > CURRENT_DATE

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

AND START_DATE < CURRENT_DATE
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AND END_DATE > CURRENT_DATE

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

AND START_DATE > CURRENT_DATE

A current update in the general

case is implemented by two

updates and an insertion.

The second UPDATE statement can appear anywhere, but the

�rst UPDATE statement must occur after the insertion.

The impact of an update on a primary key constraint is best

judged by viewing the update as a delete followed by an insert.

The delete cannot violate the constraint, but the insertion can.

The approaches described in Section 7.1.1 apply to updates as well.

When examining the impact of an update on a referential integrity constraint,

the insertion portion of an update on the referencing table is of concern, as is the

deletion portion of an update on the referenced table.

Case 1

Result: (unchanged)

Result: update end date and insert new PCN

Result: update PCN

Case 2

Case 3

Now

Figure 7.1 Current update cases, with the period of validity of the row shown.
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7.2 SEQUENCED MODIFICATIONS

A current modi�cation applies from �now� to �forever.� A sequenced modi�cation

generalizes this to apply over a speci�ed period, termed the period of applicability.

This period could be in the past, in the future, or overlap �now.�

A current modi�cation is simply

a sequenced modi�cation with a

period of applicability of �now�

to �forever.�

Most of the previous material applies to sequenced modi�ca-

tions, with CURRENT DATE replaced with the start of the period

of applicability of the modi�cation and with DATE �3000-01-

01� replaced with the end of the period of applicability. Here

we discuss only the signi�cant differences between current and

sequenced modi�cations, and will discuss the unrestricted case,

where periods may start or end in the future.

7.2.1 Sequenced Insertions

In a sequenced insertion, the application provides the period of applicability.

Code Fragment 7.12 Bob was assigned the position of associate director of the Com-

puter Center for 1997.

INSERT INTO INCUMBENTS

VALUES (111223333, 999071, DATE �1997-01-01�, DATE �1998-01-01�)

Note that as usual we are using a closed-open representation for periods.

To ensure a primary key, we need to look for duplicates anytime during the

period of applicability. This requires a slight generalization of CF-7.5.

Code Fragment 7.13 Bob was assigned the position of associate director of the Com-

puter Center for 1997, ensuring the primary key.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, DATE �1997-01-01�, DATE �1998-01-01�

FROM DUAL

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE SSN = I2.SSN

AND PCN = I2.PCN

AND I2.START_DATE < DATE �1998-01-01�

AND DATE �1997-01-01� < I2.END_DATE)

Here we just check for overlap with the period of applicability.

For preserving referential integrity, we again have two choices. We can disallow

the insertion if the constraint would be violated, or we can �ll the gaps before the

insertion.
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Disallowing a violation of the constraint requires a hefty predicate, drawn from

CF-5.21.

Sequenced insertion ensuring uniqueness and referential integrity

Insert a row

if no duplicate exists during the period of applicability,

and if there is a row in the referenced table at the start of the period of applicability,

and if there is a row at the end of the period of applicability,

and if there are no gaps during the period of applicability.

Code Fragment 7.14 Bob was assigned the position of associate director of the Com-

puter Center for 1997, also ensuring referential integrity.

INSERT INTO INCUMBENTS (SSN, PCN, START_DATE, END_DATE)

SELECT DISTINCT 111223333, 999071, DATE �1997-01-01�, DATE �1998-01-01�

FROM POSITIONS

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE SSN = I2.SSN

AND PCN = I2.PCN

AND I2.START_DATE < DATE �1998-01-01�

AND DATE �1997-01-01� < I2.END_DATE)

AND EXISTS ( SELECT *

FROM POSITIONS AS P

WHERE P.PCN = 999071

AND P.START_DATE <= DATE �1997-01-01�

AND DATE �1997-01-01� < P.END_DATE)

AND EXISTS ( SELECT *

FROM POSITIONS AS P

WHERE P.PCN = 999071

AND P.START_DATE < DATE �1998-01-01�

AND DATE �1998-01-01� <= P.END_DATE)

AND NOT EXISTS ( SELECT *

FROM POSITIONS AS P

WHERE P.PCN = 999071

AND DATE �1997-01-01� < P.END_DATE

AND P.END_DATE < DATE �1998-01-01�

AND NOT EXISTS ( SELECT *

FROM POSITIONS AS P2

WHERE P2.PCN = 999071

AND P2.START_DATE <= P.END_DATE

AND P.END_DATE < P2.END_DATE))
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There are four components to the predicate. The �rst states that there are no du-

plicates over the period of applicability. The second states that the new position is

valid at the start of the period of applicability. The third states that the new posi-

tion is valid at the end of the period of applicability. The last component (the NOT

EXISTS) states that there is no gap during the period of applicability. As before, a

gap exists if there is a row P that ends during the period of applicability that is not

extended (towards the beginning of 1998) by another row of POSITIONS.

The other approach, of �lling gaps, requires modifying CF-7.6, substituting

CURRENT DATE with DATE �1997-01-01� and DATE �3000-01-01� with DATE �1998-

01-01�.

7.2.2 Sequenced Deletions

We start with the following nontemporal deletion:

Code Fragment 7.15 Bob was removed as associate director of the Computer Center

(nontemporal version).

DELETE FROM INCUMBENTS

WHERE SSN=111223333

AND PCN = 999071

We now wish to convert this to a sequenced deletion, over a period of applicability

of the year 1997: �Bob was removed as associate director of the Computer Center

for 1997.�

Recall that a current deletion in the general case is implemented as an update,

for the currently valid periods, and a delete, for periods starting in the future. For a

sequenced deletion, there are four cases, as shown in Figure 7.2. In each case, the

period of validity of the original tuple is shown above the period of applicability

for the deletion. In Case 1, the original row covers the period of applicability, so

both the initial and �nal periods need to be retained. The initial period is retained

by setting the end date to the beginning of the period of applicability; the �nal

period is inserted. In Case 2, only the initial portion of the period of validity of

the original row is retained. Symmetrically, in Case 3, only the �nal portion of the

period need be retained. And in Case 4, the entire row should be deleted, as the

period of applicability covers it entirely.

Sequenced deletion

Insert the old values from the end of the period of applicability to the end of the

period of validity of the original row.

Update the end date to end at the beginning of the period of applicability.

Update the start date to begin at the end of the period of applicability.

Delete entirely rows that are covered by the period of applicability.
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Case 1

Case 2

Case 3

Case 4

Result:

Result:

Result:

Result: entire row deleted

PV

PA

PV

PA

PV

PA

PV

PA

Figure 7.2 Sequenced deletion cases, with the period of validity (PV) and period of
applicability (PA) shown.

Code Fragment 7.16 Bobwas removed as associate director of the Computer Center for

1997.

INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE �1998-01-01�, END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1998-01-01�

continued on page 192
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continued from page 191

UPDATE INCUMBENTS

SET END_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1997-01-01�

AND END_DATE >= DATE �1997-01-01�

UPDATE INCUMBENTS

SET START_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1998-01-01�

AND END_DATE >= DATE �1998-01-01�

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE >= DATE �1997-01-01�

AND END_DATE <= DATE �1998-01-01�

Case 1 is re�ected in the �rst two statements; the second statement also covers Case

2. The third statement handles Case 3, and the fourth, Case 4.

As a simple example, we start with Bob having been promoted on March 13 to

director:

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 1998-03-13

111223333 908739 1998-03-13 3000-01-01

He is given a leave of absence for the month of March 1998, which corresponds to

a sequenced deletion with a period of applicability of [1998-03-01 � 1998-04-01).

The result is

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 1998-03-01

111223333 908739 1998-04-01 3000-01-01

The �rst row is handled by the �rst UPDATE (Case 2), and the second row is handled

by the second UPDATE (Case 3).
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Table 7.2 The leave of absence was for the month of April.

SSN PCN START DATE END DATE

111223333 999071 1998-01-01 1998-03-13

111223333 908739 1998-03-13 1998-04-01

111223333 908739 1998-05-01 3000-01-01

Now let's consider instead that the leave of absence is the month of April. The re-

sult then is Table 7.2. This utilizes only Case 1, which is implemented as an INSERT

and an UPDATE.

A sequenced deletion is

implemented by four

statements: an insertion, two

updates, and a deletion.

Note that a sequenced primary key will be temporarily vio-

lated (by the INSERT statement), but will be satis�ed after the �-

nal DELETE statement, which implies that the constraint should

be temporarily deferred during this modi�cation. All four state-

ments must be evaluated in the order shown. They have been

carefully designed to cover each case exactly once.

A sequenced deletion can

violate a nonsequenced

uniqueness constraint. It cannot

violate a current or sequenced

uniqueness constraint.

Concerning referential integrity, a sequenced deletion may

introduce a gap, violating a foreign key referencing the table

on which the deletion is applied. Concerning duplicates, a dele-

tion applied on a snapshot table cannot cause a uniqueness

constraint to be violated. The same holds for a sequenced

uniqueness constraint. However, a sequenced deletion can vio-

late nonsequenced uniqueness because deleting the middle out

of a single period results in two disconnected periods.

As an example, the following table contains no nonsequenced duplicates (it does

contain value-equivalent rows and sequenced duplicates, but that is not the focus

here):

SSN PCN START DATE END DATE

111223333 120033 1998-04-01 1998-06-01

111223333 120033 1998-04-01 1998-10-01

If a sequenced deletion with a period of applicability of June 1, 1998 through

July 31, 1998, is applied, the resulting table (Table 7.3) does violate nonsequenced

uniqueness!

Table 7.3 June and July 1998 were deleted.

SSN PCN START DATE END DATE

111223333 120033 1998-04-01 1998-06-01

111223333 120033 1998-04-01 1998-06-01

111223333 120033 1998-08-01 1998-10-01
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7.2.3 Sequenced Updates

A sequenced update is the temporal analog of a nontemporal update, with a

speci�ed period of applicability. Let us again consider the following update:

Code Fragment 7.17 Bobwas promoted to director of the Computer Center (nontempo-

ral version).

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

We now convert this to a sequenced update: Bob was promoted only for the

calendar year 1997.

A sequenced update is

implemented by �ve

statements: two insertions

and three updates.

As with sequenced deletions, there are more cases to consider

for sequenced updates as compared with current updates. The

four cases in Figure 7.2 are handled differently in an update. In

Case 1 of Figure 7.3, the initial and �nal portions of the period

of validity are retained (via two insertions), and the affected por-

tion is updated. In Case 2, only the initial portion is retained; in

Case 3, only the �nal portion is retained. In Case 4, the period of validity is retained,

as it is covered by the period of applicability.

Sequenced update

Insert the old values from the start date to the beginning of the period of applicability.

Insert the old values from the end of the period of applicability to the end date.

Update the explicit columns of rows that overlap the period of applicability.

Update the start date to begin at the beginning of the period of applicability of rows

that overlap the period of applicability.

Update the end date to end at the end of the period of applicability of rows that

overlap the period of applicability.

Code Fragment 7.18 Bobwas promoted to director of the Computer Center for 1997.

INSERT INTO INCUMBENTS

SELECT SSN, PCN, START_DATE, DATE �1997-01-01�

FROM INCUMBENTS

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�
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INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE �1998-01-01�, END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS

SET START_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS

SET END_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

The �rst INSERT statement handles the initial portions of Cases 1 and 2; the second

handles the �nal portions of Cases 2 and 3. The �rst update handles the update

for all four cases. The second and third updates adjust the starting (for Cases 1

and 2) and ending dates (for Cases 1 and 3) of the updated portion. Note that

the last three UPDATE statements will not impact the row(s) inserted by the two

INSERT statements, as the period of validity of those rows lies outside the period of

applicability. Again, all �ve statements must be evaluated in the order shown.

Returning again to our simple example,

SSN PCN START DATE END DATE

111223333 341288 1998-01-01 1998-03-13

111223333 908739 1998-03-13 3000-01-01

Bob was given a temporal assignment of PCN = 999071 for the month of March

1998. The result (Table 7.4) contains four rows. Study this result carefully to

convince yourself that it is indeed what is desired.
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PV

PA

PV

PA

PV

PA

PV

PA

Case 1

Case 2

Case 3

Case 4

Updated portion:

Old value retained:

Updated portion:

Old value retained:

Updated portion:

Old value retained:

Result: entire row updated

Figure 7.3 Sequenced update cases, with the period of validity (PV) and period of
applicability (PA) shown.

Table 7.4 Result of the sequenced update.

SSN PCN START DATE END DATE

111223333 341288 1998-01-01 1998-03-01

111223333 999071 1998-03-01 1998-03-13

111223333 999071 1998-03-13 1998-04-01

111223333 908739 1998-04-01 3000-01-01
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Effecting this result requires the following changes to the original two rows:

1. Insert the �rst row of the result (the �rst INSERT of CF-7.18, Case 2 of Figure 7.3,

old value retained).

2. Insert the fourth row of the result (the second INSERT, Case 3, old value

retained).

3. Change the PCN of both of the original rows to 999071, forming new rows 2 and

3 (the �rst UPDATE, Cases 2 and 3, updated portion).

4. Change the start date of the �rst original row to 1998-03-01, to form the second

row of the result (the second UPDATE, Case 2, old value retained).

5. Change the end date of the second original row to 1998-04-01, to form the third

row of the result (the third UPDATE, Case 3, old value retained).

Amazingly, this does produce the correct result, in all cases.

Concerning duplicates and referential integrity, a sequenced update can again be

considered to be a combination of a sequenced deletion followed by a sequenced

insertion. The deletion is relevant for referenced tables (e.g., of concern if we up-

dated the POSITIONS table); the insertion is relevant for uniqueness and for refer-

encing tables (e.g., for an insertion we would need to check that the PCN was in the

POSITIONS table).

7.3 NONSEQUENCED MODIFICATIONS

As with constraints and queries, a nonsequenced modi�cation treats the time-

stamps identically to the other columns.

Code Fragment 7.19 Delete Bob's records that include 1997 stating that he was asso-

ciate director of the Computer Center.

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE <= DATE �1997-12-31�

AND DATE �1997-01-01� < END_DATE

Nonsequenced modi�cations are

usually dif�cult to state in

English because they are

expressed in terms of the

representation, but easier to

express in SQL for the same

reason.

Let's compare this statement with the current variant, CF-7.8,

�Bob was �red as associate director of the Computer Center,�

and with the sequenced variant, CF-7.16, �Bob was removed as

associate director of the Computer Center for 1997.� The cur-

rent and sequenced deletes mention what happened in reality

because they model changes. The nonsequenced statement con-

cerns the speci�c representation (deleting particular records).

Conversely, the associated SQL statements for the current and

sequenced variants are much more complex than that for the
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nonsequenced delete, for the same reason: the latter is expressed in terms of the

representation.

Nonsequenced modi�cations

are rare.

Most modi�cations will be �rst expressed as changes to the enterprise being

modeled (some fact becomes true, or will be true sometime in the future; some

aspect changes, now or in the future; some fact is no longer

true). Such modi�cations are either current or sequenced modi-

�cations. Nonsequenced modi�cations, while generally easier to

express in SQL, are rare.

The rami�cations (e.g., ensuring uniqueness and referential integrity) of a cur-

rent modi�cation impact the period from �now� to �forever�; those for sequenced

modi�cations impact the period of applicability. Since nonsequenced modi�cations

manipulate the timestamps in arbitrary ways, their impact must be judged on a

case-by-case basis. Consider the following simple SQL update:

Code Fragment 7.20 ExtendBob'sposition as associate director of the Computer Center

for an additional year.

UPDATE INCUMBENTS

SET END_DATE = END_DATE + INTERVAL �1� YEAR

WHERE SSN = 111223333

AND PCN = 999071

Correctly implementing a

nonsequenced modi�cation in

the presence of sequenced

constraints is dif�cult and must

be done on a case-by-case basis.

Note that Bob might have had this position multiple times (per-

haps he went on leave or had a temporary assignment else-

where); this statement will change all such records. Unlike the

sequenced update (CF-7.18, �Bob was promoted to director of

the Computer Center for 1997�), it is probable that the nonse-

quenced update just listed will result in (sequenced) duplicates

(Bob having two positions at a point in time). How do we avoid

such integrity violations? In this case, we would need to either

augment the UPDATE statement to check for sequenced duplicates (and not do the

update if one was found), or �rst delete the offending duplicates before doing the

update. Either way, it is not possible to give a general algorithm; the speci�c code

depends entirely on how the modi�cation manipulates the timestamp column(s).

7.4 MODIFICATIONS THAT MENTION OTHER TABLES*

The examples given in this chapter have been simple ones, with predicates and the

SET clause limited to simple equalities involving other columns in the table being

modi�ed. What if predicate or SET clause(s) involve subqueries, or mention other

tables? To convert such complex modi�cations, a combination of the techniques

from this chapter and the previous chapter on queries must be applied.
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7.4.1 Complex Current Modi�cations

Recall from Chapter 6 that a current query merely requires an additional predicate:

START_DATE <= CURRENT_DATE AND CURRENT_DATE < END_DATE

Predicates and SET clauses in a current modi�cation that mention other temporal

tables can use this same comparison.

The following query assumes we don't know the PCN, but can look it up

in the POSITIONS table, given the JOB TITLE CODE1, which is available from the

(nontemporal) table JOB TITLES. We �rst show the modi�cation ignoring time.

Code Fragment 7.21 Bob is promoted todirector of theComputer Center getting the PCN

from POSITIONS (nontemporal version).

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB_TITLES

WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�)

WHERE SSN = 111223333

The following is the current version of this modi�cation; compare it with

CF-7.11.

Code Fragment 7.22 Bob is promoted todirector of theComputer Center getting the PCN

from POSITIONS (current version).

INSERT INTO INCUMBENTS

SELECT SSN, I.PCN, CURRENT_DATE, I.END_DATE

FROM INCUMBENTS AS I, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

AND I.START_DATE <= CURRENT_DATE

AND I.END_DATE > CURRENT_DATE

AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

AND POSITIONS.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < POSITIONS.END_DATE

UPDATE INCUMBENTS

SET END_DATE = CURRENT_DATE

WHERE SSN = 111223333

AND PCN <> (SELECT PCN

FROM POSITIONS, JOB_TITLES

WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

continued on page 200
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continued from page 199

AND POSITIONS.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < POSITIONS.END_DATE)

AND INCUMBENTS.START_DATE < CURRENT_DATE

AND INCUMBENTS.END_DATE > CURRENT_DATE

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB_TITLES

WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

AND POSITIONS.START_DATE <= CURRENT_DATE

AND CURRENT_DATE < POSITIONS.END_DATE)

WHERE SSN = 111223333

AND START_DATE >= CURRENT_DATE

Current modi�cations that

mention other tables require an

additional overlap predicate for

each correlation name.

Two changes were made to CF-7.11. The �rst replaced the two

occurrences of a PCN of 908739 with the SELECT statement that

looks up this value from the POSITIONS and JOB TITLES tables.

The second change added the overlap test with CURRENT DATE for

the POSITIONS correlation name. No such test is required of JOB

TITLES because this table doesn't record history.

7.4.2 Complex Sequenced Modi�cations

Sections 6.3 and 6.3.1 showed how to express sequenced selection, projection,

union, sorting, join, and duplicate elimination. Section 7.2 showed how to imple-

ment sequenced insertions, deletions, and updates. We now consider implement-

ing sequenced modi�cations that refer to other tables. Doing so requires combining

these techniques.

We warn you that sequenced modi�cations over multiple time-varying tables

are exceedingly knotty. That is little consolation to the application developer who

is expected to produce such queries. Here we walk through the steps taking a non-

temporal multitable update (at 6 lines) to its sequenced equivalent (at 76 lines!).

This section can be safely skipped; you can return here when required to write such

an update.

If a SET or WHERE clause mentions another temporal table, the predicate in the

context of a sequenced modi�cation will be valid for the periods of validity of the

relevant rows of that table. Multiple rows contribute various periods of validity,

which must be accounted for.

There are three periods that are involved. The �rst is the period of validity con-

tributed by the row being modi�ed. The second is the period of applicability for the
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Escapements

The mechanism that periodically stops the unwind-

ing of the clock, and thus keeps the time, is termed

the �escapement.� The �rst escapement, invented

in the 15th century, was the verge-and-foliot, or re-

coil escapement. The rotating cylinder has notches

or teeth on it, which push (hence the name, �re-

coil�) a weighted bar, the foliot, in one direction,

twisting a wire. When the wire untwists, it pushes

the foliot in the other direction, releasing the cylin-

der (called the crown wheel) to turn until the es-

capement hits the next notch. Twist-untwist, tick-

tock. The escapement ensures that the crown only

advances one unit at a time and serves to impulse

the foliot, keeping the clock going.

All escapements have these two tasks: regulate

the advancement, and �kick� the oscillating body.

A wonderous diversity of escapements has been

invented over the last 600 years.

modi�cation. The third is the period of validity of the row of the table mentioned

in the SET or WHERE clause.

We are primarily interested in regions where these three periods intersect. Times

outside the period of validity of the row being modi�ed are obviously of no con-

cern. The SET clause or WHERE clause is de�ned only for the period of validity

of the mentioned table. The modi�cation affects those times within the period of

applicability. Note however that those times outside the period of applicability but

within the period of validity of the modi�ed row are still relevant, for we wish to

retain the old values for the columns during these times.

Hence, to convert a query mentioning other table(s) to be a sequenced query

(the most useful kind), a case analysis on the interaction of these three periods is

required. Figures 7.2 and 7.3 illustrated the possible ways that the period of validity

of the modi�ed row and the period of applicability can interact. To this analysis

we must add the period of validity of the mentioned rows. Each type of interaction

generally necessitates an insertion or update. Periods outside the period of appli-

cability require inserts to retain the old column values. Before, there was only one

period from the row being modi�ed within the period of applicability; here, because

of the other referenced tables, there may be many such periods. These periods are

also inserted (for a sequenced insertion or update). The exception is the �rst period

within the period of applicability, which is updated (again, for a sequenced update),

both of the column values, to effect the update, and the start and end timestamp

columns.

As an example, we convert the above nontemporal update (CF-7.21) to a se-

quenced update, using a period of applicability of the calendar year 1997. Doing so

effectively requires a sequenced join between INCUMBENTS and POSITIONS. Here is

the original, nontemporal update.



202 CHAPTER SEVEN : MOD IFY ING STATE TABLES

1 2 3

INCUMBENTS

Result:

POSITIONS

Period of applicability (1997)

Insert old values

Insert old values

Update to 1

Insert new 2

Insert new 3

Figure 7.4 Case 1 of sequenced update, mentioning another temporal table.

Code Fragment 7.23 Bobwas promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB_TITLES

WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�)

WHERE SSN = 111223333

As just mentioned, there are four base cases for sequenced updates (see Fig-

ure 7.3). Let's examine how the period of validity for the POSITIONS table interacts

with the period of validity for INCUMBENTS and with the period of applicability. In

Figure 7.4, we focus on Case 1. In this example, the PCN in POSITIONS for director

of the Computer Center changes several times (from 1 to 2 to 3) over the course of

1997.

This particular update will result in a single row from INCUMBENTS being replaced

with �ve rows. The �rst and last rows will be identical to the original row except for

the start and end times. The PCN column of the second row will be 1, of the third

row, 2, and of the fourth row, 3, all drawn from the POSITIONS table. Since we need
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to derive �ve rows (in this case) from one original row, this modi�cation will be

performed via four inserts and four updates (one to update the PCN column, one to

update the START DATE column, and two to update the END DATE column), a total of

eight modi�cation statements.

Sequenced update mentioning another table

Insert old values before period of applicability begins.

Insert old values after period of applicability ends.

Perform update on �rst period representing the intersection of the period of validity

for the row, the period of applicability, and the period of validity of the mentioned

row(s).

Insert new values for the remainder of the period of applicability (two subcases).

Update its start date (one update) and end date (two subcases).

Code Fragment 7.24 Bob was promoted to director of the Computer Center for 1997

(sequenced version).

INSERT INTO INCUMBENTS

SELECT SSN, PCN, DATE �1998-01-01�, END_DATE

FROM INCUMBENTS

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

INSERT INTO INCUMBENTS

SELECT SSN, PCN, START_DATE, DATE �1997-01-01�

FROM INCUMBENTS

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB_TITLES

WHERE POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

AND POSITIONS.START_DATE <= DATE �1997-01-01�

AND DATE �1997-01-01� < POSITIONS.END_DATE)

continued on page 204
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continued from page 203

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1997-01-01�

INSERT INTO INCUMBENTS

SELECT SSN, POSITIONS.PCN,

POSITIONS.START_DATE, POSITIONS.END_DATE

FROM INCUMBENTS, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

AND INCUMBENTS.START_DATE <= DATE �1998-01-01�

AND INCUMBENTS.END_DATE > DATE �1998-01-01�

AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

AND DATE �1997-01-01� <= POSITIONS.START_DATE

AND INCUMBENTS.START_DATE <= POSITIONS.START_DATE

AND POSITIONS.END_DATE < DATE �1998-01-01

AND POSITIONS.END_DATE < INCUMBENTS.END_DATE

INSERT INTO INCUMBENTS

SELECT SSN, POSITIONS.PCN,

POSITIONS.START_DATE, DATE �1998-01-01�

FROM INCUMBENTS, POSITIONS, JOB_TITLES

WHERE SSN = 111223333

AND INCUMBENTS.START_DATE <= DATE �1998-01-01�

AND INCUMBENTS.END_DATE > DATE �1998-01-01�

AND POSITIONS.JOB_TITLE_CODE1 = JOB_TITLE_CODE

AND JOB_TITLE = �DIRECTOR, COMPUTER CENTER�

AND DATE �1997-01-01� <= POSITIONS.START_DATE

AND DATE �1998-01-01 < POSITIONS.END_DATE

UPDATE INCUMBENTS

SET START_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS

SET END_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

AND NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2
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WHERE INCUMBENTS.SSN = I2.SSN

AND INCUMBENTS.PCN = I2.PCN

AND INCUMBENTS.START_DATE < I2.END_DATE

AND I2.START_DATE < INCUMBENTS.END_DATE)

UPDATE INCUMBENTS

SET END_DATE = (SELECT MIN(I2.START_DATE)

FROM INCUMBENTS AS I2

WHERE INCUMBENTS.SSN = I2.SSN

AND INCUMBENTS.PCN <> I2.PCN

AND INCUMBENTS.START_DATE < I2.START_DATE)

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

AND EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE INCUMBENTS.SSN = I2.SSN

AND INCUMBENTS.PCN <> I2.PCN

AND INCUMBENTS.START_DATE < I2.END_DATE

AND I2.START_DATE < INCUMBENTS.END_DATE)

In comparison with the original sequenced version (CF-7.18), we added here men-

tion of the POSITIONS and JOB TITLES tables, impacting only the latter three UP-

DATE statements of the original version. Since POSITIONS is time-varying, we are

really doing a sequenced join between that table and the table being updated,

INCUMBENTS.

The �rst INSERT statement handles the initial portion (the �rst row in Fig-

ure 7.4); the second handles the �nal portion (the last row in the �gure). The �rst

update changes the PCN to the value found in the POSITIONS table valid at the

beginning of the period of applicability (1997). The following two insertions add

intermediate periods during the period of applicability, the former from row(s) of

the POSITIONS table that end before the end of applicability, the latter from rows

that end after the period of applicability. The following three updates adjust the

starting and ending dates of the initial portion with the new PCN value.

This case analysis identi�es for which periods the old values should be inserted,

for which periods the new values should be inserted, and for which single period

the columns should be updated to the new values, with the start and end times

changed. We illustrated the most complex case, that of update; deletion is simpler,

and insertion simpler still.
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7.5 TEMPORAL PARTITIONING*

Sequenced updates referring to

other tables are complex to

convert into SQL.

As discussed on page 120, the value �3000-01-01� (�forever�) is

used in INCUMBENTS.END DATE to represent currently valid data,

that is, data valid until �now.� What we really desire is to store

CURRENT DATE as the column value. Unfortunately, neither

SQL nor any extant DBMS allows this because the value has the

habit of changing once each day. While quite inconvenient for the DBMS vendor,

this property is what the user wants. Bob's position could change tomorrow, but at

least we know that the position recorded in the database is valid today.

As an aside, using CURRENT DATE is close, but is not entirely accurate. The UIS

is updated every night with the previous day's value. So what we really want to

model is that we know Bob's position up to yesterday; it could change today, in

which case we would hear about the change tomorrow. So what is really needed is

the now-relative value CURRENT DATE - INTERVAL �1� DAY, which is also not supported

as a column value by DBMSs.

Temporal partitioning �nesses

the limitation of CURRENT DATE

not being permitted as column

values by splitting a valid-time

table into a current store

containing only current

information and a history store.

Since we can't store the value we want, we come at the prob-

lem a different way. By using temporal partitioning, we can avoid

the necessity of storing an end time of �now.� We partition

INCUMBENTS into two tables, INCUMBENTS CURRENT and INCUM-

BENTS PAST. The latter table, termed the history store, contains

no current information; hence, the END DATE is always a speci�c,

known date. In the former table, termed the current store, we

have no need for that column, so we omit it. The START DATE

is still present in the INCUMBENTS CURRENT table, as we need to

know when the current information became valid.

These two tables are not as expressive as the original INCUMBENTS table: they can-

not record future data. Say Bob receives a promotion postactively, that is, to go

into effect at some future time. Postactive promotions are common in universities;

many are announced in late spring, to go into effect at the beginning of the follow-

ing �scal year (which for the University of Arizona is July 1). Bob's new position

could be recorded in INCUMBENTS, with a START DATE of July 1. Such data cannot

be stored in INCUMBENTS PAST, nor is such data appropriate for INCUMBENTS CURRENT

because the position is not yet current.

7.5.1 Queries

If temporal partitioning is used, current queries are simpler: just apply the query to

the current store.
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Code Fragment 7.25 What is Bob's current position?

SELECT JOB_TITLE_CODE1

FROM EMPLOYEES, INCUMBENTS_CURRENT, POSITIONS

WHERE FIRST_NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS_CURRENT.SSN

AND INCUMBENTS_CURRENT.PCN = POSITIONS.PCN

Current queries are simpli�ed

when applied to a partitioned

valid-time table.

The disadvantage of temporal partitioning, as we will see below, is that queries

over the history must reference both tables. However, sometimes the data is natu-

rally partitioned at the source of that data. Recall that while SAL

HISTORY (see page 116) contains the salary history, the EMPLOY-

EES table contains the current salary, as well as the PAY CHANGE

DATE. An important design issue, which we'll just mention now,

is whether to replicate current information in the past table.

While all of these approaches are similar in length (around 30 lines of SQL code),

the query becomes much more complex when temporal partitioning is used on

one or both of the underlying tables. If the INCUMBENTS table is partitioned into

INCUMBENTS PAST and INCUMBENTS CURRENT, then the temporal join mushrooms to a

50-line query.

Code Fragment 7.26 Provide the salary and department history for all employees.

( Insert CF-6.11 from page 151, substituting INCUMBENTS PAST for INCUMBENTS)

UNION

SELECT S.SSN, AMOUNT, PCN,

S.HISTORY START DATE, S.HISTORY END DATE

FROM SAL HISTORY AS S, INCUMBENTS CURRENT AS I

WHERE S.SSN = I.SSN

AND I.START DATE <= S.HISTORY START DATE

UNION

SELECT S.SSN, AMOUNT, PCN,

I.START DATE, S.HISTORY END DATE

FROM SAL HISTORY AS S, INCUMBENTS CURRENT AS I

WHERE S.SSN = I.SSN

AND I.START DATE > S.HISTORY START DATE

AND S.HISTORY. END DATE <= DATE �3000-01-01�

AND I.START DATE < S.HISTORY END DATE

UNION

SELECT S.SSN, AMOUNT, PCN,

I.START DATE, S.HISTORY END DATE

FROM SAL HISTORY AS S, INCUMBENTS CURRENT AS I

WHERE S.SSN = I.SSN

AND I.START DATE > S.HISTORY START DATE

AND DATE �3000-01-01� < S.HISTORY END DATE
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If the history store does not

include current data, then

sequenced and nonsequenced

queries are more complex.

Otherwise, such data must be

replicated across both tables.

There are two major changes made to CF-6.11 to produce the

portion here. INCUMBENTS.END DATE is replaced with DATE �3000-

01-01�. With this substitution, the second case in the original

doesn't apply to INCUMBENTS CURRENT, and so is omitted.

If the INCUMBENTS PAST also includes the current data, then

CF-6.11 with INCUMBENTS PAST substituted for INCUMBENTS suf-

�ces. This approach favors query simplicity, at the expense of

modi�cation complexity, as will now be shown.

7.5.2 Modi�cations

Current inserts into partitioned tables are even easier.

Code Fragment 7.27 Bob was assigned the position of associate director of the Com-

puter Center (partitioned).

INSERT INTO INCUMBENTS_CURRENT

VALUES (111223333, 6201945234, CURRENT_DATE)

Here we only have to record when the fact became valid.

We assume in this code fragment that duplicates were allowed. If duplicates are

not allowed, then there are two choices. One approach is to de�ne a constraint

or assertion disallowing duplicates, which will then prevent duplicates from being

inserted. This works �ne for current and nonsequenced duplicates, as well as for

value-equivalent duplicates. For sequenced duplicates (where no duplicates are al-

lowed at each point in time), using a constraint, such as that shown in CF-5.14, is

overkill because a duplicate present at any instant will prevent the insertion at all

instants.

Current insertions only impact

the current store of a partitioned

table.

The second approach is to extend the above INSERT state-

ments to insert facts only if there is no duplicate. For current

and nonsequenced duplicates, this is easy. For sequenced dupli-

cates, where duplicates must be avoided at each point in time,

ensuring this is easy for the partitioned table. If there is a value-

equivalent row in the INCUMBENTS CURRENT, then the period of validity of that row

wholly contains the row to be inserted, and the entire insertion should not take

place.

Code Fragment 7.28 Bob was assigned the position of associate director of the Com-

puter Center (partitioned, avoiding sequenced duplicates).

INSERT INTO INCUMBENTS_CURRENT

VALUES (111223333, 6201945234, CURRENT_DATE)

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS_CURRENT AS I2

WHERE I2.SSN = 111223333

AND I2.PCN = 6201945234)
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Similarly, current deletions move a row from the current store to the history

store.

Code Fragment 7.29 Bob was �red as associate director of the Computer Center (parti-

tioned).

INSERT INTO INCUMBENTS_PAST (SSN, PCN, START_DATE, END_DATE)

SELECT SSN, PCN, START_DATE, CURRENT_DATE

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND PCN = 999071

DELETE FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND PCN = 999071

This is slightly shorter than the nonpartitioned current deletion (CF-7.8). Similarly,

a current update is logically a current delete coupled with a current insert.

Sequenced modi�cations over a partitioned table must consider both stores. For

sequenced insertions, there are two cases: (1) the period of applicability lies entirely

in the past, in which case the row is inserted into the history store, or (2) the period

of applicability includes now, in which case the row is inserted into the current

store.

For sequenced deletions, recall that a partitioned store cannot record future data,

so the period of applicability must either end before now or extend to �forever.� In

the �rst situation, only the history store is modi�ed, as described in Section 7.2.2.

The second situation involves changes to the history store and to the current store.

Revisiting Figure 7.2 on page 191, all four cases are relevant for the period of

validity for rows in both the current and history stores. The insertion, two updates,

and the deletion of CF-7.16 apply as is to INCUMBENTS PAST. For the current store,

these cases result in a somewhat different set of statements.

Code Fragment 7.30 Bobwas removed as associate director of the Computer Center for

1997 (partitioned).

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, DATE �1998-01-01�, END_DATE

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE <= DATE �1997-01-01�

AND END_DATE > DATE �1998-01-01�

continued on page 210
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continued from page 209

UPDATE INCUMBENTS_PAST

SET END_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1997-01-01�

AND END_DATE >= DATE �1997-01-01�

UPDATE INCUMBENTS_PAST

SET START_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1998-01-01�

AND END_DATE >= DATE �1998-01-01�

DELETE FROM INCUMBENTS_PAST

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE >= DATE �1997-01-01�

AND END_DATE <= DATE �1998-01-01�

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE <= DATE �1998-01-01�

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, START_DATE, DATE �1997-01-01�

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1997-01-01�

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE < DATE �1998-01-01�

DELETE FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND PCN = 999071

AND START_DATE >= DATE �1997-01-01�
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Sequenced updates are tedious

due to the extensive case

analysis required for the current

and history stores separately.

The situation is similar for sequenced updates. The his-

tory store is updated identically to the nonpartitioned valid-

time state table (copying the �ve modi�cation statements from

CF-7.18). Updating the current store requires some changes to

these statements, yielding another six modi�cation statements

(whew!). These are best understood by examining Figure 7.3 and

considering what changes to the partitioned store are required in each case.

Code Fragment 7.31 Bob was promoted to director of the Computer Center for 1997

(partitioned).

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, START_DATE, DATE �1997-01-01�

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, DATE �1998-01-01�, END_DATE

FROM INCUMBENTS_PAST

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

UPDATE INCUMBENTS_PAST

SET PCN = 908739

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS_PAST

SET START_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS_PAST

SET END_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1998-01-01�

continued on page 212
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continued from page 211

-- Now handle changes to INCUMBENTS_CURRENT

INSERT INTO INCUMBENTS_PAST

SELECT SSN, PCN, START_DATE, DATE �1997-01-01�

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

INSERT INTO INCUMBENTS_PAST

SELECT SSN, 908739, DATE �1997-01-01�, DATE �1998-01-01�

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

AND DATE �1998-01-01� < CURRENT_DATE

INSERT INTO INCUMBENTS_PAST

SELECT SSN, 908739, START_DATE, DATE �1998-01-01�

FROM INCUMBENTS_CURRENT

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND DATE �1998-01-01� < CURRENT_DATE

UPDATE INCUMBENTS_PAST

SET PCN = 908739

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

AND END_DATE > DATE �1997-01-01�

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE �1998-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1998-01-01�

UPDATE INCUMBENTS_CURRENT

SET START_DATE = DATE �1997-01-01�

WHERE SSN = 111223333

AND START_DATE < DATE �1997-01-01�

As with the nonpartitioned store, nonsequenced modi�cations are easy to ex-

press in SQL and dif�cult to express in English because they are so intimately

coupled with the implementation.
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7.6 IMPLEMENTATION CONSIDERATIONS

As before, the code fragments were implemented on several systems.

7.6.1 IBM DB2 Universal Database

All of the code fragments compile without error in IBM DB2 UDB. The DUAL table

in CF-7.2 can be replaced with a WITH TEMP construct.

Code Fragment 7.32 Bob was assigned the position of associate director of the Com-

puter Center, ensuring the primary key, in DB2UDB.

INSERT INTO INCUMBENTS

WITH TEMP(SSN, PCN, START_DATE, END_DATE) AS

(VALUES (111223333, 999071, CURRENT DATE, �3000-01-01�))

SELECT *

FROM TEMP AS T

WHERE (NOT EXISTS ( SELECT *

FROM INCUMBENTS AS I2

WHERE T.SSN = I2.SSN

AND T.PCN = I2.PCN

AND I2.END_DATE = �3000-01-01�))

7.6.2 Microsoft Access

CF-7.6 (�ll gaps in the POSITIONS table) cannot be done in Microsoft Access 97 or

Access 2000 because these DBMSs do not support the COALESCE operator.

7.6.3 Microsoft SQL Server

All of the code fragments compile without error in Microsoft SQL Server.

7.6.4 Oracle8 Server

CF-7.6 causes dif�culties with Oracle8 Server, as it doesn't allow SELECT statements

in the target list of an outer SELECT statement. This code fragment can be converted

to the following PL/SQL code:
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Code Fragment 7.33 Fill gaps in the POSITIONS table for the position of associate direc-

tor of the Computer Center, in the general case, in Oracle.

CURSOR gaps(pcn2 varchar2) IS

SELECT END_DATE

FROM POSITIONS p2

WHERE p2.PCN = pcn2

AND p2.END_DATE > SYSDATE

AND p2.END_DATE < TO_DATE(�3000-01-01�,�YYYY-MM-DD�)

AND NOT EXISTS ( SELECT *

FROM POSITIONS p3

WHERE p3.PCN = pcn2

AND p3.START_DATE <= p2.END_DATE

AND p2.END_DATE < p3.END_DATE );

new_start_date DATE;

new_end_date DATE;

BEGIN

OPEN gaps(in_pcn);

LOOP

BEGIN

FETCH gaps INTO new_start_date;

EXIT WHEN gaps%NOTFOUND;

SELECT NVL(MIN(p2.START_DATE),TO_DATE(�3000-01-01�,�YYYY-MM-DD�))

INTO new_end_date

FROM POSITIONS p2

WHERE p2.PCN = in_pcn

AND p2.START_DATE > new_start_date;

INSERT INTO POSITIONS

( pcn, JOB_TITLE_CODE1, START_DATE, END_DATE )

VALUES (in_pcn, NULL, new_start_date, new_end_date );

END;

END LOOP;

CLOSE gaps;

END;

The cursor is the WHERE clause of the original INSERT statement. The WHERE

clause in the nested select inside the original COALESCE expression is implemented

here as a select on the rows returned by the cursor, with COALESCE implemented

with NVL. The insert is then performed.
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7.6.5 UniSQL

CF-7.6 causes slight dif�culties with UniSQL, because COALESCE cannot take a

SELECT statement as an argument. Also, as UniSQL does not support CURRENT

DATE, we use today's date instead.

Code Fragment 7.34 Fill gaps in the POSITIONS table for the position of associate direc-

tor of the Computer Center, in the general case, in UniSQL.

INSERT INTO POSITIONS

SELECT 999071, NULL, END_DATE,

(SELECT COALESCE(MIN(START_DATE), DATE �01/01/3000�)

FROM POSITIONS AS P2

WHERE P2.PCN = 999071

AND P2.START_DATE > P.START_DATE)

FROM POSITIONS AS P2

WHERE P2.PCN = 999071

AND P2.END_DATE > DATE �1/16/1998�

AND P2.END_DATE < DATE �01/01/3000�

AND NOT EXISTS ( SELECT *

FROM POSITIONS AS P3

WHERE P3.PCN = 999071

AND P3.START_DATE <= P2.END_DATE

AND P2.END_DATE < P3.END_DATE)

7.6.6 CD-ROMMaterials

The CD-ROM contains the code fragments in this chapter in IBM DB2 UDB,

Microsoft Access 97, Microsoft SQL Server, Sybase SQLServer, Oracle8 Server, and

UniSQL.

7.7 SUMMARY

We have examined how to convert various nontemporal modi�cations into cur-

rent and sequenced modi�cations. Insertions are not too troublesome. Additional

predicates are required to ensure sequenced uniqueness and referential integrity. Al-

ternatively, gaps can be �lled in the referenced table, which is analogous to adding

the key values in the nontemporal case.

Nontemporal deletions and updates are mapped into a series of SQL statements.

Current modi�cations can be viewed as sequenced modi�cations with a period of

applicability from �now� to �forever.� The portion of each row's period of validity

that is outside the period of applicability must be retained. Often this involves

inserting new rows. Deleting a short period from the middle of a row will result
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in two remaining rows; updating such a period will result in an initial unchanged

row, an updated row, and a �nal unchanged row. Keeping all the cases straight

requires a sophisticated dance between as many as �ve statements for a simple

update (CF-7.18).

In showing how integrity constraints can be ensured within the modi�cation,

we considered for each current modi�cation two cases: the general case, where any

modi�cation is allowed on the underlying table, and the restricted case, where only

current modi�cations are ever performed on the table.

The modi�cations found in

nontemporal applications are all

current modi�cations.

The restricted case is interesting because it mirrors the behav-

ior of a nontemporal table. After a series of current modi�ca-

tions, the current state of the temporal table (the rows that are

valid at �now�) will be identical to a nontemporal table upon

which the same series of modi�cations had been applied.

Many applications initially have no temporal component. The need for retaining

the history then arises. To extend such an application, the �rst step is to make one

or more of the tables temporal, generally by adding a period timestamp (e.g., start

date and end date columns). Then the modi�cations, which are all current modi-

�cations, are converted to manipulate these new columns. This chapter explained

this conversion process in detail.

Later, such applications are extended to allow storage and changing of future in-

formation. Such modi�cations are more general than current modi�cations. When

these modi�cations are permitted to the temporal tables, the current modi�cations

in the original application must be converted to cover the general case.

If the modi�cation mentions other tables, the interaction between the period

of validity of the row undergoing modi�cation, the period of applicability of the

modi�cation, and the period(s) of validity of the mentioned table(s) must be taken

into consideration when translating the modi�cation.

Temporal partitioning �nesses the problem of storing currently valid data by sep-

arating this data from old data, storing the former in a table known as the current

store and the latter in a table known as the history store. Some queries and updates

are simpli�ed under this arrangement; others are lengthened.

7.8 READINGS

Most temporal database research has focused on queries; modi�cation is often han-

dled as an afterthought. Some proposals for temporal query languages have con-

sidered extended modi�cation statements: HSQL [84], TQuel [86, 87], and TRM [5].

Implementing modi�cation of temporal tables has received no attention. In fact,

Tansel's book [102] has a 170-page part on implementation, with nary a word on

modi�cations.
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Myrach et al. [72] discuss how to ensure keys and referential integrity using the

constructs of the TSQL2 temporal query language [91]. A later paper [4] provides

various mechanisms for ensuring sequenced referential integrity in an extended

relational model.

Ahn's work with the author is perhaps the most thorough investigation of tem-

poral partitioning [1]. Clifford et al. propose storing now-relative values (such as

CURRENT DATE - INTERVAL �1� DAY) in the database [23].

As discussed in Section 5.7, each transaction containing a modi�cation should

reset the mode of temporal assertions to deferred, say, with SET CONSTRAINTS ALL

DEFERRED.

David Landes argues persuasively that a digital perception of time, encouraged

by the stepwise movement of the clock hand in the town's clock tower and the

subsequent need for skilled craftsmen who could assemble these clockworks, was

one of the major advances that �turned Europe from a weak, peripheral, highly

vulnerable outpost of Mediterranean civilization into a hegemonic aggressor. Time

measurement was at once a sign of new-found creativity and an agent and catalyst

in the use of knowledge for wealth and power� [65, p. 12].
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A tracking log captures the sequence of mod-

i�cations that have been applied to a single

table, the table being tracked. The tracking log

allows themonitored table to be reconstructed

as of any time in the past. This feature can be

used to undo inadvertent modi�cations or to

restore the table to a previous, consistent state.

Of course, the tracking log can also be used in

informal or formal audit procedures.

Different organizations of the tracking log

result from the varying assumptions and con-

straints on the monitored table. The schema

of the tracking log comprises the columns of

the monitored table, along with a timestamp

column (a single datetime specifying when

the modi�cation occurred) and sometimes an

operation code (insert, delete, update) and a

transaction identi�er. Triggers can be used to

maintain the tracking log, without necessitat-

ing changes to the application code. A tracking

log can contain before-images (the row before

the indicated change occurred), after-images,

or a combination of both.

The different organizations of the tracking

log are coupled with various reconstruction al-

gorithms. Achieving fully accurate transaction

semantics for the reconstructed table turns out

to be surprisingly dif�cult; various restrictions

on how themonitored trail is modi�ed can sim-

plify the reconstruction algorithm dramatically.



Retaining a Tracking Log

N
igel Corbin, a Welshman who speaks the King's English with a clipped pre-

cision underscoring his doctorate in theoretical physics, provides technical

support for Schlumberger's GeoQuest division. In April 1996, we talked in

Jakarta, at a meeting of FINDER support personnel who had �own in from Schlum-

berger's wide-�ung of�ces: Perth, Kuala Lumpur, Mexico City. Looking out from

GeoQuest's 16th-�oor of�ces in the �Golden Triangle� of this sprawling Indone-

sian capital of approximately 10 million people, the eye encounters of�ce buildings,

�ve-star hotels, and foreign embassies in every direction, emphasizing the explosive

growth over the past two decades and obscuring the crushing poverty still found

in other parts of the city. A year later, the then-unthinkable would occur: Suharto

resigned, and a massive economic and social upheaval commenced.

Nigel is based on the other side of the world, in Gatwick, near London. Actually,

his of�ce is at the Gatwick airport, which presented challenges to the building's

architect. The windows have 6 inches of double-paned glass, to acoustically iso-

late the inhabitants from the shrill whine of departing jet planes. An enclosing

wire mesh absorbs the microwave emissions from the airport radar, which oth-

erwise would impart a vague warmth on each sweep. There are no architectural

solutions for near encounters of planes that occasionally make tight turnarounds

for emergency landings due to equipment malfunction, the closest thus far being a

miniscule 1 meter.

When we met, Nigel had other concerns. One of his clients called him to report

that all of the North Sea wells had been relocated to the Paci�c Ocean. This was

quite disturbing news! Nigel rushed to the customer site and veri�ed that the wells

were indeed showing up in the wrong location on the digitized maps generated by

FINDER. Upon further investigation, Nigel determined that the wells' coordinates

were �ne, but that these coordinates were being interpreted using the incorrect

units. FINDER includes a PROJECTIONS table, containing the columns PROJECTION ID

(the primary key), PROJECTION NAME, PROJECTION TYPE (an integer between 0 and

20), SPHEROID CODE (the U.S. Geologic Survey (USGS) spheroid code, an integer
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between 0 and 18), PROJECTION UOM (the spheroid units, an integer between 0 and

5), and ZONE CODE (the USGS zone code, a number between 0 and 5400). Someone

had (perhaps inadvertently) changed one of the codes for the projection used by

the North Sea wells, by executing an ill-advised update on this table. Finding the

incorrect column value was tedious. While this table is small, containing several

tens of rows, it took Nigel the better part of the morning to reconstruct the table's

correct contents.

With this problem �xed, Nigel then considered the more basic issue: what spe-

ci�c changes had been made to this table, and why? One option would be to revise

the permissions on this table to disallow updates on the table, thereby ensuring

that the table remained consistent. However, this alternative was unacceptable to

the client, as there were valid situations in which one or more rows would need

to be changed. Nigel decided that a tracking log for this table would be desirable,

should the circumstances recur.

8.1 DEFINING THE TRACKING LOG

A tracking log retains the past

states of a table without

impacting the monitored table.

As differentiated from a

valid-time table, which models

the state of the enterprise over

time, a tracking log captures the

state of the monitored table

itself over time.

A tracking log speci�es the sequence of modi�cations to a single table, the moni-

tored table. The tracking log records the fact that a modi�cation had been applied,

as well as the data involved in the modi�cation. Usually it con-

tains additional information about the change, such as when

the modi�cation occurred, or who performed it, or which task

or transaction effected the change. The tracking log permits the

contents of the monitored table to be reconstructed as of any time

in the past.

A tracking log differs from the valid-time tables discussed in

previous chapters. Those tables modeled the state of the enter-

prise over time. In contrast, a tracking log captures the state of

the modi�ed table itself over time.

We �rst de�ne a new table, P Log, which will contain the

tracking log for the PROJECTIONS table.

Code Fragment 8.1 Create the tracking log table.

CREATE TABLE P_Log (

PROJECTION_ID INT,

PROJECTION_NAME CHAR(10),

PROJECTION_TYPE INT,

SPHEROID_CODE INT,

PROJECTION_UOM INT,

ZONE_CODE INT,

When_Changed DATE,

PRIMARY KEY (PROJECTION_ID, When_Changed))
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All but the �nal column are from the PROJECTIONS table. The When Changed column

indicates the date on which the values in the row were removed or changed in

the PROJECTIONS table. Hence, these are the old values; the current values can be

found in the monitored table. In fact, the value of the When Changed column can

never exceed �now.� That When Changed is of type DATE implies that each speci�c

projection will be updated at most once per day (we will relax this assumption

later).

The schema of a tracking log

comprises the columns of the

monitored table, along with a

single timestamp column. Its

key is simply the primary key of

the monitored table and the

timestamp column.

Recall from Section 5.3 that the (sequenced) primary key of a

valid-time table cannot be composed from its columns; an asser-

tion is required. Such is not the case here. The key of the track-

ing log is simply the key of the monitored table (PROJECTION

ID) along with the When Changed column. The reason for this is

that the primary key constraint on the monitored table implies

a current key constraint on the tracking log. Since only current

modi�cations (in fact, current insertions) are applied to the log,

a current key constraint becomes a sequenced key constraint.

A tracking log can also contain auxiliary columns, such as Who Changed, that

provide additional information on the transaction that is updating the monitored

table. However, if triggers are used to maintain the tracking log, those triggers must

have access to this auxiliary information. SQL-92's SYSTEM USER is helpful here;

other, application-dependent information is harder to make available to the trigger.

As an aside, we saw in Chapter 5 that the ZPSOS COMPENSATION HISTORY table

included a CHRONOLOGY KEY column, which is effectively a transaction timestamp.

That table contained both the current information and the tracking log.

The bene�t of a separate P Log table is that the PROJECTIONS table remains as

before, and all the code that uses that table still works as before. FINDER is a large,

complex system. If Nigel had to examine all of the code that accessed this table,

this additional work would probably have convinced him to abandon adding the

tracking log in the �rst place.

However, the code thatmodi�es the PROJECTIONS table is still of concern. We wish

to also retain that code as is. This can be done by maintaining the P Log table via

triggers, working behind the scenes. We de�ne two triggers, one each for DELETE

and UPDATE, on the monitored table.

Code Fragment 8.2 Triggers for maintaining the P Log table.

CREATE TRIGGER Delete_PROJECTIONS

AFTER DELETE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES

(OLD.PROJECTION_ID,

OLD.PROJECTION_NAME,

continued on page 222
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continued from page 221

OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE,

OLD.PROJECTION_UOM,

OLD.ZONE_CODE,

CURRENT_DATE)

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (OLD.PROJECTION_ID,

OLD.PROJECTION_NAME,

OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE,

OLD.PROJECTION_UOM,

OLD.ZONE_CODE,

CURRENT_DATE)

Triggers allow the tracking log

to be maintained automatically,

without necessitating changes

to the application code.

In both cases, the values stored in the tracking log table are the old values. In the

case of update, the new values may be found in the PROJECTIONS

table. The value of the When Changed column is �now.� Again,

we assume that only one modi�cation is applied each day. Since

inserted values can also be found in the monitored table, there is

no need for an INSERT trigger (we also return to this assumption

later in this chapter).

These triggers assume that no other modi�cations are made to the P Log table,

other than through the INSERT, DELETE, and UPDATE statements. If triggers were

already present on the PROJECTIONS table, and if the DBMS allowed only one trigger

per operation per table, then the existing triggers would need to be merged with

those de�ned above.

With this organization, Nigel can con�dently install the tracking log with a sim-

ple table de�nition and two trigger de�nitions. No existing code is impacted. The

tracking log is maintained entirely as a side effect of modi�cations to the monitored

table.

8.2 QUERIES

Assume that the following transactions have been executed on the PROJECTIONS

table (here we show the values of only the table's key column and one additional

column).

1. Insert projection 1 with a type of 12 on January 1, 1996.

2. Insert projection 2 with a type of 10 on January 1, 1996.
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Table 8.1 The PROJECTIONS table.

PROJECTION ID PROJECTION TYPE

1 12

2 14

3 11

Table 8.2 The P Log table.

PROJECTION ID PROJECTION TYPE When Changed

5 18 1996-02-03

2 10 1996-03-20

3 15 1996-05-28

2 13 1996-06-17

4 17 1996-07-12

3. Insert projection 3 with a type of 15 on January 1, 1996.

4. Insert projection 4 with a type of 17 on January 1, 1996.

5. Insert projection 5 with a type of 18 on January 1, 1996.

6. Delete projection 5 on February 3, 1996.

7. Update projection 2 to a type of 13 on March 20, 1996.

8. Update projection 3 to a type of 11 on May 28, 1996.

9. Update projection 2 with a type of 14 on June 17, 1996.

10. Delete projection 4 on July 12, 1996.

After these transactions have executed, the current contents of the PROJECTIONS

table are shown in Table 8.1. The contents of the P Log table are shown in Table 8.2.

Note that Table 8.2 will be ordered on When Changed: each trigger adds a new

row to the table with a When Changed time greater than all existing values. Note also

that the tracking log is append-only; no rows are ever updated or deleted. Finally,

observe that the tracking log can contain multiple rows for a particular PROJECTION

ID if that value was updated several times.

We �rst consider extracting prior states, then examine other kinds of queries.

8.2.1 Extracting a Prior State

Extracting a prior state involves

looking at both the monitored

table and the tracking log.

The tracking log table allows us to reconstruct the state of the

PROJECTIONS table at any day in the past. We wish to recon-

struct the table as of April 1, 1996, that is, to see the table as

it existed between transactions 7 and 8. Projection 1 was never

modi�ed (it does not appear in the tracking log), so the value in
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Circadian Clocks

Across the evening sky

All the birds are leaving

But how can they know

It's time for them to go

. . . . . . . . . .

So come the storms of winter

And then the birds in spring again

�Sandy Denny, �Who Knows Where the Time Goes�

Barbara Kingsolver, in her book High Tide in

Tucson, realizes that her pet crab is still respond-

ing to the tidal cycle of the California coast from

where it was taken, several hundred miles to the

west. The crab would become active only at cer-

tain times, even though there was no longer any

environmental stimuli to indicate the tides. Tidal

rhythms are common in many animals living in

tide-washed coastlines: crabs (locomotion, oxygen

consumption, and color change), �sh (swimming),

and bivalves (shell gapping).

On most coastlines there are two high and two

low tides each lunar day, which is the 24 hour

and 51 minute average interval between successive

moonrises, due to the gravitational and centrifugal

forces generated between the moon and the earth.

Hence, the average high tide�to�high tide interval

is 12.4 hours.

It appears that crabs possess not one 12.4-hour

biological clock, but rather two biological clocks,

each running at twice that interval, tightly coupled

180 degrees out of phase, to ensure a stable in-

terval of 12.4 hours between peaks. One bene�t

of two clocks is that deviations of the tides from

a 12.4-hour period can be as great as �90 min-

utes, whereas deviations from a 24.8-hour period

are much smaller: �10 minutes.

the monitored table is �ne. Projection 2 was modi�ed twice, on March 20 and on

June 17, and so the old value stored in the tracking log on June 17 is the desired

one. Projection 3 was modi�ed once, on May 28, and so the old value for that date

is the desired one. Projection 4 was deleted on July 12 (it is present in the tracking

log, but not in the monitored table); we use the old value for that date. Projection 5

was deleted on February 3, and so should not be present in the reconstructed table.

The table as of April 1, 1996, is thus as shown in Table 8.3.

There are two basic cases. Here, the date for which the state is to be reconstructed

is termed the as-of date.

Reconstruct a previous state of a monitored table, as of a speci�ed date

Each row of a prior state

was not deleted or updated after the as-of date, and thus is in the monitored table,

or was deleted or updated after the as-of date, and thus is in the tracking log.
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Table 8.3 The monitored table as of April 1, 1996.

PROJECTION ID PROJECTION TYPE

1 12

2 13

3 15

4 17

Code Fragment 8.3 Reconstruct the PROJECTIONS table as of April 1, 1996.

SELECT *

FROM PROJECTIONS AS P

WHERE NOT EXISTS (SELECT *

FROM P_Log AS A

WHERE P.PROJECTION_ID = A.PROJECTION_ID

AND A.When_Changed > DATE �1996-04-01�)

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE When_Changed = (SELECT MIN(When_Changed)

FROM P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID

AND A2.When_Changed > DATE �1996-04-01�)

This example illustrates the structure of the reconstruction process. The row from

the monitored table is to be retained if there does not exist a change record in the

tracking log with a When Changed after the as-of date. Otherwise, the old value is

extracted from the change record with a When Changed date that is the �rst one to

appear after the as-of date.

The approach presented thus far in this chapter is adequate for identifying what

changes were made to the PROJECTIONS table, and for undoing the changes that

were incorrect by �rst reconstructing the table as of the date it was last known to be

correct. It has the bene�ts of not impacting the existing FINDER code and of adding

little to the storage requirements (recall that the PROJECTIONS table is small and that

changes to this table are infrequent).

Nigel was called back a few months later to correct the same problem. This time

it took him only a few minutes to reconstruct the monitored table (by running the

above code) and identify the incorrect values. Additionally, he had in hand the date

the incorrect change was effected and could use this information to narrow down

who made the change. Nigel has used the tracking log approach several times for

other tables that users were incorrectly updating.
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8.2.2 Other Queries

We now turn to other kinds of queries. Current queries on tracking logs are trivial:

just perform them on the monitored table as before.

Code Fragment 8.4 List the information on projection 5.

SELECT *

FROM PROJECTIONS

WHERE PROJECTION_ID = 5

Future queries are not possible: we have no way of knowing what the monitored

table will look like in the future.

Queries on past states of a

monitored table are easiest to

express via a reconstruction

view.

Past queries are quite useful on monitored tables; indeed, ta-

bles are audited precisely to enable such queries. The above SE-

LECT statement (CF-8.3) extracts a prior state of the monitored

table. More extensive queries on this state (say, to prepare a

report as of the end of the calendar year) are best realized by

forming a view.

Code Fragment 8.5 Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.

CREATE VIEW April_PROJECTIONS

( PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE)

AS (SELECT . . .

)

Here, the SELECT statement in CF-8.3 is used to create a (snapshot) view, which can

then be used in queries.

Code Fragment 8.6 List the information on projection type 12 as of April 1, 1996.

SELECT *

FROM April_PROJECTIONS

WHERE PROJECTION_TYPE = 12

8.2.3 Converting to a State Table*

One way to perform sequenced and nonsequenced queries on a tracking log is to

convert it to a transaction-time state table. As with valid-time state tables, we time-

stamp each row with a closed-open period, represented with two transaction time-

stamp columns (see Table 8.4). Note that the maximum stop time is �now� (January

16, 1998). Rows that are in the current table (and thus are current now) will have

a stop time of �now� in the transaction-time state table. Rows that are not in the

current table (and thus were deleted) will have a stop time in the past.
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Table 8.4 The tracking log as a transaction-time state table, PROJECTIONS State.

PROJECTION ID PROJECTION TYPE Start Date Stop Date

1 12 1996-01-01 1998-01-16

5 18 1996-01-01 1996-02-03

4 17 1996-01-01 1996-07-12

2 10 1996-01-01 1996-03-20

3 15 1996-01-01 1996-05-28

2 13 1996-03-20 1996-06-17

2 14 1996-06-17 1998-01-16

3 11 1996-05-28 1998-01-16

There are four basic cases to consider, differentiated by the timestamp of the

resulting row in the state table:

1. The initial row never changed. The state table includes the initial row, valid from

January 1, 1996 to the present.

2. The initial row was deleted. The state table includes the initial row, valid from

January 1, 1996 to the tracking log entry's When Changed date. This timestamp

also results from the case where the initial row was modi�ed at least once, with

the earliest row in the audit table contributing a row in the state table valid from

January 1, 1996 to the tracking log entry's timestamp.

3. The initial row was modi�ed at least once, with the resulting row drawn from

the audited table, valid from the last audit entry's timestamp to the present.

4. Here the initial row was modi�ed several times. Each intermediate value results

in a state table row valid from the earlier change date to the later change date.

This timestamp also results if the row was deleted.

Each case contributes a SELECT statement, with the result being the UNION of

these intermediate results, as the cases are disjoint.

Code Fragment 8.7 Convert P Log to a transaction-time state table.

CREATE VIEW PROJECTIONS_State

(PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date, Stop_Date)

continued on page 228
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continued from page 227

AS (

-- Case 1

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

DATE �1996-01-01�, CURRENT_DATE

FROM PROJECTIONS

WHERE NOT EXISTS ( SELECT * FROM P_Log

WHERE P_Log.PROJECTION_ID = PROJECTIONS.PROJECTION_ID)

UNION

-- Case 2

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

DATE �1996-01-01�, When_Changed

FROM P_Log AS A1

WHERE NOT EXISTS ( SELECT * FROM P_Log AS A2

WHERE A1.PROJECTION_ID = A2.PROJECTION_ID

AND A1.When_Changed > A2.When_Changed)

UNION

-- Case 3

SELECT A1.PROJECTION_ID, A1.PROJECTION_NAME, A1.PROJECTION_TYPE,

A1.SPHEROID_CODE, A1.PROJECTION_UOM, A1.ZONE_CODE,

When_Changed, CURRENT_DATE

FROM P_Log AS A1, PROJECTIONS

WHERE A1.PROJECTION_ID = PROJECTIONS.PROJECTION_ID

AND NOT EXISTS ( SELECT * FROM P_Log AS A2

WHERE A1.PROJECTION_ID = A2.PROJECTION_ID

AND A1.When_Changed < A2.When_Changed)

UNION

-- Case 4

SELECT A1.PROJECTION_ID, A1.PROJECTION_NAME, A1.PROJECTION_TYPE,

A1.SPHEROID_CODE, A1.PROJECTION_UOM, A1.ZONE_CODE,

A0.When_Changed, A1.When_Changed

FROM P_Log AS A0, P_Log AS A1

WHERE A0.PROJECTION_ID = A1.PROJECTION_ID

AND A0.When_Changed < A1.When_Changed

AND NOT EXISTS ( SELECT *

FROM P_Log AS M

WHERE M.PROJECTION_ID = A1.PROJECTION_ID

AND M.When_Changed < A1.When_Changed

AND M.When_Changed > A0.When_Changed)

)
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Sequenced and nonsequenced

queries on a tracking log are

best stated on a view that

extracts the states as a

transaction-time state table.

Given the transaction-time state table de�ned by this view,

current, sequenced, and nonsequenced queries can be per-

formed analogously to such queries on valid-time state ta-

bles. The semantics of such queries are somewhat different be-

cause these tables utilize transaction time. Rather than being of

the form �Give the history of . . .,� transaction-time sequenced

queries are of the form �When was it recorded that . . .�

Code Fragment 8.8 Whenwas it recorded that a projection had a type of 17?

SELECT PROJECTION_ID, PROJECTION_TYPE, Start_Date, Stop_Date

FROM PROJECTIONS_State

WHERE PROJECTION_TYPE = 17

This query returns the following table:

PROJECTION ID PROJECTION TYPE Start Date Stop Date

4 17 1996-01-01 1996-07-12

This transaction sequenced selection and projection query should be compared

with the similar valid-time sequenced queries CF-6.6 and CF-6.7.

Other examples of sequenced and nonsequenced queries are given in Section 9.3.

8.3 MODIFICATIONS

Current modi�cations are trivial: these are modi�cations on the monitored table,

with the triggers behind the scene ensuring that the tracking log is kept consistent.

Code Fragment 8.9 Insert a projection with an ID of 6.

INSERT INTO PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE)

VALUES (6, �New Projection�, 22, 14, 93, 4)

Code Fragment 8.10 Delete projection 2.

DELETE FROM PROJECTIONS

WHERE PROJECTION_ID = 2
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Code Fragment 8.11 Change the type of projection 1 to 43.

UPDATE PROJECTIONS

SET PROJECTION_TYPE = 43

WHERE PROJECTION_ID = 1

Sequenced and nonsequenced

modi�cations are not allowed

on tracking logs.

Sequenced and nonsequenced modi�cations are not allowed

on tracking logs because such modi�cations destroy the seman-

tics of a tracking log in two senses. If a past state were modi�ed,

we no longer would be able to reconstruct the state as it was

stored at that time, thereby removing the prime motivation for

a tracking log. If a state with a stop date after �now� were inserted, then a future

state could not later be reconstructed.

8.4 PERMITTING INSERTIONS

The above code makes several assumptions, which we now address. The �rst as-

sumption is that the table was originally constituted with insertions, and thereafter

the only changes were updates and deletions. Any insertions that do occur will be

assumed (in the reconstruction algorithm) to have been executed when the table

was de�ned. Say that an insertion of a new projection, number 6, was made on

June 29, 1996. CF-8.3 would include this projection in the state reconstructed as of

April 1, 1996, via the �rst SELECT statement. A second assumption is that insertions

are not allowed after a deletion.

To remove the �rst assumption, we need to include insertions to the tracking

log, so that they will be dated correctly. This is done via a trigger on INSERT.

Code Fragment 8.12 Insert trigger for maintaining the P Log table.

CREATE TRIGGER Insert_PROJECTIONS

AFTER INSERT ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (NEW.PROJECTION_ID,

NEW.PROJECTION_NAME,

NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE,

NEW.PROJECTION_UOM,

NEW.ZONE_CODE,

CURRENT_DATE)

Having the insertions in the tracking log increases the size of the tracking log

considerably. In the �rst approach, projections were in P Log only if the projec-

tion was updated or deleted. The tracking log table might be much smaller than
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The Sothic Cycle

Early calendars were lunar, perhaps because the lu-

nar cycle, at slightly less than 30 days, is more eas-

ily observed than the solar cycle, at about 365.25

days. The Egyptian calendar contained 12 months

of 30 days each. However, the annual �ooding of

the Nile required reconciliation with the solar year,

so �ve intercalated days were included. The lack of

a leap day meant that their civil lunar New Year

retrogressed by 1/4 day each year with respect to

the religious solar New Year (de�ned as when the

Dog Star, named Sothis by the Greeks, rose with

the sun). The two New Years coincide once every

1,460 years, termed the Sothic cycle.

It is known that in 139 A.D., the two New Years

did coincide, so, working backward, historians have

concluded that the Egyptian calendar originated in

4241 B.C.E. (This is being written in 1998, during

the 399th year of the �fth Sothic cycle.)

Table 8.5 Including insertions in the P Log table.

PROJECTION ID PROJECTION TYPE When Changed

1 12 1996-01-01

2 10 1996-01-01

3 15 1996-01-01

4 17 1996-01-01

5 18 1996-01-01

5 18 1996-02-03

2 10 1996-03-20

3 15 1996-05-28

2 13 1996-06-17

4 17 1996-07-12

the monitored table if the monitored table exhibited low volatility. In this new ap-

proach, every projection in PROJECTIONS is also in P Log, as illustrated by Table 8.5.

The tracking log is now always larger than the monitored table. However, this ad-

ditional information allows us to reconstruct the monitored table correctly even in

the presence of later insertions.

The time sequence of an object

records the evolution over time

of that object.

To reconstruct the PROJECTIONS table at a previous time t,

there are �ve cases to consider, shown in Figure 8.1. In this �g-

ure, the sequence of operations for a single projection is shown

as a progression along time. This progression consists of an in-

sertion, followed by zero or more updates, followed optionally

by a deletion. Such a sequence is called the time sequence of the projection.

The �ve cases indicate possible as-of times. Case 1 occurs when the as-of time t is

before the initial insertion. The projection should not appear in the reconstructed

table. In Case 2, t is between the time of insertion and the �rst update. Either the
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(1) (2) (3) (4) (5)

INSERT UPDATE UPDATE DELETE

Figure 8.1 Cases for tracking log reconstruction.

�rst value of the tracking log (from the INSERT trigger) or the second value (from

the UPDATE trigger) should be used in the reconstructed table; the two values are

identical. In Case 3, t occurs between two updates; the value from the tracking log

corresponding to the second update should be used. In Case 4, t occurs between

the last update and the tuple being deleted; the value in the tracking log inserted

by the DELETE trigger should be used here. In Cases 2 through 5, the value stored

in PROJECTIONS may also be used. In Case 5, t occurs after the deletion.

In Cases 4 and 5, the as-of time is after the last time in the tracking log. We

differentiate these cases by the presence of the projection in the monitored table.

If the projection is not in PROJECTIONS, and the timestamp of the last tracking

log match is older than the as-of time (Case 5), then that projection was deleted

and should not appear in the reconstructed value. Otherwise (Case 4), the value in

PROJECTIONS should be used.

If arbitrary insertions are

allowed, the reconstruction

algorithm becomes more

complex.

In the following code fragment, we merge Cases 2 through

4 in the �rst SELECT. We locate the �rst entry in the tracking

log after the as-of time t (the NOT EXISTS and the middle pred-

icate ensure that this entry is the �rst) and use its values for the

columns. The EXISTS ensures that this is not Case 1. The second

SELECT is Case 4, where no DELETE or UPDATE followed the

as-of time. The result is the same as before, shown in Table 8.3.

Code Fragment 8.13 Reconstruction algorithm 2, again, as of April 1, 1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE NOT EXISTS ( SELECT *

FROM P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID

AND DATE �1996-04-01� < A2.When_Changed

AND A2.When_Changed < A.When_Changed)

AND DATE �1996-04-01� < A.When_Changed

AND EXISTS ( SELECT *
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FROM P_Log AS A3

WHERE A.PROJECTION_ID = A3.PROJECTION_ID

AND A3.When_Changed <= DATE �1996-04-01�)

UNION

SELECT *

FROM PROJECTIONS AS P

WHERE DATE �1996-04-01� > (SELECT MAX(When_Changed)

FROM P_Log AS A

WHERE P.PROJECTION_ID = A.PROJECTION_ID)

The code to create a transaction-time state table is also complicated by this

change.

8.5 BACKLOGS

A backlog is a tracking log with

the modi�cation operation

(insert, delete, update) explicitly

identi�ed.

While the trigger in CF-8.12 allows insertions to the PROJEC-

TIONS table other than at the very beginning, it still does not

allow insertions after a deletion. This is because a deletion fol-

lowed later by an insertion of the same projection is indistin-

guishable in the tracking log from two sequential updates.

To differentiate a deletion from an update, we add a column

to P Log that indicates which operation was done. Such a tracking log is called a

backlog.

ALTER TABLE P_Log ADD COLUMN Operation CHAR(1)

The triggers must be changed to also store the Operation code, I, D, and U.

Table 8.6 shows an example of the P Log table, with some insertions after dele-

tions. This differs from the list of transactions in Section 8.2 in that the two latest

insertions, which were not allowed before, are included here. As before, we show

only a few of the columns in the backlog.

There are three basic cases to consider in the reconstruction algorithm.

1. If the as-of time t occurs before the �rst insertion of a projection's time sequence,

the projection is not included.

2. If t occurs after the last operation of a projection, the projection is included only

if the operation is not a deletion, using the current value in the PROJECTIONS

table.

3. Otherwise, t occurs between two operations, and Table 8.7 must be consulted

to determine the appropriate action: to use the value from the �rst operation

or to use the value stored from the second operation. The entries marked �ille-

gal� cannot occur. For example, it is impossible for a projection to be reinserted
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Table 8.6 The P Log backlog.

PROJECTION ID PROJECTION TYPE When Changed Operation

1 12 1996-01-01 I

2 10 1996-01-01 I

3 15 1996-01-01 I

4 17 1996-01-01 I

5 18 1996-01-01 I

5 18 1996-02-03 D

2 10 1996-03-20 U

5 19 1996-04-09 I

3 15 1996-05-28 U

2 13 1996-06-17 U

4 17 1996-07-12 D

4 18 1996-08-30 I

Table 8.7 Reconstruction action.

second (youngest after t)

I U D

I illegal �rst or second �rst or second

�rst U illegal second second

(oldest before t) D nothing illegal illegal

because PROJECTION ID is the key for the monitored table. It is also impossible

for a deletion to follow a deletion because there is no projection to remove.

This analysis indicates that two SELECT statements are required, the �rst for Case

2 and the second for the options in Table 8.7. In this table, an illegal entry simply

cannot occur, and so needs not be accommodated in the reconstruction algorithm.

Code Fragment 8.14 Reconstruction algorithm 3.

SELECT *

FROM PROJECTIONS AS P

WHERE DATE �1996-04-01� > (SELECT MAX(When_Changed)

FROM P_Log AS A

WHERE P.PROJECTION_ID = A.PROJECTION_ID)

UNION

SELECT A2.PROJECTION_ID, A2.PROJECTION_NAME, A2.PROJECTION_TYPE,

A2.SPHEROID_CODE, A2.PROJECTION_UOM, A2.ZONE_CODE

FROM P_Log AS A, P_Log AS A2

WHERE A.When_Changed < A2.When_Changed
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AND A.PROJECTION_ID = A2.PROJECTION_ID

AND NOT EXISTS (SELECT *

FROM P_Log AS A3

WHERE A.PROJECTION_ID = A3.PROJECTION_ID

AND A.When_Changed < A3.When_Changed

AND A3.When_Changed < A2.When_Changed)

AND A.When_Changed < DATE �1996-04-01�

AND DATE �1996-04-01� < A2.When_Changed

AND A.Operation <> �D�

A tracking log can contain

before-images, after-images, or

both, with differing implications

for reconstruction.

This code is complex because a combination of before-images,

where the previous values of the row are stored, and after-images,

where the new values are stored, appear in P Log. In particular,

before-images are stored by the UPDATE and DELETE triggers,

and after-images are stored by the INSERT trigger.

8.6 USING AFTER-IMAGES CONSISTENTLY

The reconstruction algorithm can be simpli�ed considerably if the DELETE and UP-

DATE triggers use after-images consistently. The former needs not store any values

because the after-image is not de�ned for deletions. The INSERT trigger may be

retained from CF-8.12, as it already records the after-image.

Code Fragment 8.15 Triggers for maintaining the P Log table, version 2.

CREATE TRIGGER Delete_PROJECTIONS

AFTER DELETE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (OLD.PROJECTION_ID,

NULL, NULL, NULL, NULL, CURRENT_DATE, �D�)

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

INSERT INTO P_Log VALUES (NEW.PROJECTION_ID,

NEW.PROJECTION_NAME,

NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE,

NEW.PROJECTION_UOM,

NEW.ZONE_CODE,

CURRENT_DATE, �U�)
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Table 8.8 Backlog with after-images.

PROJECTION ID PROJECTION TYPE When Changed Operation

1 12 1996-01-01 I

2 10 1996-01-01 I

3 15 1996-01-01 I

4 17 1996-01-01 I

5 18 1996-01-01 I

5 NULL 1996-02-03 D

2 13 1996-03-20 U

5 19 1996-04-09 I

3 11 1996-05-28 U

2 14 1996-06-17 U

4 NULL 1996-07-12 D

4 18 1996-08-30 I

Table 8.9 Reconstruction action.

second

I U D

I illegal �rst �rst

�rst U illegal �rst �rst

D nothing illegal illegal

For the same transactions discussed previously, the backlog shown in Table 8.8

results.

In comparison with Table 8.6, note that both have the same number of rows. In

fact, the only difference is the value of the PROJECTION TYPE column (the new values

are indicated in italics). The previous representation exhibited redundancy in that

consecutive I-U pairs in a time sequence have identical values for that column; the

entries for projection 2 on January 1 and March 20 provide an example. The same

holds for consecutive I-D pairs, such as the entries for projection 5 on January 1

and February 3.

Using after-images consistently

simpli�es the reconstruction

algorithm considerably.

Consistently using after-images enables a shorter reconstruc-

tion algorithm. Let us examine the action table for after-images

(Table 8.9). Note that if the Operation is I or U, the same action

occurs. Also note that if there is only one operation before the

as-of time, the same action occurs here also. Hence, there is no

need to consult the PROJECTIONS table, and the reconstruction algorithm becomes

a single SELECT statement.
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Code Fragment 8.16 Reconstruction algorithm with after-images.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

FROM P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID

AND A2.When_Changed < DATE �1996-04-01�)

AND A.Operation <> �D�

Using only after-images also changes the transaction-time state view.

Convert a backlog containing after-images to a transaction-time state

table

Each row of the state table

starts with an I or U operation and ends with a U or D operation,

or starts with an I or U operation and is not subsequently modi�ed, in which case

its stop time is �now.�

Code Fragment 8.17 Convert the backlog to a transaction-time state table, using after-

images.

CREATE VIEW PROJECTIONS_state

( PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

START_DATE, STOP_DATE)

AS (SELECT A.PROJECTION_ID, A.PROJECTION_NAME, A.PROJECTION_TYPE,

A.SPHEROID_CODE, A.PROJECTION_UOM, A.ZONE_CODE,

A.When_Changed, A2.When_Changed

FROM P_Log AS A, P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID

AND A.When_Changed < A2.When_Changed

AND A.Operation <> �D�

AND NOT EXISTS ( SELECT *

FROM P_Log AS A3

WHERE A.PROJECTION_ID = A3.PROJECTION_ID

AND A.When_Changed < A3.When_Changed

AND A3.When_Changed < A2.When_Changed)

continued on page 238



238 CHAPTER E IGHT : R ETA IN ING A TRACK ING LOG

continued from page 237

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

When_Changed, CURRENT_DATE

FROM P_Log AS A

WHERE A.Operation <> �D�

AND NOT EXISTS ( SELECT *

FROM P_Log AS A3

WHERE A.PROJECTION_ID = A3.PROJECTION_ID

AND A.When_Changed < A3.When_Changed)

)

Using after-images consistently

also greatly simpli�es the

conversion of the tracking log to

a transaction-time state table.

We make sure each pair of operations in the �rst SELECT is con-

secutive by disallowing an intermediate operation.

This code fragment should be compared with CF-8.7, which

is over three times longer. The comparison emphasizes the value

of consistent use of after-images in the tracking log.

As mentioned earlier, once the transaction-time state table is

available, sequenced and nonsequenced queries can be performed analogously to

such queries on valid-time state tables, as discussed in detail in Chapter 6.

Sequenced and nonsequenced

queries are best expressed on a

transaction-time state table

view, rather than on the

underlying tracking log.

As an example, consider the following query: When was it recorded that a projec-

tion had the same USGS zone code as the projection with ID 13447? The �rst part,

�when was it recorded,� indicates that we are concerned with

transaction time. It also implies that if a particular time is re-

turned, the speci�ed relationship should hold during that time.

This indicates a sequenced query, here in transaction time.

The fact that two projections are mentioned indicates a (self-)

join on the transaction-time state table. CF-6.12 provides the

structure for a sequenced join, which we can use here.

Code Fragment 8.18 List the projections recorded as having the same USGS zone code

as the projection with ID 13447.

SELECT S1.PROJECTION_NAME,

CASE WHEN S1.START_DATE > S2.START_DATE

THEN S1.START_DATE ELSE S2.START_DATE END,

CASE WHEN S1.STOP_DATE > S2.STOP_DATE

THEN S2.STOP_DATE ELSE S1.STOP_DATE END,

FROM PROJECTIONS_state AS S1, PROJECTIONS_state AS S2

WHERE S1.ZONE_CODE = S1.ZONE_CODE

AND S2.PROJECTION_ID = 13447

AND S1.PROJECTION_ID <> 13447

AND (CASE WHEN S1.START_DATE > S2.START_DATE
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THEN S1.START_DATE ELSE S2.START_DATE END)

< (CASE WHEN S1.STOP_DATE > S2.STOP_DATE

THEN S2.STOP_DATE ELSE S1.STOP_DATE END)

The resulting query isn't too bad. However, computing this result on the underlying

tracking log would have been extremely complex.

When after-images are used consistently, P Log contains all of PROJECTIONS,

which is not true of the prior approaches. It includes this additional informa-

tion without adding any rows; instead, redundancy is eliminated to provide this

information. This allows the current version to be computed even more easily.

Code Fragment 8.19 Reconstructing the current version.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

FROM P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID)

AND A.Operation <> �D�

If after-images are used in the

tracking log, then the monitored

table itself is super�uous.

In fact, the PROJECTIONS table is simply a cached version of

the reconstruction as of �now.� We could de�ne it as a view,

thereby achieving a space savings, as the current information

would not be in both the monitored table and the backlog, at

the expense of more expensive retrieval of that information.

Code Fragment 8.20 De�ning PROJECTIONS as a view on P Log.

CREATE VIEW PROJECTIONS

( PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_Log AS A

WHERE A.When_Changed =(SELECT MAX(A2.When_Changed)

FROM P_Log AS A2

WHERE A.PROJECTION_ID = A2.PROJECTION_ID)

AND A.Operation <> �D�

)

If the PROJECTIONS table is de�ned as a view, then the user is responsible for updat-

ing the backlog directly, as current DBMSs do not permit triggers to be de�ned on

a view.
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8.7 TRANSACTION SEMANTICS*

All of the above approaches make three assumptions:

1. No two changes to the same projection occur on a single day, even in different

transactions. This assumption derives from the When Changed column being a

DATE.

2. Every transaction commits by the end of the day; that is, a transaction does not

span two days. Otherwise the reconstruction algorithm may return a partially

completed state�a state that will never be visible to the application, as we will

see shortly.

3. Every transaction makes at most one modi�cation to each projection. This as-

sumption is a consequence of PROJECTION ID and When Changed forming the

primary key for P Log.

Simple approaches to

maintaining the tracking log

impose rather harsh constraints

on the application.

Violating assumption 1 or 3 will cause the INSERT statement in

the trigger to fail, which will abort the entire transaction. In fact,

assumption 1 implies no concurrency in the modi�cations to

the PROJECTIONS table, which in many situations is untenable.

Violating assumption 2 can cause the reconstruction algorithm

to yield an incorrect result, which is also generally untenable.

One obvious attempt to remove these assumptions is to rede�ne the When

Changed column to be a TIMESTAMP, which has a default precision of microsecond.

However, this just changes assumption 1 to one in which no two changes to the

same projection can occur on a single microsecond, which, given today's transac-

tion processing rates, is a reasonable one. The concern then arises as to whether the

trigger ensures that the When Changed value is consistent with the serialization or-

der of the transactions that are changing the PROJECTIONS table. To put this another

way, was the table reconstructed at a speci�ed time actually visible to transactions

executing at that time?

Let us examine two transactions, T1 and T2. We assume two-phase row-level

locking as our concurrency control mechanism. Transaction T1 starts on July 1 at

4 P.M. It updates projection 1 at 6 P.M. (18:00) and again at 8 P.M. (Transactions

generally complete in a much shorter period of time; here we spread out the time

to make this example easier to discuss.) Each update inserts a row into the backlog;

that row is write-locked. Transaction T2 updates projection 2 at 7 P.M. and commits

at 9 P.M. T1 updates projection 3 at 1 A.M. the following day and commits at 2 A.M.

Note that T1 updates projection 1 twice and also spans a day, thereby violating all

three assumptions.
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Table 8.10 A sample backlog.

PROJECTION ID PROJECTION TYPE When Changed Operation

T1 1 10 1996-07-01 18:00 U

T2 2 12 1996-07-01 19:00 U

T1 1 14 1996-07-01 20:00 U

T1 3 13 1996-07-02 01:00 U

Table 8.11 State of the PROJECTIONS table before 9 P.M.

PROJECTION ID PROJECTION TYPE

1 5

2 7

3 9

Table 8.12 State of the PROJECTIONS table between 9 P.M. and 2 A.M.

PROJECTION ID PROJECTION TYPE

1 5

2 12

3 9

This series of updates will generate the backlog shown in Table 8.10 (here we

show the transaction associated with each row, though this information will not be

stored in the backlog).

The reconstruction algorithm yields the state of the monitored table at any point

in time. Due to concurrent transactions, such as the two above, what we desire is a

state that is consistent with the serialization order of the transactions that executed

on that table.

Assume that the projection type for projection 1 was initially 5; for projection 2,

7; and for projection 3, 9. At any time before 9 P.M., the state of the PROJECTIONS

table is as shown in Table 8.11, re�ecting that no (committed) transactions have

updated the table.

Recall that transaction T2 committed at 9 P.M. and T1 at 2 A.M. So between those

two times, the state of the PROJECTIONS table was as shown in Table 8.12, re�ecting

the changes made by T2.

After 2 A.M. on July 2, the state of the monitored table has the values shown in

Table 8.13, re�ecting the changes made by both T2 and T1.
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Table 8.13 State of the PROJECTIONS table after 2 A.M.

PROJECTION ID PROJECTION TYPE

1 14

2 12

3 13

Table 8.14 Reconstructed state as of 6:30 P.M.

PROJECTION ID PROJECTION TYPE

1 10

2 7

3 9

The reconstruction algorithm will yield precisely the �rst state for as-of times

before 6 P.M. on July 1 and the third state for times after 2 A.M. on July 2. More

interesting is what it does for intermediate as-of times when applied after 2 A.M.,

July 2. Applying the algorithm with an as-of time of 6:30 P.M., using the backlog

shown in Table 8.10, yields Table 8.14.

This differs from the state before 6 P.M. in the type of projection 1, which was

changed by transaction T1. Note, however, that T1 had not committed by 6:30 P.M.

Hence, no other transaction would have seen this state, because it is not consistent

with any serialization order. We see that reconstruction yields a state containing

information from active transactions.

As an aside, what happens if transaction T1 later aborted, rather than commit-

ting? It turns out that we are OK in such situations because all the rows of the

backlog inserted by that transaction are automatically removed upon abort, and

hence will not be used by the reconstruction algorithm. In the case above, we are

running the reconstruction algorithm after July 2, and so we know that T1 had

committed because its updates are in the backlog.

The reconstruction algorithm

may yield states inconsistent

with serializability.

Returning to 6:30 P.M., what would a concurrent transaction

(T3) see? Transaction T3 will not have access to projection 1 be-

cause that row will be write-locked by T1 at 6:30 P.M. And we

know that T2 did not read projection 1 because had it tried, it

would have blocked on that same lock and would have resumed

only at 2 A.M. the next morning, when T1 committed.

What if transaction T3 had attempted to read projection 1 using a dirty read

isolation level, rather than the default serialization isolation level? In that case, the

write lock on that row is ignored, and T3 would have seen the projection type as 10.
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The Vertical Blanking Interval

That ubiquitous sign of technical ineptitude, the

blinking �12:00� on the videocassette recorder, has

recently been the source of technological innova-

tion, as VCRs learn how to get the time directly

from the video feed. A television frame (30 frames

a second) is composed of two �elds of 262.5 hor-

izontal scan lines each. The �rst 21 lines of each

�eld, collectively called the vertical blanking inter-

val (VBI), are hidden (they are the black band you

see when your vertical tracking isn't working). The

�rst 9 are used for repositioning the scan, but the

remaining 12 lines are available for data transport.

Line 21 itself is reserved for closed captioning. PBS

stations in the United States use extended data ser-

vices codes within line 21 to send the current date

and time. Some of the newer VCRs scan all frequen-

cies to �nd the PBS channel, then set their clock

automatically from line 21 of the VBI. They also re-

fresh their internal clock, as often as once an hour,

from this source, to correct for drift in their inter-

nal clock and to make daylight saving time adjust-

ments. This technology renders the VCR the most

accurate clock available for home use. Incidentally,

the other 11 lines are being considered for VBI data

broadcasting; these lines provide an aggregate of

about 150 Kbps per channel streaming into every

home.

So, to be precise, the reconstruction algorithm yields a state that would be vis-

ible to a transaction at the speci�ed time using a dirty read isolation level. This

state, though, will contain only changes made by transactions that eventually

committed.

What if there are still active transactions? Since the backlog itself is being read

by the reconstruction algorithm using the (default) serialization isolation level, the

algorithm must place a read lock on the entire backlog, and hence there can be

no write locks in place, which implies that there can be no active transactions

that have modi�ed the monitored table. Any subsequent transaction that wished

to modify the monitored table will attempt to write-lock the backlog, and thus

will have to await the completion of the reconstruction algorithm of the other

transaction. The effect is to serialize the reconstruction transaction with all other

transactions, including other reconstruction transactions.

8.8 REFINEMENTS*

If we wish the reconstruction algorithm to not retrieve dirty data, then we must en-

sure that such data is not written to the tracking log. The triggers can be modi�ed to

delete a previous value, for the projection in question, before inserting the current

value. To do so, the trigger needs to know if the value in the tracking log was put

there by this transaction, or if it is the committed value by a previous transaction.

The former value should be removed, but the latter value must be retained. We add
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a transaction identi�er to the tracking log to make this distinction. Alternatively,

we can augment the reconstruction algorithm to ignore dirty data by using only

the last record of each projection, which requires ordering the records inserted by a

transaction. The When Changed value serves this purpose if it is of a suf�ciently �ne

precision.

Achieving fully accurate

transaction semantics for the

reconstructed table is dif�cult.

The modi�cations performed by a transaction should be included in the recon-

structed state only for times after the commit time of the transaction. Because the

commit time is not stored in the tracking log, the reconstruction

algorithm must approximate this time; a reasonable guess is the

time of the last modi�cation in the tracking log. We can im-

prove this somewhat by having the application insert a record

into the tracking log immediately before committing. Note that

this requires scanning the application code to identify COMMITs of transactions

that modify the PROJECTIONS table, a task not necessitated by any of the other

approaches in this chapter. This commit time is also an estimate, in that the com-

mit process may itself take some time, and the actual commit record may be writ-

ten to the DBMS log (thereby effecting the actual commit) quite a while after the

time recorded in P Log. Reconstructing the exact state, utilizing only the transac-

tions that have actually committed by the speci�ed time, is in general not possible

because the DBMS does not render the actual commit time accessible.

8.9 IMPLEMENTATION CONSIDERATIONS

Microsoft Access 97 and Access 2000 do not support table-based triggers.

8.9.1 IBM DB2 Universal Database

IBM DB2 UDB triggers differ in some syntactic details from the SQL-92 triggers dis-

cussed in this chapter. DB2 UDB requires a referencing clause to create correlation

names for the old and new values in the referenced table, for example, REFERENC-

ING OLD AS O. DB2 also requires that MODE DB2SQL be speci�ed. Finally, when there is

more than one action speci�ed for a trigger, these actions must be delimited with

BEGIN ATOMIC and END. When there is exactly one action in the trigger, these

delimiting clauses are optional. Finally, CURRENT DATE is two words in DB2 UDB

(it is one word, with an embedded underscore, in SQL-92).

CF-8.2 can be expressed in DB2 UDB as follows (with the optional ATOMIC

clause speci�ed for clarity):

Code Fragment 8.21 Triggers for maintaining the P Log table in DB2 UDB, assuming no

insertions.

CREATE TRIGGER Delete_PROJECTIONS

AFTER DELETE ON PROJECTIONS



8 . 9 IMPLEMENTAT ION CONS IDERAT IONS 245

REFERENCING OLD AS O FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

INSERT INTO P_Log VALUES (O.PROJECTION_ID,

O.PROJECTION_NAME,

O.PROJECTION_TYPE,

O.SPHEROID_CODE,

O.PROJECTION_UOM,

O.ZONE_CODE,

CURRENT DATE);

END

CREATE TRIGGER Update_PROJECTIONS

AFTER UPDATE ON PROJECTIONS

REFERENCING OLD AS O FOR EACH ROW MODE DB2SQL

BEGIN ATOMIC

INSERT INTO P_Log VALUES (O.PROJECTION_ID,

O.PROJECTION_NAME,

O.PROJECTION_TYPE,

O.SPHEROID_CODE,

O.PROJECTION_UOM,

O.ZONE_CODE,

CURRENT DATE);

END

8.9.2 Microsoft SQL Server

The syntax of the CREATE TRIGGER statement supported by Microsoft SQL Server

differs from SQL-92. The implicit OLD and NEW correlation names are not available;

instead, SQL Server provides two special tables, inserted, containing the rows that

were inserted, and deleted, containing the rows that were deleted, by the statement

under consideration. �Now� is implemented in SQL Server via GETDATE(). CF-8.2

can be expressed in SQL Server as follows:

Code Fragment 8.22 Triggers for maintaining the P Log table in Microsoft SQL Server,

assuming no insertions.

CREATE TRIGGER Delete_PROJECTIONS

ON PROJECTIONS FOR DELETE AS

INSERT P_Log

SELECT *, GETDATE()

FROM deleted

continued on page 246
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continued from page 245

CREATE TRIGGER Update_PROJECTIONS

ON PROJECTIONS FOR UPDATE AS

INSERT P_Log

SELECT *, GETDATE()

FROM deleted

The other code fragments can be similarly implemented in Microsoft SQL Server.

8.9.3 Sybase SQLServer

Sybase SQLServer was one of the �rst DBMSs to support triggers. The syntax of

the CREATE TRIGGER statement supported by Sybase SQLServer differs from SQL-

92. The implicit OLD and NEW correlation names are not available; instead, Sybase

provides two special tables, inserted, containing the rows that were inserted, and

deleted, containing the rows that were deleted, by the statement under consider-

ation. �Now� is implemented in Sybase via GETDATE(). CF-8.2 can be expressed in

Sybase as follows:

Code Fragment 8.23 Triggers for maintaining the P Log table in Sybase SQLServer,

assuming no insertions.

CREATE TRIGGER Delete_PROJECTIONS

ON PROJECTIONS FOR DELETE AS

INSERT P_Log

SELECT *, GETDATE()

FROM deleted

CREATE TRIGGER Update_PROJECTIONS

ON PROJECTIONS FOR UPDATE AS

INSERT P_Log

SELECT *, GETDATE()

FROM deleted

The other code fragments can be similarly implemented in Sybase SQLServer,

with the exceptions of CF-8.7 and CF-8.17, as Sybase does not allow a view to be

over a UNION.

8.9.4 Oracle8 Server

All the code fragments work �ne under Oracle8 Server.
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8.9.5 UniSQL

UniSQL supports triggers, but does not allow expressions such as CURRENTDATE

within triggers. However, it does allow triggers to call methods on rows. To store a

value of �now� in the tracking log, we'll use two triggers. The �rst, de�ned on the

monitored table, is the normal one, with the minor change of storing a placeholder

date (DATE �01/01/1800�) as the timestamp. The second is an insert trigger, de�ned

on the tracking log, which calls a method to replace this value with the current

date.

Code Fragment 8.24 Insert UniSQL trigger on the tracking log.

EXEC SQLX ALTER CLASS P_Log

ADD METHOD set_date() FUNCTION set_date FILE �./trans.o�;

CREATE TRIGGER Insert_P_Log

AFTER INSERT ON P_Log

EXECUTE CALL set_date();

The set date function uses the db put operation to replace the date with the current

date.

Code Fragment 8.25 set date C function.

void set_date(DB_OBJECT *obj)

f

EXEC SQLX BEGIN DECLARE SECTION;

DB_VALUE d;

struct timeval time_sec;

struct tm *cur_time;

EXEC SQLX END DECLARE SECTION;

gettimeofday(&time_sec, NULL);

cur_time = localtime(&time_sec.tv_sec);

db_make_date(&d, cur_time->tm_mon+1, cur_time->tm_mday,

cur_time->tm_year+1900);

db_put(obj, "When_Changed",&d);

EXEC SQLX COMMIT WORK;

g

8.9.6 CD-ROMMaterials

All of the code discussed in this chapter has been implemented in IBM DB2 UDB,

Microsoft SQL Server 7.0, Sybase SQLServer, Oracle8 Server, and UniSQL, and is

provided on the CD-ROM, along with a test harness and Makefile.
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Table 8.15 Tracking log organizations and their imposed constraints.

constraints on updates

All insertions

performed None allowed

initially after deletions No constraints

Before-images

p

Before- + after-images

p p

After-images

p p

Backlog

p p p

8.10 SUMMARY

A tracking log contains the history of modi�cations to the underlying monitored

table, allowing previous states of that table to be reconstructed. A tracking log

is maintained separately from the monitored table. For the PROJECTIONS table, a

tracking log is preferable, as the rest of the application need not be modi�ed.

Different organizations of the tracking log result from the varying assumptions

and constraints on the monitored table. We considered a variety of situations:

� All insertions are performed initially. Only deletions and updates need be stored in

the tracking log.

� Insertions are allowed at any time other than after a deletion. In this case, insertions

must also be stored in the tracking log. The tracking log will be at least as long

as the underlying table, even with no updates or deletions.

� Insertions are allowed at any time. In such cases a backlog, in which the opera-

tion type (INSERT, DELETE, UPDATE) is explicitly recorded, is indicated. Two

organizations were discussed, one which stored a combination of before- and

after-images, and one which stored only after-images, the latter exhibiting a

concomitant simpli�cation of the reconstruction algorithm.

Different organizations of the

tracking log result from various

initial assumptions and

constraints on the monitored

table.

Table 8.15 summarizes the tracking log organizations (listed down the left) and

the constraints imposed on when insertions are allowed to the

monitored table (listed across the top). A check mark means that

the indicated organization will work when the indicated con-

straint is satis�ed.

The tracking log structure depends strongly on the applica-

tion. In the case of the problem with inadvertent changes to

the PROJECTIONS table, a very simple structure was adequate.

Should the application need to make arbitrary modi�cations to
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the monitored table, then a backlog is appropriate. If intermediate, dirty data is un-

desirable in the reconstructed states, then either more involved triggers or a more

involved reconstruction algorithm is required.

Tracking logs support

transaction time, which is

orthogonal to valid time.

You must be careful to distinguish the information content

of a tracking log and of a valid-time table. A conventional table

models the current state of a portion of the enterprise. A valid-

time table models the time-varying state of a portion of the en-

terprise. A tracking log is an example of a transaction-time table.

Such a table records the state not of the modeled reality, but of the monitored table

over time. This distinction is important both in the information we can extract

from the table and the kinds of updates permitted.

Consider two tables, the valid-time table Employee from Chapter 5 and the

transaction-time table P Log from this chapter. Requesting the state on April 1,

1996, of the valid-time table will return the employees on that date, as best known.

This information is independent of when the Employee table was actually created.

In fact, this table could have been created yesterday, then populated with histori-

cal information. On the other hand, requesting the state on April 1, 1996, of the

transaction-time table will return the contents of that table as it was stored on disk

on that date. If the table was actually populated yesterday, then its state back on

April 1 would be empty.

Information about the past or future can be added or changed in valid-time ta-

bles. If we �nd that information about April 1, 1996, was in error (say, an employee

was omitted), we can make that correction; later queries will return that employee.

On the other hand, we cannot change what was stored previously on the disk, and

so cannot update past states of a transaction-time table. Similarly, we do not know

what will be stored on disk in the future, and so cannot update future states of that

table. Hence, transaction time is de�ned only in the past, unlike valid time, which

can extend into the future. All we can do is append a new state to the table. For

this reason, all the triggers that maintain P Log effect insertions. A transaction-time

table is append-only. Changes to the monitored table, whether insertions, deletions,

or updates, are in actuality insertions into the tracking log. This means that we can

add a tracking log to a conventional table, as was described in this chapter, or to a

valid-time table, resulting in a bitemporal table, to be discussed in Chapter 10.

A transaction-time table has an important property not shared with valid-time

tables: queries on past states will return the same result when evaluated at any time

in the future. Consider CF-8.3 on page 225, �reconstruct the PROJECTIONS table as

of April 1, 1996.� Whether we execute this query on April 2, 1996, December 31,

1996, July 7, 1998, or September 22, 2009, the resulting states will all be identical.

The resulting state will be a copy of the PROJECTIONS table that was present as

magnetic patterns on the disk on April 1, 1996.
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We also de�ned views of the PROJECTIONS table; CF-8.5 on page 226 is the recon-

structed table as of April 1, 1996 as a view. It makes no difference whether this view

is materialized as a stored table or remains as a virtual table because the contents

of the view will not change, regardless of the modi�cations applied to either PRO-

JECTIONS or P Log. The triggers de�ned in this chapter to maintain the tracking log

ensure that only the current state is modi�ed; prior states must be left intact and

unchanged.

The reconstructed state of a

transaction-time table as of a

point in the past will never

change, independent of when

that reconstruction query or

view is evaluated. The state at a

point in time of a valid-time

table can change, as new

information is received and

incorporated into the table.

For this same reason, changes to the future of a transaction-

time table are not allowed. There is no way to accurately predict

what the magnetic patterns of the disk will be at some point in

the future.

Such is not the case with valid-time tables. We are free to re-

vise the stored history in a valid-time table as new information

becomes available. Sequenced and nonsequenced modi�cations

can change the past and the future. A view of the enterprise

on April 1, 1996, can change as information about that date is

received and our knowledge is re�ned. The valid-time table re-

�ects our understanding of the history of the enterprise as best

known.

Current queries on a tracking log are much easier on moni-

tored tables than on valid-time state tables: just perform the query on the mon-

itored table, which already records only the current state. Current modi�cations

(the only kind allowed on such tables) are equally simple: just apply it to the table,

and the triggers will make sure the tracking log is maintained. Legacy applications

need not be modi�ed at all when maintaining a tracking log is initiated on the

table.

Extracting a prior state involves looking both at the monitored table and the

tracking log in some tracking log organizations; if a backlog is maintained, the

monitored table need not be consulted.

Sequenced and nonsequenced queries are best realized by �rst de�ning a view

that extracts a transaction-time state table from the tracking log. Sequenced

and nonsequenced modi�cations are not permitted on a tracking log, as they

would invalidate the semantics of transaction time and would corrupt later

reconstructions.

8.11 READINGS

Serialization order of concurrent transactions is discussed in many textbooks; [6, 36]

are seminal works on this topic. Transaction time was �rst covered in detail by Ahn

and the author [89, 90] and was later included in the glossary [48]. Tracking logs
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have been studied by [8]. Backlog tables have been suggested by several authors [51,

52, 61].

Chamberlin shows how to maintain a list of changes, though not the actual

values of the changes, eliminating an opportunity to reconstruct past states via

DB2 triggers [22, pp. 358�359].

Leung and Pirahesh show how to access a backlog in which only the changed

columns, as well as the primary key, were stored; the columns retaining their old

values were represented with NULLs, which incur less storage overhead [66]. A time-

slice is obtained by collecting, for each primary key value, the most recent value for

each column, using the recursive query facilities of DB2. This is a classic time-for-

space trade-off.

Fraser's Time: the Familiar Stranger [34] is a superb survey of an expanse of topics

related to time.

Palmer provides a highly readable account of detecting two clocks in �ddler

crabs, as well as summarizing other biological clocks [78].

[31] is a technical guide for those who wish to provide encoding equipment

and/or decoding equipment to produce material with encoded data embedded in

line 21 of the vertical blanking interval of the NTSC video signal. The encoded data

includes extended data services, such as date and time information.
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A transaction-time state table associates with

each row the period of time that row was

present in the monitored table, thereby allow-

ing the state of the monitored table at any

previous point in time to be reconstructed. A

state table is more amenable to sequenced and

nonsequenced queries than is a tracking log.

Different organizations for state tables selec-

tively minimize space overhead, modi�cation

time, degree of legacy code change required,

and query complexity. Sometimes triggers can

be used to maintain the state table.

If a state table becomes too large, the DBA

can vacuum it in a disciplined fashion.



Transaction-Time State
Tables

T
he previous chapter addressed Nigel's problem of spurious changes in the

PROJECTIONS table by de�ning an associated tracking log that captures these

changes for later perusal. Several organizations of the tracking log were

examined: recording before-images, recording after-images, recording both before-

and after-images, and recording the actual modi�cation operations (termed a �back-

log�). These variants all utilized a single transaction timestamp, When Changed.

To realize some queries, in particular sequenced queries, we recommended that

the tracking log be converted into a transaction-time state table, with period

timestamping.

In this chapter, we adopt exactly the opposite approach. We maintain the

transaction-time state table directly, with the monitored (snapshot) table available

either as a view or as a regular table.

If space is at a premium, maintaining an instant-stamped tracking log (specif-

ically, the after-image organization) with triggers is the way to go. On the other

hand, if sequenced queries or sequenced integrity constraints are important, then

the period-stamped approach described here should be considered.

We revisit the issues of the last chapter using this period-stamped organization.

This discussion will parallel that chapter, as well as the valid-time state table chap-

ters (Chapters 5�7). While many of the concepts are the same between the two types

of state tables, valid-time and transaction-time, it is important to keep in mind the

critical difference: valid-time tables model changes in reality, while transaction-

time tables model changes in the database. The two kinds of time are orthogonal,

and as we will see later, can be combined into one glorious structure, the bitemporal

table.
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9.1 DEFINITION

Conceptually, a transaction-time state table represents the sequence of snapshot

states constituting the states of the monitored table over time. This sequence is

represented by timestamping rows with a period. The period begins at the time in

which the rowwas inserted into the monitored table, either directly with an INSERT

statement or as a side effect of an UPDATE statement, and ends when the row was

deleted from the monitored table, again, either directly via a DELETE statement or

as a side effect of an UPDATE statement. This period is termed the period of presence

of the row, as it speci�es when that row was in the monitored table.

We �rst de�ne a new table, P TT, the transaction-time state table mirroring the

PROJECTIONS table.

Code Fragment 9.1 Create the transaction-time state table.

CREATE TABLE P_TT (

PROJECTION_ID INT,

PROJECTION_NAME CHAR(10),

PROJECTION_TYPE INT,

SPHEROID_CODE INT,

PROJECTION_UOM INT,

ZONE_CODE INT,

Start_Date DATE,

Stop_Date DATE,

PRIMARY KEY (PROJECTION_ID, Stop_Date))

The schema of a

transaction-time state table

comprises the columns of the

monitored table, along with two

timestamp columns denoting

the period of presence. Its key is

simply the primary key of the

monitored table and the start

timestamp column.

All but the �nal two columns are from the PROJECTIONS table. The Start Date and

Stop Date in concert denote the period of presence.

Recall from Section 5.3 that the (sequenced) primary key

of a valid-time table cannot be composed from its columns;

an assertion is required. Such is not the case here. The key of

the transaction-time state table is simply the key of the moni-

tored table (PROJECTION ID) along with the Stop Date column.

This works because the primary key constraint on the moni-

tored table implies a current key constraint on its associated

transaction-time state table. Since only current modi�cations

are applied to the state table, a current key constraint implies

a sequenced key constraint.
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9.2 MAINTENANCE

There are two ways to maintain a transaction-time state table: indirectly, as a side

effect of triggers de�ned on themonitored table, and directly, by transforming mod-

i�cations on the monitored table into modi�cations on the state table. The bene�t

of the former approach is that no code need be changed when the state table is

de�ned; legacy applications function as before.

9.2.1 Indirectly via Triggers

In this �rst approach, the application need not be concerned with maintaining the

state table; this will be done behind the scenes via three triggers. In the following,

we represent �until changed� with �forever,� in this case DATE �9999-12-31�.

Code Fragment 9.2 Triggers for maintaining the P TT table.

CREATE TRIGGER INSERT_P

AFTER INSERT ON PROJECTIONS FOR EACH ROW

INSERT INTO P_TT(PROJECTION_NAME, PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

VALUES (NEW.PROJECTION_NAME, NEW.PROJECTION_ID,

NEW.PROJECTION_NAME, NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE, NEW.PROJECTION_UOM, NEW.ZONE_CODE,

CURRENT_DATE, DATE �9999-12-31�)

CREATE TRIGGER DELETE_P

AFTER DELETE ON PROJECTIONS FOR EACH ROW

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE P_TT.PROJECTION_ID = OLD.PROJECTION_ID

AND P_TT.Stop_Date = DATE �9999-12-31�

CREATE TRIGGER UPDATE_P

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

BEGIN ATOMIC

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE P_TT.PROJECTION_ID = OLD.PROJECTION_ID

AND P_TT.Stop_Date = DATE �9999-12-31�;

continued on page 256
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continued from page 255

INSERT INTO P_TT(PROJECTION_NAME, PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

VALUES (NEW.PROJECTION_NAME, NEW.PROJECTION_ID,

NEW.PROJECTION_NAME, NEW.PROJECTION_TYPE,

NEW.SPHEROID_CODE, NEW.PROJECTION_UOM, NEW.ZONE_CODE,

CURRENT_DATE, DATE �9999-12-31�)

END

After the transactions listed in Section 8.2.1, the state table (in this chapter,

mention of a state table will imply a transaction-time state table) will contain the

rows shown in Table 9.1. As before, we only show two columns, PROJECTION ID and

PROJECTION TYPE, as well as the timestamp columns.

Triggers on the monitored table

can be used to maintain a

transaction-time state table.

It is useful to compare Table 9.1 with the state table con-

verted from the tracking log, Table 8.4. The only difference is

the value of the Stop Date column. In the previous table, for

some rows the value is 1998-01-16 (the date the conversion was

run, �now�), whereas here the value for those rows is 9999-12-

31, or �forever.� While �now� is in fact more accurate, in that only the past and the

current state can be stored in a transaction-time state table (since we cannot predict

the future), we use �forever� in this chapter only because constantly updating the

Stop Date value to �now� is impractical.

The state table is somewhat redundant, in two senses. It contains all of the moni-

tored table, as rows with a Stop Date of �forever.� And many of the other stop dates

are not strictly necessary, as they are paired with identical Start Date values; pro-

jections 2 and 3 are examples. The Stop Date value of 1996-03-20 for the �rst row

of projection 2 matches the Start Date value of the following row of projection 2;

indeed, both of these rows were impacted by a single transaction, an UPDATE that

Table 9.1 A transaction-time state table, P TT.

PROJECTION ID PROJECTION TYPE Start Date Stop Date

1 12 1996-01-01 9999-12-31

2 10 1996-01-01 1996-03-20

3 15 1996-01-01 1996-05-28

4 17 1996-01-01 1996-07-12

5 18 1996-01-01 1996-02-03

2 13 1996-03-20 1996-06-17

3 11 1996-05-28 9999-12-31

2 14 1996-06-17 9999-12-31
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changed the type of projection 2 from 10 to 13. This shows that the tracking log or-

ganizations, which use only one timestamp column, are more space ef�cient than

the period-stamped state table organization. However, the state table approach is

much easier to query, especially for sequenced queries.

9.2.2 Directly via Rewritten Modi�cations

A transaction-time state table

may also be maintained directly.

The second approach is to replace the monitored table with the

state table, then de�ne the monitored table as a view on the

state table, with the associated space savings over the regular

monitored table of the previous section.

Code Fragment 9.3 Reconstruct the PROJECTIONS table as of now, as a view.

CREATE VIEW PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT

WHERE Stop_Date = DATE �9999-12-31�)

Applications composed only of queries on the PROJECTIONS table will work �ne with

this view, oblivious to the fact that the evolution of that table is being retained.

Applications that modify the PROJECTIONS table must be changed to in-

stead modify the state table. Chapter 7 discussed 12 (!) categories of

modi�cations on valid-time state tables:

INSERT, DELETE, and UPDATE coupled

with current, sequenced, and nonse-

quenced semantics, along with current

modi�cations in the restricted case (only

current modi�cations ever allowed). The

situation with transaction-time state tables

is much simpler, as there are only current

modi�cations. We cannot modify the past,

as we cannot change the bits that were

stored on disks in the past. Similarly, we

cannot modify the future, as we cannot ac-

curately predict what will be stored on the

disk in the future. We can only modify the

current state. So, we are left with only three

kinds of modi�cations to consider: cur-

rent INSERT, current DELETE, and current

Pendulum

The foliot was weighted to slow its oscillation, with

the weights movable so that the clock could be

adjusted. Unfortunately, the friction of the clock's

mechanism and its exact mechanical arrangement

kept its accuracy to only about 15 minutes a day.

What was needed was a periodic device whose fre-

quency was dependent only on the device itself

and not on the details of its manufacture.

The Dutch scientist Christian Huygens was the

�rst to apply the pendulum, whose frequency is

dependent only on its length, to regulate a clock.

Huygens's clock of 1656was accurate to 10 seconds

a day, a vast improvement over the foliot clock.
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UPDATE. The resulting code is very similar to that given for current modi�cations

to valid-time state tables in Section 7.1.

An INSERT on a transaction-time state table requires only appending the Start

Date and Stop Date values, as �now� (CURRENT DATE) and �forever� (DATE �9999-12-

31�), respectively.

Code Fragment 9.4 Insert a projection with an ID of 6.

INSERT INTO P_TT (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE,

Start_Date, Stop_Date)

VALUES (6, �New Projection�, 22, 14, 93, 4,

CURRENT_DATE, DATE �9999-12-31�)

The fourth and sixth lines of this fragment were added to capture the change

behavior.

A DELETE is mapped into an UPDATE, changing the Stop Date of the deleted

row(s) to �now.�

Code Fragment 9.5 Delete projection 2.

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE PROJECTION_ID = 2

AND Stop_Date = DATE �9999-12-31�

An UPDATE is logically a deletion followed by an insertion, and so is im-

plemented with an UPDATE and an INSERT. However, the INSERT must come

�rst.

Code Fragment 9.6 Change the type of projection 1 to 43.

INSERT INTO P_TT (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE, Start_Date, Stop_Date)

SELECT PROJECTION_ID, PROJECTION_NAME, 43,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

CURRENT_DATE, DATE �9999-12-31�

FROM P_TT

WHERE PROJECTION_ID = 1

AND Stop_Date = DATE �9999-12-31�

UPDATE P_TT

SET Stop_Date = CURRENT_DATE

WHERE PROJECTION_ID = 1

AND PROJECTION_TYPE <> 43

AND Stop_Date = DATE �9999-12-31�
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Maintaining the state table via

direct modi�cations obviates the

need for a materialized

monitored table, decreasing the

space overhead for capturing

changes over time.

Here we �rst ensure that there is a row to update, then insert

the new value (via the INSERT), and terminate the old value at

�now� (via the UPDATE). The PROJECTION TYPE <> 43 predicate

in the UPDATE is required to avoid changing the row just in-

serted.

We emphasize that in this approach P TT is a replacement

for the PROJECTIONS table. We maintain the P TT table directly

through rewritten modi�cation statements, rather than indi-

rectly through triggers de�ned on the monitored table.

9.3 QUERIES

As previously mentioned, the advantage of a transaction-time state table over a

tracking log (with its single timestamp) is its ease in querying.

Reconstruction queries on state tables are termed time-slice queries. The current

state view (CF-9.3) was one example. Of course, it is possible to reconstruct the state

of the monitored table at any point in the past.

Code Fragment 9.7 Reconstruct the PROJECTIONS table as of April 1, 1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT

WHERE Start_Date <= DATE �1996-04-01� AND DATE �1996-04-01� < Stop_Date

This is shorter than any of the reconstruction algorithms given for the tracking log

organizations (compare with CF-8.3, CF-8.13, CF-8.14, and CF-8.16).

Reconstruction is easy to express

on a state table, though only

states in the past or present

should be requested.

This code also seems to work for dates in the future (try re-

placing 1996 with 2009), but in fact we have no idea what rows

the PROJECTIONS table will contain in 2009. Reconstructions

should only be done on the current or past dates; using fu-

ture dates is meaningless. (This doesn't apply to valid-time state

tables, where future time-slices may be quite meaningful.)

Current queries are even easier: just apply to the monitored table or view.

State tables really shine when sequenced queries are desired. The strategies for

such queries on valid-time state tables apply in their entirety on transaction-

time state tables, with two important provisions. A sequenced query on a valid-

time state table means �give the history of�; a sequenced query on a transaction-

time state table means �when was it recorded that� or perhaps �give the change

history for.�
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Sequenced queries over

transaction-time state tables are

expressed identically to such

queries over valid-time state

tables. However, their semantics

is in terms of �when was it

recorded that.�

The second difference is that while a sequenced query on

a valid-time state table returns another valid-time state table,

a sequenced query on a transaction-time state table does not

return another transaction-time state table. Recall once again

that a transaction-time state table speci�es the magnetic pat-

terns recorded on the disk at times in the past. The result of a

sequenced query itself was emphatically not stored on the disk

in the past; it has just been calculated now. It does indicate

what was recorded, but it itself was not in existence until the

query was performed. To emphasize this distinction, we will use the column names

Recorded Start and Recorded Stop for these query results.

With those critical distinctions in mind, we now try out some sequenced queries.

As before, selections (the WHERE clause) and projections (the SELECT clause) are

easy to render as sequenced (compare with CF-6.7).

Code Fragment 9.8 Whenwas it recorded that a projection had a type of 17?

SELECT PROJECTION_ID, PROJECTION_TYPE,

Start_Date AS Recorded_Start, Stop_Date AS Recorded_Stop

FROM P_TT

WHERE PROJECTION_TYPE = 17

Selections (the WHERE clause) are unchanged in sequenced queries; projections

(the SELECT clause) require adding the timestamp columns.

UNION is also easy to convert (compare with CF-6.10).

Code Fragment 9.9 Give the change history for projections having a type of 12 or 18.

SELECT PROJECTION_ID,

Start_Date AS Recorded_Start, Stop_Date AS Recorded_Stop

FROM P_TT

WHERE PROJECTION_TYPE = 12

UNION

SELECT PROJECTION_ID, Start_Date, Stop_Date

FROM P_TT

WHERE PROJECTION_TYPE = 18

This will tell us when such projections were added or removed, or when the type

was changed to or from 12 or 18.

Joins are more challenging. Here we use first instant and last instant PSM

functions (CF-6.13). Compare the following query with CF-6.14.

Code Fragment 9.10 Whenwas it recorded that two projections had the same type?

SELECT P1.PROJECTION_ID, P2.PROJECTION_ID, P1.PROJECTION_TYPE,

last_instant(P1.Start_Date, P2.Start_Date) AS Recorded_Start,
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first_instant(P1.Stop_Date, P2.Stop_Date) AS Recorded_Stop

FROM P_TT AS P1, P_TT AS P2

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

AND last_instant(P1.Start_Date, P2.Start_Date) <

first_instant(P1.Stop_Date, P2.Stop_Date)

Auditing queries are often nonsequenced queries. Once an error is found, queries

examining the changes made to the monitored table attempt to determine how and

why the error was made. Changes appear in the state table as two periods that meet.

Code Fragment 9.11 When was the type of a projection erroneously changed to be

identical to that of an existing projection?

SELECT P1.PROJECTION_ID, P2.PROJECTION_ID,

P1.PROJECTION_TYPE AS Identical_TYPE,

P3.PROJECTION_TYPE AS Prior_TYPE,

P2.Start_Date AS When_Changed

FROM P_TT AS P1, P_TT AS P2, P_TT AS P3

WHERE P1.PROJECTION_ID <> P2.PROJECTION_ID

AND P2.PROJECTION_ID = P3.PROJECTION_ID

AND P1.PROJECTION_TYPE = P2.PROJECTION_TYPE

AND P2.PROJECTION_TYPE <> P3.PROJECTION_TYPE

AND P3.Stop_Date = P2.Start_Date

Here, P1 is the existing projection; P3 has the old type, which was changed er-

roneously to P2. This query is arduous when attempted on a tracking log. While

the old or the new type is readily available (depending on whether before- or

after-images are recorded in the tracking log), determining the type of a projection

existing at the same time is dif�cult with instant-stamped tables.

Another kind of nonsequenced query is the conversion to a tracking log. Before-

images and after-images can be easily extracted from a state table.

Code Fragment 9.12 Extract before-images from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Stop_Date AS When_Changed

FROM P_TT

WHERE Stop_Date <> DATE �9999-12-31�

Code Fragment 9.13 Extract after-images from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date AS When_Changed

FROM P_TT
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Converting a state table to a backlog is a little more ambitious, as we have to

distinguish insertions, deletions, and updates. However, doing so emphasizes that

the information content of tracking logs (possibly along with the monitored table),

backlogs, and transaction-time state tables is identical.

Code Fragment 9.14 Extract a backlog from a transaction-time state table.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date AS When_Changed, �I� AS Operation

FROM P_TT AS P1

WHERE NOT EXISTS ( SELECT *

FROM P_TT AS P2

WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

AND P2.Stop_Date = P1.Start_Date)

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Stop_Date AS When_Changed, �D� AS Operation

FROM P_TT AS P1

WHERE P1.Stop_Date <> DATE �9999-12-31�

AND NOT EXISTS ( SELECT *

FROM P_TT AS P2

WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

AND P1.Stop_Date = P2.Start_Date)

UNION

SELECT P1.PROJECTION_ID, P1.PROJECTION_NAME,

P1.PROJECTION_TYPE, P1.SPHEROID_CODE,

P1.PROJECTION_UOM, P1.ZONE_CODE,

P2.Start_Date AS When_Changed, �U� AS Operation

FROM P_TT AS P1, P_TT AS P2

WHERE P1.PROJECTION_ID = P2.PROJECTION_ID

AND P1.Stop_Date = P2.Start_Date

Tracking logs, backlogs, and

transaction-time state tables

have identical information

content.

Here we do a case analysis. INSERTs are indicated by the absence

of an immediately preceding state with the same key value,

DELETEs by the absence of an immediately following state, and

UPDATEs by the presence of an immediately preceding state.

9.4 TEMPORAL PARTITIONING*

As we mentioned, having a Stop Date of �forever� is awkward, as we cannot accu-

rately predict the future. As discussed in Section 7.5 in the context of valid time,
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a temporally partitioned organization �nesses this awkwardness, while also achiev-

ing a slight space savings, at the expense of requiring more effort to express some

queries. This organization uses two (or more) tables to represent a single state table.

9.4.1 Current and Archival Stores

To illustrate, we use two tables, P TT PAST, consisting of the rows that have been

corrected, and P TT CURRENT, consisting of the rows that haven't been corrected,

that is, whose period of presence includes �now.� Since all rows of P TT CURRENT

have a Stop Date of �now,� we'll simply omit that column.

Code Fragment 9.15 Create a temporally partitioned transaction-time state table.

CREATE TABLE P_TT_PAST (PROJECTION_ID INT,

PROJECTION_NAME CHAR(10),

PROJECTION_TYPE INT,

. . .,

Start_Date DATE,

Stop_Date DATE,

PRIMARY KEY (PROJECTION_ID, Start_Date))

CREATE TABLE P_TT_CURRENT (PROJECTION_ID INT,

PROJECTION_NAME CHAR(10),

PROJECTION_TYPE INT,

. . .,

Start_Date DATE DEFAULT CURRENT_DATE,

PRIMARY KEY (PROJECTION_ID))

There are three differences between the two tables. The �rst is that P TT CURRENT

does not have a Stop Date column. Its implicit stop date is �now.� The second is

that P TT CURRENT has a default value of �now� for the Start Date; we will see the

utility of this shortly. The �nal difference is that the primary key of P TT CURRENT is

that of the original monitored table.

We term P TT PAST the archival store: it contains rows that have been corrected,

and �store� is used rather than �table� to differentiate the representation (the

�store�) from the logical structure (the state table). P TT CURRENT is likewise termed

the current store.

Another way to think about this is that P TT CURRENT is the monitored table,

PROJECTIONS, with an additional Start Date column. This enables us to de�ne

PROJECTIONS as a view and also justi�es P TT CURRENT having the same primary key.
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Code Fragment 9.16 Reconstruct the PROJECTIONS table as of now, as a viewon a tempo-

rally partitioned table.

CREATE VIEW PROJECTIONS (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE)

AS (SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT_CURRENT)

A transaction-time state table

may be represented with two

tables, a current and an archival

store.

Comparing this code fragment with CF-9.3, we notice that here

every row is selected; in that earlier view de�nition, we had to

explicitly test the Stop Date.

The best way to maintain this temporally partitioned state

table is via triggers on the current store.

Code Fragment 9.17 Triggers for maintaining the P TT table.

CREATE TRIGGER DELETE_P

BEFORE DELETE ON P_TT_CURRENT FOR EACH ROW

INSERT INTO P_TT_PAST(PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

SELECT PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date, CURRENT_DATE

FROM P_TT_CURRENT AS P

WHERE P.PROJECTION_ID = OLD.PROJECTION_ID

CREATE TRIGGER UPDATE_P

BEGIN ATOMIC

BEFORE UPDATE ON P_TT_CURRENT FOR EACH ROW

INSERT INTO P_TT_PAST(PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

SELECT PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date, CURRENT_DATE

FROM P_TT_CURRENT AS C

WHERE C.PROJECTION_ID = OLD.PROJECTION_ID

UPDATE P_TT_CURRENT

SET Start_Date = CURRENT_DATE

WHERE P_TT_CURRENT.PROJECTION_ID = OLD.PROJECTION_ID

END
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Table 9.2 The P TT PAST table.

PROJECTION ID PROJECTION TYPE Start Date Stop Date

2 10 1996-01-01 1996-03-20

3 15 1996-01-01 1996-05-28

4 17 1996-01-01 1996-07-12

5 18 1996-01-01 1996-02-03

2 13 1996-03-20 1996-06-17

Table 9.3 The P TT CURRENT table.

PROJECTION ID PROJECTION TYPE Start Date

1 12 1996-01-01

3 11 1996-05-28

2 14 1996-06-17

The two-table representation

requires a few replacements in

the legacy code.

Note that there is no trigger for INSERT. An insertion just affects

the current store. However, for a deletion or update, we capture

the before-image in the archival store, with a period of pres-

ence from the date the row was originally inserted (or updated)

to �now.� Finally, P TT CURRENT.Start Date of the updated row

needs to be changed to �now�; this requires an after-trigger.

De�ning the triggers on the current store requires that the following replace-

ments be made to the legacy code:

� INSERT INTO PROJECTIONS replaced with INSERT INTO P TT PAST

� DELETE FROM PROJECTIONS replaced with DELETE FROM P TT PAST

� UPDATE PROJECTIONS replaced with UPDATE P TT PAST

Within the modi�cation statement, and within SELECT statements, references to

PROJECTIONS can remain; these will now refer instead to the view de�ned on P TT

CURRENT.

These triggers will produce the archival and current stores shown in Tables 9.2

and 9.3, which should be compared with Table 9.1. There were eight rows in that

previous table, partitioned here into �ve corrected rows and three current rows.

9.4.2 Queries

We now turn to queries. Queries on the current state can be applied to the

PROJECTIONS view as before. Past states can be reconstructed, using the archival

store.
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Code Fragment 9.18 Reconstruct the PROJECTIONS table as of April 1, 1996.

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT_PAST

WHERE Start_Date <= DATE �1996-04-01� AND DATE �1996-04-01� < Stop_Date

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE

FROM P_TT_CURRENT

WHERE Start_Date <= DATE �1996-04-01�

Both the monitored table and

the transaction-time state table

can be de�ned as views on the

two stores.

This is an extension of CF-9.7. An important difference is that future states cannot

be reconstructed from the archival store, as the Stop Date is always before �now.�

This makes the archival store slightly safer to use.

Sequenced queries are a little more dif�cult because the in-

formation is spread across two tables. The easiest approach is to

de�ne another view, P TT, which is the original state table being

implemented by the two stores.

Code Fragment 9.19 De�ne the state table as a view.

CREATE VIEW P_TT (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE, Start_Date, Stop_Date)

AS (SELECT * FROM P_TT_PAST

UNION

SELECT PROJECTION_ID, PROJECTION_NAME, PROJECTION_TYPE,

SPHEROID_CODE, PROJECTION_UOM, ZONE_CODE,

Start_Date, CURRENT_DATE AS Stop_Date

FROM P_TT_CURRENT)

Having the state table available as a view, we can then query it exactly as discussed

in Section 9.3, using it for both sequenced and nonsequenced queries.

9.4.3 Utilizing the Primary Key

In a tripartitioned table, the

current store consists of just the

primary key and the start date.

One objection to the partitioned organization just presented is that it requires the

legacy application to be modi�ed. Granted, the modi�cation is slight�just replace

the mention of the PROJECTIONS table in the �rst line of modi�cation statements�

but any change to a complex application should not be ap-

proached lightly.

The PROJECTIONS table was de�ned as a view on the current

store, just projecting out the Start Date column. Instead, we

can de�ne three tables: the original monitored table, the archival
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store, and a horizontally truncated current store, containing only the primary key

of the monitored table and the start time, when that row was inserted into the

monitored table. The current store and the archival store can be maintained via

triggers on the monitored table, thereby obviating any changes to legacy code.

Code Fragment 9.20 De�ne a truncated current store.

CREATE TABLE P_TT_CURRENT (

PROJECTION_ID INT

Start_Date DATE,

PRIMARY KEY (PROJECTION_ID))

The triggers are now de�ned on the monitored table itself.

Code Fragment 9.21 Triggers for maintaining a tripartitioned state table.

CREATE TRIGGER INSERT_P

AFTER INSERT ON PROJECTIONS FOR EACH ROW

INSERT INTO P_TT_CURRENT(PROJECTION_ID, Start_Date)

VALUES (NEW.PROJECTION_ID, CURRENT_DATE)

CREATE TRIGGER DELETE_P

BEFORE DELETE ON PROJECTIONS FOR EACH ROW

BEGIN ATOMIC

INSERT INTO P_TT_PAST(PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

SELECT OLD.PROJECTION_ID,

OLD.PROJECTION_NAME, OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE, OLD.PROJECTION_UOM, OLD.ZONE_CODE,

Start_Date, CURRENT_DATE

FROM P_TT_CURRENT AS PC

WHERE PC.PROJECTION_ID = OLD.PROJECTION_ID;

DELETE FROM P_TT_CURRENT

WHERE PROJECTION_ID = OLD.PROJECTION_ID;

END

CREATE TRIGGER UPDATE_P

AFTER UPDATE ON PROJECTIONS FOR EACH ROW

BEGIN ATOMIC

INSERT INTO P_TT_PAST(PROJECTION_ID,

PROJECTION_NAME, PROJECTION_TYPE, SPHEROID_CODE,

PROJECTION_UOM, ZONE_CODE, Start_Date, Stop_Date)

continued on page 268
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continued from page 267

SELECT OLD.PROJECTION_ID,

OLD.PROJECTION_NAME, OLD.PROJECTION_TYPE,

OLD.SPHEROID_CODE, OLD.PROJECTION_UOM, OLD.ZONE_CODE,

Start_Date, CURRENT_DATE

FROM P_TT_CURRENT AS PC

WHERE PC.PROJECTION_ID = OLD.PROJECTION_ID;

UPDATE P_TT_CURRENT

SET Start_Date = CURRENT_DATE

WHERE PROJECTION_ID = NEW.PROJECTION_ID

END

Here we have the P TT CURRENT table mirror the changes to the monitored table,

with before-images retained in the archive store.

A view reconstitutes the state

table from the three underlying

tables.

Current queries are expressed against the monitored table,

which is nowmaterialized, rather than being de�ned as a view as

in some of the other organizations. Such queries will generally

be faster when evaluated against a table than when evaluated

against a view of a larger underlying table.

For sequenced and nonsequenced queries, we de�ne a transaction-time state

view over the three constituent tables.

Code Fragment 9.22 De�ne the state table as a view.

CREATE VIEW P_TT (PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE, Start_Date, Stop_Date)

AS (SELECT * FROM P_TT_PAST

UNION

SELECT PROJECTIONS.PROJECTION_ID, PROJECTION_NAME,

PROJECTION_TYPE, SPHEROID_CODE, PROJECTION_UOM,

ZONE_CODE, Start_Date, CURRENT_DATE AS Stop_Date

FROM PROJECTIONS, P_TT_CURRENT AS C

WHERE PROJECTIONS.PROJECTION_ID = C.PROJECTION_ID)

9.5 VACUUMING*

The current store consists of the monitored table plus possibly an additional col-

umn, indicating when the row entered the table. As such it will contain the same

number of rows as the original monitored table. The archival store contains old

rows of the monitored table that have since been corrected; the two additional



9 . 5 VACUUMING* 269

columns denote the period of presence of these rows. The archival store is useful

for auditing the changes that have been applied to the monitored table, particularly

when the changes themselves were incorrect or malicious.

In comparison with a table associated with no temporal support, the database

administrator needs to be aware of the implications of adding transaction-time

support to that table. First, either the monitored table will be replaced with the

current store with an additional DATE column, or there will be an additional table

de�ned with the primary key and the DATE column. Either approach incurs a slight

space penalty. Second, the archival store is created. Initially this table is empty, so

the immediate cost is one of execution time for deletions and updates, which trig-

ger insertions into the archival store. Depending on the volatility of the monitored

table, the archival store will grow slowly or quickly; in any case, the growth will be

monotonic. Every deletion or update of a row of the monitored table will insert a

row into the archival store.

For highly volatile tables, the archival store can become quite large. In one

sense, this is desirable because that store is capturing the time-varying behavior

of the monitored table, permitting later analysis, which would be dif�cult to im-

possible without the archival store. However, eventually the space required by the

archival store may become excessive. Transactions on the monitored table get pro-

gressively slower as insertions into the archival store take longer; queries on the vir-

tual transaction-time state table also bog down due to the sheer size of the archival

store.

The archival store can be

reduced in size by purging

information on invalid entities.

At some point the DBAmay want to vacuum the archival store

to remove less desired rows, thereby improving the space and

time ef�ciency of the state table, with the drawback of reducing

the querying capability of the state table.

There are several kinds of vacuuming operations. Two ma-

jor classes are entity vacuuming and temporal vacuuming, distinguished by what is

removed. In the former, entities that are judged to be less interesting are removed

from the archival store. In the latter, information is removed based on it having

been logically deleted at some speci�ed instant in the past. The further back this

instant is, the less information discarded.

As an example, we can purge all projections that are no longer currently valid.

Code Fragment 9.23 Entity vacuum the archival store.

DELETE FROM P_TT_PAST

WHERE NOT EXISTS ( SELECT *

FROM P_TT_CURRENT AS C

WHERE P_TT_PAST.PROJECTION_ID = C.PROJECTION_ID)
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This works with either partitioned store organization described in Section 9.4.

The danger here is that a projection might have been erroneously deleted only

yesterday, yet we have just vacuumed away all evidence of that projection.

Once a transaction-time table has been vacuumed, subsequent queries should be

interpreted with that in mind. The query of CF-9.8 needs to be rephrased: �When

was it recorded that a currently present projection had a type of 17?�

Although vacuuming a

transaction-time table helps

contend with the unchecked

growth of the table, it violates

the underlying semantics of the

table, revising the meaning of

subsequent queries.

Vacuuming is a dangerous operation because it violates the

underlying semantics of the transaction-time state table. The

state table allows all prior states of the monitored table to be

reconstructed. After the state table has been vacuumed, it is no

longer possible to fully reconstruct some past states. For entity

vacuuming, the past states will not contain the entities that have

been vacuumed.

On page 250, we argued that a view reconstructing a past state

of a transaction-time table was inviolate; it will return the same

rows independent of when the view was evaluated. Such is not

the case in the presence of vacuuming. Before CF-9.23 was run by the DBA to en-

tity vacuum the archival store, projection 1 was in the April 1, 1996, reconstructed

state. After the archival store was vacuumed, projection 1 mysteriously disappeared

from that state. Although this is probably what the DBA intended, users of the

transaction-time table need to be aware that such vacuuming has occurred, and

that the information in the transaction-time table is incomplete.

Entity vacuuming is one way to reduce the size of the archival store. Alterna-

tively, we can temporally vacuum the archival store, removing all information older

than, say, two years. Many countries have laws that require that certain records be

retained only for a �xed length of time. Business policies may also pose similar

requirements. Such situations indicate temporal vacuuming.

Code Fragment 9.24 Temporally vacuum the archival store of dataolder than twoyears.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL �731� DAY

Again, after temporally vacuuming the archival store, queries need to be reinter-

preted. The query of CF-9.8 needs to be rephrased: �When was it recorded over the

past two years that a projection had a type of 17?�

In most settings, a combination makes sense: delete those entities having only

old information, which is a more conservative stance than either entity vacuuming

or temporal vacuuming alone.

Code Fragment 9.25 Temporally vacuum old unused entities from the archival store.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL �731� DAY
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AND NOT EXISTS ( SELECT *

FROM P_TT_CURRENT AS C

WHERE PROJECTION_ID = C.PROJECTION_ID)

Sometimes additional criteria may be appropriate; these tests can be added to the

WHERE clause.

Code Fragment 9.26 Temporally vacuum old unused entities from the archival store

that had aUSGS spheroid code of 2.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL �731� DAY

AND NOT EXISTS ( SELECT *

FROM P_TT_CURRENT AS C

WHERE PROJECTION_ID = C.PROJECTION_ID)

AND SPHEROID_CODE = 2

The DBA may wish to vacuum

the archival store based on a

combination of criteria.

The DBA can adjust the vacuuming criteria, trading off the

realized space savings with the reduction in querying ability. A

record should be kept, probably in a separate vacuuming log, of

the cleaning that has taken place.

Code Fragment 9.27 Log the vacuuming operations.

CREATE TABLE Vacuum_Log (

Table_Name CHAR(40) NOT NULL,

When_Vacuumed DATE NOT NULL,

Who CHAR(40) NOT NULL,

Entity_Vacuuming CHAR(1) NOT NULL,

Vacuum_Interval INTERVAL,

Vacuum_Criteria CHAR(256)

PRIMARY KEY (Table_Name, When_Vacuumed))

The vacuum log, which indicates

the meaning of queries on the

state table, should be

maintained automatically.

Vacuuming speci�cations should

be monotonic to avoid

time-dependent assumptions.

In this table, the Entity Vacuuming column indicates whether old entities were

purged, and the Vacuum Interval indicates whether temporal

vacuuming took place, with a NULL value indicating not. Other

criteria used in the vacuuming, such as a USGS spheroid code of

2, can be indicated as a prose comment in Vacuum Criteria.

This log should be updated each time a state table is vacu-

umed. For this reason, it is best to de�ne stored procedures that

vacuum a table, given criteria such as whether to do entity vacu-

uming and the vacuuming interval, while also ensuring that the

vacuuming is logged appropriately.

Vacuuming needs to be done in a way that makes sense to

users. While complex predicates can be speci�ed in the WHERE
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clause of the DELETE statement effecting the vacuuming, the vacuuming crite-

ria should be carefully chosen. One desirable property of a vacuuming speci�ca-

tion is that it be monotonic�once it is satis�ed, it will continue to be satis�ed, so

that repeated application does not violate the speci�cation. Consider the following

request:

Code Fragment 9.28 Temporally vacuum the archival store between one and two years

old.

DELETE FROM P_TT_PAST

WHERE (CURRENT_DATE - Stop_Date DAY) > INTERVAL �365� DAY

AND (CURRENT_DATE - Stop_Date DAY) < INTERVAL �730� DAY

This deletion will repeatedly be applied, to keep the size of the archival store in

check. The problem is that data that is 15 months old, and hence is subject to dele-

tion, will eventually become two years old and should then be retained. However,

that data is gone; it cannot be later reconstituted. In contrast, the vacuuming spec-

i�cation of CF-9.24, �data older than two years,� is monotonic: once data satis�es

this predicate, it will always satisfy the predicate. Similarly, the vacuuming speci�-

cations of CF-9.25 and CF-9.26 are also monotonic. We note in passing that a non-

monotonic vacuuming speci�cation is an instance of a time-dependent assumption

(see page 66), to be avoided if at all possible.

9.6 IMPLEMENTATION CONSIDERATIONS

The code fragments were implemented in Microsoft SQL Server.

9.6.1 Microsoft SQL Server

Other than the proviso mentioned in Section 8.9.2 concerning using the inserted

and deleted tables rather than the OLD and NEW correlation names, all the code

fragments worked as stated on Microsoft SQL Server 6.5 and 7.0.

9.6.2 CD-ROMMaterials

All of the code discussed in this chapter has been implemented in Microsoft SQL

Server and is provided on the CD-ROM.
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9.7 SUMMARY

A transaction-time state table maintains a history of the changes that have been

applied to a monitored table by associating with each row a period of presence,

indicating when that row was present in the monitored table.

Several organizations for such state tables were considered:

� As a period-stamped table augmenting the monitored table (CF-9.1), with triggers de-

�ned on the monitored table (CF-9.2). Here there is some duplication, as rows of

the monitored table will also be present in the state table. This approach does

not require any changes to legacy code.

� As a single period-stamped table, with the monitored table de�ned as a view on the

state table, as discussed in the previous chapter. Modi�cations must be rephrased to

apply to the state table; queries can still reference the view.

� As a current and an archival store (CF-9.15), with the monitored table de�ned as a view

on the current store (CF-9.16). The �rst line of modi�cation statements must be

changed to refer to the current store; triggers on this store automatically main-

tain the archival store. The current store is narrower, as the super�uous stop

date is not stored. Sequenced and nonsequenced queries are applied to a view

reconstituting the state table.

� As a tripartitioned store: an archival store as before, a current store containing only

the key and the start date (CF-9.20), and the monitored table, with triggers on the

monitored table maintaining both stores (CF-9.21). This organization requires no

changes to the legacy code and materializes the monitored table for ef�cient

current queries.

Transaction-time state tables have the same information content as the tracking

logs considered in the previous chapter. We demonstrated this with views that ex-

tracted the before-images, after-images, and rows of a backlog. The previous chapter

provided views that went the other direction, to a state table from a tracking log. A

tracking log can be considered to be a temporally partitioned transaction-time table

in which the archival store is timestamped with an instant, rather than a period.
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To choose between the organizations that support transaction time presented in

the last two chapters, the following factors should be considered:

� Are all insertions performed when the table is �rst created, or can entities come

and go?

� Can an entity be deleted and later inserted?

� How critical is the space overhead?

� How critical is modi�cation performance?

� How volatile is the monitored table?

� Which is most prevalent, current, sequenced, or nonsequenced queries?

� Is the legacy code available? If so, how hard is it to modify?

As a rough guide to selecting the manner in which transaction-time support is

implemented, the following is suggested:

� Use a tracking log only if sequenced and nonsequenced queries are rare.

� Use before-images only if all insertions are performed when the table is created.

� Use after-images only if no insertions follow deletions.

� Use a backlog only if sequenced and nonsequenced queries are rare and if after-

images are not indicated.

� Use a single or bipartitioned transaction-time state table if legacy code can be

changed and space is tight.

� Use a state table along with the monitored table if changes to legacy code are

not permitted and space isn't too tight.

� Use a tripartitioned state table if the legacy code cannot be changed and space is

tight.

Vacuuming can be used to ameliorate the space overhead of maintaining all pre-

vious states of the monitored table. The DBA can con�gure the extent and timing of

the purge process via vacuuming speci�cations; the DBA should ensure that these

speci�cations are monotonic.
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9.8 READINGS

Jacob Ben-Zvi originated the concept of a partitioned store in his Ph.D. disserta-

tion [5]. Several others subsequently studied partitioned stores in the context of

valid-time, transaction-time, and bitemporal tables [1, 26, 60, 67, 68].

Christian S. Jensen and Leo Mark have developed a comprehensive theory con-

cerning vacuuming that includes the kinds of vacuuming discussed in this chap-

ter [50]. Their approach goes further and considers the impact on query seman-

tics and query evaluation, and discusses how to perform the vacuuming operation.

Jensen later applied these concepts to a language extension to TSQL2 to support

rudimentary vacuuming [47] and later still extended his theory of vacuuming [85].

These facilities have yet to be proposed for SQL3.
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A bitemporal table is a glorious structure. It

simultaneously records the history of the en-

terprise, while also capturing the sequence of

changes to the record of that history. Bitempo-

ral tables permit queries on the history as best

known (over valid time, with a transaction time

of �now�), queries on the change history of a

stored data item (over transaction time, with

a �xed valid time), and queries on the interac-

tion of valid time and transaction time (for ex-

ample, �nding that information stored retroac-

tively, after the fact). It is this range of queries

that makes bitemporal tables so versatile and

useful.

Bitemporal tables, in capturing both valid

time and transaction time, require care inmain-

taining. Modi�cations must not disturb pre-

viously recorded information; they must be

append-only. As such, modi�cations generally

require longer sequences ofmore complex SQL

statements.

Bitemporal tables admit a wide variety of

temporal queries and integrity constraints.

They also admit a variety of representational

schemes, which speed up some common

queries at the expense of some rarer queries.



Bitemporal Tables

I
nformation is the key asset of many companies. Nykredit, a major Danish mort-

gage bank, is a good example. In 1989, the Danish legislature changed the

Mortgage Credit Act to allow mortgage providers to market loans directly to

customers and through real estate agents; before such loans had to be funneled in-

directly through banks, with the mortgage providers separated from the consumer

by these middlemen.

This change in the law had a dramatic impact on the loan market, with the num-

ber of mortgage credit suppliers in Denmark doubling since the law's amendment.

This new environment represented both an opportunity to Nykredit to enter into

direct marketing, as well as a challenge to fend off its now-burgeoning competitors.

One of the challenges was achieving high data quality on the customers and

their loans, while expanding the traditional focus to also include customer sup-

port. Managers needed access to up-to-date data to set benchmarks and identify

problems in various areas of the business. The sheer volume of the data, nine mil-

lion loans to eight million customers concerning sevenmillion properties, demands

that eliminating errors in the data must be highly ef�cient.

Jens Gadgaard is a seasoned senior architect at Nykredit Data, Nykredit's in-house

information technology provider, located in bucolic Aalborg. Aalborg is in Jutland,

to the north on the mainland, right on the Lim Fjord and only a few miles from the

North Sea coast. The company of�ces occupy a modern building several kilometers

outside of the city proper, fronted by a beautiful pond and surrounded by farmland;

I've seen sheep and rabbits contentedly grazing on adjacent �elds and lawns. Next

door is Aalborg University, with its newly inaugurated Nykredit Center for Database

Research. Jens has long pushed for better management of temporal data; the Center

and the internal structure of property ownership tables re�ect this emphasis.

As Jens explains it, a customer service person reports an error to the IT person-

nel; errors are also discovered by batch jobs producing quarterly reports. The more

information the IT personnel have access to, the better able they are to analyze and
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Figure 10.1 The property ownership relationship.

correct these errors. For this reason, Jens mandated that changes to critical tables be

tracked. This implies that the tables have transaction-time support. As these tables

also model changes in reality, they require valid-time support. The result is termed

a bitemporal table, re�ecting these two aspects of underlying temporal support.

With such tables, IT personnel can �rst determine when the erroneous data

was stored (a transaction time), roll back the table to that point, and look at the

valid-time history. They can then determine what the correct valid-time history

should be. At that point, they can tell the customer service person what needs to

be changed, or if the error was in the processing of a user transaction, they may

update the database manually. Because transaction-time support is included, these

changes would be logged as well, enabling someone later to see what happened

when the change itself was in error. Although bitemporal tables can be challenging

to implement, their support for both valid time and transaction time permits a so-

phisticated analysis of the evolution of the table, with all the data directly at hand.

The alternatives of going back through paper records to reconstruct the sequence of

changes that were made, or attempting to extract that sequence from backup tapes

or other secondary data sources, are simply not practical in such a dramatically

changing environment.

Nykredit must be doing something right. Despite the arrival of additional com-

petitors, Nykredit was able to increase its market share to become the largest mort-

gage bank in Denmark by 1997 and is currently Europe's �fth largest provider of

real estate loans.

10.1 DEFINITION

One of the central tables of the Nykredit database is the property ownership

table, which we will abbreviate as Prop Owner. This table speci�es the relation-

ship between the customer and property entities, as shown in Figure 10.1 as an

entity-relationship diagram.
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The customer entity has a key of customer number; the property entity has a

key of property number. (What kind of key, current, sequenced, or nonsequenced?,

you may ask. The entity-relationship diagram does not say. We address this critical

question only after we decide which aspects of time we wish to capture here.) The

customer and property entities have additional attributes. The property ownership

relationship is a one-to-many relationship between customers and properties: a cus-

tomer can own many properties, but a property is owned by exactly one customer.

This relationship is itself associated with other attributes, not shown here.

In mapping this conceptual entity-relationship schema to a logical, relational

schema, the customer entity induces a Customer table, with primary key customer

number, and the property entity induces a Property table, with primary key

property number. For the property ownership relationship, we have two alterna-

tives, given that this relationship is a one-to-many relationship. One alternative is

to extend the Property table with a customer number foreign key, as well as the

relationship's attributes. However, since the relationship is not total/mandatory (a

property can exist without being owned by a customer present in the Nykredit data-

base), that implies that all of the property ownership attributes must be nullable,

including the customer number. The second alternative, which is more attractive

in this case, is to create a separate table, the Prop Owner table, with foreign keys

customer number and property number. None of these columns need be nullable.

A bitemporal state table

contains four timestamp

columns, two specifying the

period of validity and two

specifying the period of

presence.

It turns out that the Customer and Property tables are temporal tables, but we

will defer consideration of that aspect. For the Prop Owner table, Jens wanted to cap-

ture both the history in reality of the owner(s) of a property over time, as well as the

sequence of database states, capturing the transactions applied

to this table. This requirement, originating from a need for high

data quality, meant that both valid time and transaction time

were relevant for this table.

A bitemporal state table captures valid-time states via a pe-

riod timestamp, here as two instant timestamps, VT Begin and

VT End, and transaction-time states also via a period timestamp,

here as TT Start and TT Stop. Along with the foreign keys, the

table is comprised of six columns.

Code Fragment 10.1 Create the Prop Owner table.

CREATE TABLE Prop_Owner (

customer_number INT,

property_number INT,

VT_Begin DATE,

VT_End DATE,

TT_Start TIMESTAMP,

TT_Stop TIMESTAMP)
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We give the valid timestamps a granularity of day (as a property cannot change

owners multiple times in a single day), and the transaction timestamps a granularity

of microsecond (to differentiate transactions).

We also specify the Customer and Property tables as bitemporal tables.

CREATE TABLE Customer (

name CHAR,

VT_Begin DATE,

VT_End DATE,

TT_Start TIMESTAMP,

TT_Stop TIMESTAMP)

CREATE TABLE Property (

property_number INT,

address CHAR,

property_type INT,

estimated_value INT,

VT_Begin DATE,

VT_End DATE,

TT_Start TIMESTAMP,

TT_Stop TIMESTAMP)

Since the property ownership relationship is one-to-many, the primary key of

the Prop Owner table should consist of only the many side, that is, the property

foreign key: property number. As has been emphasized many times, the sequenced

semantics is generally the natural choice; what is desired here is to specify property

number to be a primary key sequenced in both valid time and transaction time. The

state of the table at any day in valid time, as stored at any instant in transaction

time, should include at most one row in the table for any particular property, mean-

ing that property has one owner at that valid time, as recorded at that transaction

time.

So, how do we convert a property number PRIMARY KEY constraint to be

sequenced in both valid time and transaction time? Since only current modi�-

cations are permitted on tables with transaction-time support, including the TT

Start column is suf�cient (see the explanations on pages 178 and 221). However,

arbitrary modi�cations (including sequenced and nonsequenced) are generally per-

mitted on tables with valid-time support; that is true here speci�cally as well. As

we saw in Section 5.3 on page 117, it is not suf�cient to use either the begin date,

the end date, or a combination of the two; instead, an assertion is needed. Leav-

ing the valid timestamps out of the primary key doesn't work either, because the

foreign keys plus the transaction start time does not differentiate multiple entries

inserted by a single transaction specifying different valid times. Hence, a PRIMARY

KEY constraint simply doesn't work in this case.



10 . 1 DEF IN I T ION 281

Components of Every Clock

Every periodic clock, save sundials and clepsydrae,

has �ve primary components. The �rst is a device

that will be periodic, termed a resonator. The twist-

ing and untwisting of a string, the back-and-forth

of a pendulum, and the vibrating of a crystal are all

resonators. The second component is a means of

supplying energy to the resonator, so that it doesn't

wind down. The escapement provides energy from

a falling weight to the twisting of the string and the

swinging of a pendulum; a small battery provides

energy to a crystal. The energy supply together

with the resonator is called an oscillator. The third

component is a counting device, such as an escape-

ment or solid-state circuit. The fourth is a trans-

mission, getting the count to the �fth component,

which is a display, such as the clock's hands.

Stating that a key on a

bitemporal table is valid-time

sequenced requires an assertion.

To specify that the property number column constitutes a transaction-time

sequenced, valid-time sequenced primary key, we need an as-

sertion. We will apply this assertion at the current transaction

time; that only current modi�cations are permitted in trans-

action time will ensure that it holds over all transaction-time

states. This is a slight modi�cation of CF-5.14 on page 124.

Code Fragment 10.2 property number is a (valid-time sequenced, transaction-time

sequenced) primary key for Prop Owner.

CREATE ASSERTION P_O_seq_primary_key

CHECK (NOT EXISTS (SELECT *

FROM Prop_Owner AS P1

WHERE property_number IS NULL

OR 1 < (SELECT COUNT(customer_number)

FROM Prop_Owner AS P2

WHERE P1.property_number = P2.property_number

AND P1.VT_Begin < P2.VT_End

AND P2.VT_Begin < P1.VT_End

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31�))

)

While we're at it, we also include a nonsequenced valid-time assertion: that there

are no gaps in the valid-time history. Speci�cally, once a property is acquired by a

customer, it remains associated with an owner (or sequence of owners) over its

existence. As before, we use current transaction time. This is a slight modi�cation

of CF-5.22 on page 129.
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Code Fragment 10.3 Prop Owner.property number de�nes a contiguous valid-time

history.

CREATE ASSERTION P_O_Contiguous_History

CHECK (NOT EXISTS (SELECT *

FROM Prop_Owner AS P, Prop_Owner AS P2

WHERE P.VT_End < P2.VT_Begin

AND P.property_number = P2.property_number

AND P.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (

SELECT *

FROM Prop_Owner AS P3

WHERE P3.property_number = P.property_number

AND (((P3.VT_Begin <= P.VT_End)

AND (P.VT_End < P3.VT_End))

OR ((P3.VT_Begin < P2.VT_Begin)

AND (P2.VT_Begin <= P3.VT_End)))

AND P3.TT_Stop = DATE �9999-12-31�))

)

The change made here was to apply the assertion at the current transaction time,

which, due to the append-only nature of transaction time, renders it a sequenced

transaction-time constraint.

10.2 MODIFICATIONS

In Chapter 7 we saw that valid-time state tables admit nine kinds of modi�ca-

tions: current, sequenced, and nonsequenced versions of INSERT, DELETE, and

UPDATE. Chapter 9 showed that transaction-time state tables are much simpler:

only current versions of INSERT, DELETE, and UPDATE are relevant. So, what is

the situation with bitemporal tables? It turns out that here again only nine kinds

of modi�cations apply, all current in transaction time: valid-time current, valid-

time sequenced, and valid-time nonsequenced versions of INSERT, DELETE, and

UPDATE.

Translating modi�cations on bitemporal tables into SQL parallels the translation

on valid-time tables given in Chapter 7. In fact, we advocate a two-stage transforma-

tion. The �rst stage applies those transformations given for valid-time tables. Only

then will we consider transaction time, applying a second set of transformations

to render a �nal sequence of SQL statements that respect the coupled semantics

of valid time and transaction time. The mappings themselves are straightforward,

albeit somewhat tedious.
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Let's follow the history, over both valid time and transaction time, of a �at in Aal-

borg, at Skovvej 30 for the month of January 1998. This history is quite interesting

for illustrating the translation for various kinds of modi�cations.

10.2.1 Current Modi�cations

We �rst consider current insertion, then current updates, and end with current

deletions.

Insertions

On the 10th of January, this �at was purchased by Eva Nielsen. We record this

information as a current valid-time, current transaction-time insertion.

Code Fragment 10.4 Eva Nielsen buys the �at at Skovvej 30 in Aalborg on January 10,

1998.

INSERT INTO Prop_Owner (customer_number, property_number, VT_Begin,

VT_End, TT_Start, TT_Stop)

VALUES (145, 7797, CURRENT_DATE,

DATE �9999-12-31�, CURRENT_TIMESTAMP, DATE �9999-12-31�)

This information is valid starting now and was inserted now. We will see that the

transaction-time extent of all modi�cations is �now� to �until changed,� which we

encode as �forever.�

The interplay between valid time and transaction time can be confusing, so it is

useful to have a visualization of the information content of a bitemporal table. Fig-

ure 10.2 shows the bitemporal time diagram, or simply time diagram, corresponding

to the above insertion.

Current insertions require only

that the valid and transaction

timestamps be appropriately

speci�ed.

In this �gure, the horizontal axis tracks transaction time and

the vertical axis tracks valid time. Information about a row, or

about multiple rows associated with a primary key value, is de-

picted as two-dimensional polygonal regions in the diagram. Ar-

rows extending rightward denote �until changed� in transaction

time; arrows extending upward denote �forever� in valid time.

Here we have but one region, associated with Eva Nielsen, that starts at time 10

(January 10, 1998) in transaction time and extends to �until changed,� and that

begins also at time 10 in valid time and extends to �forever.� The arrow pointing

upward extends to the largest valid-time value (�forever�); the arrow pointing to the

right extends to �now,� that is, it advances day by day to the right (a transaction

time in the future is meaningless).
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Figure 10.2 A bitemporal time diagram corresponding to Eva purchasing the �at,
performed on January 10.

Updates

On the 15th Peter Olsen buys this �at; this legal transaction transfers ownership

from Eva to him. The nontemporal expression of this modi�cation is a simple

UPDATE.

Code Fragment 10.5 Peter Olsen buys the �at on January 15, 1998.

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797

Figure 10.3 illustrates how this update impacts the time diagram. The valid-time

extent of a current modi�cation is always �now� to �forever,� so from time 15 on,

the property is owned by Peter; at the rest of the time, from time 10 to 15, the

property was owned by Eva. Both regions extend to the right to �until changed.�

This time diagram captures two facts: Eva owning the �at and Peter owning the �at,

each associated with a bitemporal region.

This �gure captures the evolving information content of the Prop Owner table

quite effectively. Consider a transaction time-slice, which returns the valid-time

history at a given transaction time. Such a time-slice can be visualized as a vertical

line intersecting the x-axis at the given time. At transaction time 5 (January 5), the

table has no record of the �at being owned by anyone. At transaction time 12, the

table records that the �at was owned by Eva from January 10 to �forever.� If we
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Figure 10.3 A current update: Peter buys the �at, performed on January 15.

time-traveled back to January 12 and asked for the history of the �at, that would

be the response. We thought then that Eva owns the �at, and that is what the Prop

Owner table recorded then. At transaction time 17 the table records that the �at was

owned by Eva from January 10 to 15, at which time ownership transferred to Peter,

who now owns it to �forever.� And that is the history as best known (denoted by

the right-pointing arrows); it is what we think is true about the valid-time history.

The current update must effect the change in the Prop Owner table from Fig-

ure 10.2 to Figure 10.3, via SQL statements that manipulate the explicit columns as

well as the timestamp columns. While CF-10.5 consists of but 3 lines, the transla-

tion into SQL-92 is involved, ultimately requiring over 30 lines of SQL! However,

the translation is mechanical, so with some patience, all will be clear.

For modi�cations on bitemporal

tables, the �rst stage contends

with valid time, resulting in a

series of SQL statements.

CF-7.11 on page 186 translated a valid-time current update

into three SQL statements, the �rst to insert new information

valid from �now� until the row ended, the second to terminate

the current row at �now,� and the third to update any rows that

start in the future with the new values. I urge you to revisit that

code fragment, read the associated commentary, and ensure that

you understand it well because the bitemporal version will build on it.

In addition to contending with valid time, we also must ensure that the

transaction-time extent of the modi�cation is from �now� to �until changed.� One

important property of tables with transaction-time support is that they are append-

only (cf. Section 8.10). As such tables capture the state of the stored table over time,
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once we have recorded that the state was such and such at a particular time, we can't

go back and change that later because we can't change the bits stored on the disk at

that prior time. The changes always accumulate in the table with transaction-time

support (the one exception is when the table is vacuumed, which as we emphasized

on page 270 violates the semantics of the table).

Only two kinds of modi�cations

are permitted on bitemporal

state tables: insertions with a

transaction time of �now� to

�forever,� and updates that set

the transaction-stop time to

�now.�

The practical rami�cation is that we never physically delete a

row from such a table; the only physical modi�cations allowed

are to insert rows into the table and to change the transaction-

stop time of a row from �until changed� to �now,� thereby log-

ically deleting the row. All nine types of modi�cations allowed

on bitemporal tables must be implemented as a combination of

INSERTs with a transaction time of �now� to �until changed�

(which is represented with �forever�) and UPDATEs that set the

transaction-stop time to �now.� Any other modi�cation to a

bitemporal table will violate its semantics.

As mentioned, we utilize a two-stage procedure for translating a temporal mod-

i�cation on a bitemporal table into a series of SQL statements. The �rst stage

pretends that the table is a valid-time table and uses the mappings elaborated in

Chapter 7 for handling modi�cations of such tables. In the second stage, we iden-

tify the statements that violate the semantics of transaction time, which basically

are all DELETEs and UPDATEs, and further map these statements into combina-

tions of UPDATEs on the transaction-stop time and INSERTs. Finally, we must

add a predicate for each correlation name in the statement that selects the most

recent transaction-time version; this can be done by simply checking that the

transaction-stop time is �until changed.�

A modi�cation on a bitemporal table

A nontemporal modi�cation is mapped into a modi�cation on a bitemporal table in

two stages:

The �rst transformation assumes that the table only has valid-time support.

The second transformation then converts updates and deletions into stylized

INSERT and UPDATE statements. A WHERE predicate is added for each

correlation name selecting the row(s) current in transaction time.

For our �rst modi�cation, a current insertion, shown in CF-10.4, we didn't

need to invoke this second transformation stage, but most of the other temporal

modi�cations will require both stages.
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We now examine the three statements of CF-7.11 on page 186, which effects a

current update on a valid-time state table. The �rst stage maps the update of CF-10.5

into the following three statements, which parallel the three statements of CF-7.11.

Code Fragment 10.6 Peter Olsen buys the �at on January 15, 1998, a current update

(partial solution, considering only valid time).

INSERT INTO Prop_Owner

SELECT 827, property_number, CURRENT_DATE, VT_End

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin <= CURRENT_DATE

AND VT_End > CURRENT_DATE

UPDATE Prop_Owner

SET VT_End = CURRENT_DATE

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

UPDATE Prop_Owner

SET customer_number = 827

WHERE property_number = 7797

AND VT_Begin > CURRENT_DATE

The �rst statement in this fragment is an insertion, which is �ne, as it upholds

the semantics of transaction time. The second statement, which terminates the

valid time of the current row at �now,� is an update of a column other than the

transaction-stop time. So it must be subsequently mapped (as we'll show shortly)

into two SQL statements, one to logically delete the entire row, by setting the

transaction-stop time to �now,� and one to insert the row, with a new valid-time

stop time of �now.� The third statement, to update any rows that start in the future

with new values, must also be subsequently mapped into two SQL statements, an

UPDATE and an INSERT. So the second and third statements of CF-10.6 must each

be expanded into two statements, yielding a total of �ve SQL statements expressing

the sequenced version of CF-7.11.

There is a further complication in the interplay of two time dimensions, valid

time and transaction time. When we were concerned only with valid time, we

contended with valid-time periods, lengthening and shortening these periods by

altering their beginning and ending instants. Two time dimensions generalize pe-

riods to regions in the time diagram, which are considerably more involved than

simple one-dimensional periods. Quite intricate shapes can result from a series of

bitemporal modi�cations, as we shall see.
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Hairspring

A pendulum must be hung vertically, making it

�ne for grandfather clocks but impractical for wrist

watches. Huygens also had the insight that a spring

has the same characteristics as a pendulum, but

is unaffected by its spatial orientation. His spiral

spring has been re�ned into the hairspring that reg-

ulates the motion of the balance wheel in today's

mechanical watches.

In terms of the time diagram, a row with

two valid-time instants, VT Begin and VT

End, and two transaction-time instants, TT

Start and TT Stop, encodes a rectangle in

bitemporal space. Hence, the region in Fig-

ure 10.2, being a single rectangle, requires

but one row to encode�the row inserted

in CF-10.4. The region associated with Eva

in Figure 10.3 requires two rectangles; the

region associated with Peter needs but one

(see Figure 10.4). Due to the semantics of

transaction time, regions are often split

with vertical lines in time diagrams. The implication is that in this case two new

rows will have to be inserted, and the existing row modi�ed, to effect this temporal

modi�cation. (This is the visual analog of the requirement, stated earlier, that an

UPDATE of a table with transaction-time support must be mapped into an UPDATE

only of the transaction-stop time to �now,� and an INSERT with a transaction-start

time of �now.�)

Returning to the three statements needed to realize a current deletion of a valid-

time table, we note that the third statement, to update any rows that start in the

future, is not strictly required here, as there are no rows concerning this �at that

start in the future. However, for generality, because your application may indeed
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Figure 10.4 Splitting a polygonal region into rectangles.
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Figure 10.5 A current update of a future row.

have (valid-time) future rows, we include this statement in our discussion here. Say

there was a future row, valid from 20 to 25, with a transaction-stop time of �until

changed� (see Figure 10.5). Here the �at was owned during these �ve days (from

January 20 to January 24; recall that we're using an open-ended period) by someone

else. A current update, �Peter Olsen buys the �at,� has a valid-time extent of �now�

to �forever�; this extent includes all of January. So we must logically delete the old

row and insert a new row, indicating associating that valid time with Peter. The

third statement thus maps into two SQL statements, an INSERT and an UPDATE.

In summary, the �rst stage maps CF-10.5 to CF-10.6, resulting in three SQL

statements. The second stage retains the INSERT statement, but maps each of

the two UPDATE statements into an INSERT-UPDATE pair. Five SQL statements

result, shown as CF-10.7. You should verify that these statements do not violate

the transaction-time semantics: all INSERTs have transaction-time extent of �now�

to �until changed,� and all UPDATEs change only the transaction-stop time from

�until changed� to �now,� with no other kinds of modi�cations allowed.

Code Fragment 10.7 Peter Olsen buys the �at on January 15, 1998, a current update.

INSERT INTO Prop_Owner

SELECT 827, property_number, CURRENT_DATE, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

continued on page 290
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continued from page 289

WHERE property_number = 7797

AND VT_Begin <= CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT 827, property_number, VT_Begin, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

The �rst UPDATE must occur after the �rst two INSERTs; the last UPDATE must

occur after the last INSERT. The resulting Prop Owner table (shown in Table 10.1)

contains three rows, corresponding to the three rectangles in Figure 10.4. A careful

matching of the dates in this table to the time diagram will aid in understanding

how a bitemporal state table encodes the regions found in the time diagram.
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Table 10.1 Result of the current insertion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31

827 7797 1998-01-15 9999-12-31 1998-01-15 9999-12-31

Deletions

We perform a current deletion on January 20 against Table 10.1. Speci�cally, we �nd

out that Peter has sold the property to someone else, with the mortgage handled by

another mortgage company. From Nykredit's point of view, the property no longer

exists as of (a valid time of) January 20.

Code Fragment 10.8 Peter Olsen sells the �at on January 20, 1998.

DELETE FROM Prop_Owner

WHERE property_number = 7797

Figure 10.6 shows the resulting time diagram. If we now request the valid-time

history as best known, we will learn that Eva owned the �at from January 10 to

January 15, and Peter owned the �at from January 15 to January 20. Note that all

prior states are retained. We can still time-travel back to January 18 and request
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Figure 10.6 A current deletion: Peter sells the �at, performed on January 20.
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Figure 10.7 A current deletion: splitting into rectangles.

the valid-time history, which will state that on that day we thought that Peter still

owned the �at. In Figure 10.3, Peter's region was a rectangle. The current deletion

has chopped off the top-right corner, so that the region is now L-shaped.

The row associated with Peter in Figure 10.3 denotes a single rectangle. That

rectangle must be converted into the two rectangles shown in Figure 10.7. We do

so by terminating the existing row (by setting its transaction-stop time to �now�)

and by inserting the portion still present, with a valid-end time of �now.�

As before, we proceed in two stages. The �rst stage pretends that the table is a

valid-time state table, mapping the temporal modi�cation to SQL. As in CF-7.8 on

page 184, two statements are required.

Code Fragment 10.9 Peter Olsen sells the �at on January 20, 1998, a current deletion

(partial version, considering only valid time).

UPDATE Prop_Owner

SET VT_End = CURRENT_DATE

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

DELETE FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin >= CURRENT_DATE
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Deletions on bitemporal tables

follow these same two stages:

�rst consider valid time, then

transaction time.

In the �rst statement, applied to rows that started in the past

and end in the future, the valid-time end date is set to �now.�

The second deletes those rows that start now or in the future.

The second stage further maps those statements that vio-

late the transaction-time semantics into particular forms of UP-

DATEs and INSERTs. The �rst statement (an UPDATE) is mapped

into two, an INSERT and an UPDATE; the second (a DELETE) is mapped into an UP-

DATE. We also add a predicate for each correlation name that checks for the current

transaction-time version. Again, you should be convinced that these statements do

not violate the semantics of transaction time.

Code Fragment 10.10 Peter Olsen sells the �at on January 20, 1998, a current deletion.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin >= CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

We can simplify this by combining the two UPDATEs into one.

Code Fragment 10.11 Peter Olsen sells the �at on January 20, 1998, a current deletion,

simpli�ed version.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, CURRENT_DATE,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

continued on page 294
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Table 10.2 Result of the current deletion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31

continued from page 293

WHERE property_number = 7797

AND VT_Begin < CURRENT_DATE

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_End > CURRENT_DATE

AND TT_Stop = DATE �9999-12-31�

The UPDATE handles both current and future rows. The resulting table (Table 10.2)

contains four rows. The third row was terminated at �now,� with the fourth row

newly inserted. The modi�ed rows and columns are highlighted with an italic font.

In current modi�cations, valid time and transaction time are coupled: the valid

time at which the modi�cation takes effect is �now.� Similarly, the transaction time

at which the modi�cation is recorded is �now.� Sequenced modi�cations decouple

the valid time from the transaction time, allowing the former to be supplied by the

user.

10.2.2 SequencedModi�cations

As we saw in Chapter 7, sequenced modi�cations generalize current modi�cations

to apply over a speci�ed period of applicability. For bitemporal tables, the mod-

i�cation is sequenced only on valid time; the modi�cation is always a current

modi�cation on transaction time, from �now� to �until changed.�

As before, we apply a two-stage transformation, �rst considering only the valid-

time component of the bitemporal table, then further transforming the SQL state-

ments so that they do not violate the semantics of transaction time. The result will

be a series of stylized UPDATE and INSERT statements.
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Figure 10.8 A sequenced insertion performed on January 23: Eva actually purchased
the �at on January 3.

Insertions

Continuing with the Prop Owner table as depicted in Figure 10.6, we consider a

sequenced insertion. On January 23, we �nd out that Eva had purchased the �at

not on January 10, but on January 3, a week earlier. So we insert those additional

days, to obtain the time diagram shown in Figure 10.8.

This insertion is termed a retroactive modi�cation, as the period of applicability

(here, January 3 through 10) is before the modi�cation date (here, January 23).

Sequenced (and nonsequenced) modi�cations can also be postactive, an example

being a promotion that will occur in the future (in valid time). (A valid-end time

of �forever� is generally not considered a postactive modi�cation; only the valid-

start time is considered.) A sequenced modi�cation might even be simultaneously

retroactive, postactive, and current, when its period of applicability starts in the

past and extends into the future (e.g., a �xed-term assignment that started in the

past and ends at a designated date in the future).

There are two ways to effect the insertion illustrated in Figure 10.8. The easiest is

to use a single SQL INSERT statement.

Code Fragment 10.12 Eva actually purchased the �at on January 3, performed on Jan-

uary 23.

INSERT INTO Prop_Owner (customer_number, property_number, VT_Begin,

VT_End, TT_Start, TT_Stop)

VALUES (145, 7797, DATE �1998-01-03�,

DATE �1998-01-10�, CURRENT_TIMESTAMP, DATE �9999-12-31�)



296 CHAPTER TEN : B I TEMPORAL TABLES

Eva

Peter

3025201510

5

5

10

15

20

25

30

Va
lid

 t
im

e

Transaction time

Figure 10.9 One splitting into rectangles.

Table 10.3 Result of the sequenced insertion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31

145 7797 1998-01-03 1998-01-10 1998-01-23 9999-12-31

One approach to a sequenced

insertion is to simply insert the

new period of validity, without

regard to how it interacts with

the period of validity of the

existing rows.

The period of applicability for the insertion appears as the val-

ues of the VT Begin and VT End columns. The region associated

with Eva's ownership consists of the three rectangles shown in

Figure 10.9, and the �rst, second, and �fth rows in Table 10.3.

A second approach is to always split with vertical lines, as

shown in Figure 10.10. This is termed transaction-time splitting

because the regions are split into bands of transaction time. (The

�rst approach is then termed valid-time splitting.) In transaction-

time splitting, we terminate the current row and insert a new

row, with a new period of validity being the union of the original period of validity

and the period of applicability, that is, from time 5 to time 15. For this new period,

there are four cases, shown in Figure 10.11. In all four cases, the original period of
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Figure 10.10 An alternate splitting into rectangles.

Case 1
PV

PA

PV

PA

PV

PA

PV

PA

Case 2

Case 3

Case 4

Result:

Result:

Result:

Result: PV of row unchanged

Figure 10.11 Sequenced insertion cases.
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validity (PV) overlaps the period of applicability of the insertion (PA). In Case 1, PV

starts before PA, with the new period of validity starting from the start of PV to the

end of PA. This case applies to the Eva row in this example. In Case 2, the PV starts

after PA. In Case 3, the PV is contained in PA, and the new PV is PA. In Case 4, the

PA is contained in PV, and the PV need not be changed.

In the following SQL code, we use a CASE statement to compute the new period

of validity. Rows are affected if their PV overlaps the PA but does not contain the

PA. Such rows are logically deleted by setting the transaction-stop time to �now,�

then inserted with the new PV. If there are no rows whose PV overlaps the PA, the

insertion is performed as before.

Code Fragment 10.13 Eva actually purchased the �at on January 3, with transaction-

time splitting.

-- Do normal insert if there are no overlapping rows that

-- do not contain the period of applicability

INSERT INTO Prop_Owner

SELECT 145, 7797, DATE �1998-01-03�, DATE �1998-01-10�,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM DUAL

WHERE NOT EXISTS (SELECT *

FROM Prop_Owner

WHERE customer_number = 145

AND property_number = 7797

AND DATE �1998-01-03� < VT_End

AND VT_Begin < DATE �1998-01-10�

AND NOT (VT_Begin < DATE �1998-01-03�

AND DATE �1998-01-10� < VT_End)

AND TT_Stop = DATE �9999-12-31�)

-- If there is an overlap, extend it, unless PA is contained in PV

INSERT INTO Prop_Owner

SELECT customer_number, property_number,

CASE WHEN DATE �1998-01-03 < VT_Begin

THEN DATE �1998-01-03�

ELSE VT_Begin END,

CASE WHEN DATE �1998-01-10 < VT_End

THEN VT_End

ELSE DATE �1998-01-10� END,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE customer_number = 145

AND property_number = 7797

AND DATE �1998-01-03� < VT_End

AND VT_Begin < DATE �1998-01-10�

AND NOT (VT_Begin < DATE �1998-01-03�
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AND DATE �1998-01-10� < VT_End)

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE customer_number = 145

AND property_number = 7797

AND DATE �1998-01-03� < VT_End

AND VT_Begin < DATE �1998-01-10�

AND NOT (VT_Begin < DATE �1998-01-03�

AND DATE �1998-01-10� < VT_End)

AND TT_Stop = DATE �9999-12-31�

A second approach to a

sequenced insertion on a

bitemporal table computes a

new period of validity.

(Note the use of a DUAL table, as discussed on page 138.) The

three statements can be in any order, as they are disjoint.

This approach minimizes the representation, that is, the

number of rows in the Prop Owner table (though in this partic-

ular example, there is no difference). As shown in Table 10.4,

this table still has �ve rows (cf. Table 10.3), but here the second

row was logically deleted. The drawback of this optimized approach is substantial

complexity and execution cost for the temporal insertion.

For the remainder of the modi�cations, we will not attempt to minimize the

representation, but note here that doing so is always an option to be considered.

Deletions

We learn on January 26 that Eva bought the �at not on January 10, as initially

thought, nor on January 3, as later corrected, but on January 5. This requires a

sequenced version of the following deletion:

Table 10.4 Result of a second approach to the sequenced insertion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-23

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31

145 7797 1998-01-03 1998-01-15 1998-01-23 9999-12-31
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Figure 10.12 A sequenced deletion performed on January 26: Eva actually purchased
the �at on January 5.

Code Fragment 10.14 Eva actually purchased the �at on January 5 (nontemporal

version).

DELETE FROM Prop_Owner

WHERE property_number = 7977

We specify a period of applicability of January 3 through 5, with the result shown

in the time diagram in Figure 10.12.

We need to terminate the current row and insert a new row, with a smaller pe-

riod of validity. As in the valid-time sequenced deletion of CF-7.16 on page 191,

there are four cases, depicted in Figure 7.2. The valid-time sequenced deletion was

transformed into four SQL statements.

Valid-time sequenced deletion

Insert the old values from the end of the period of applicability to the end of the

period of validity of the original row.

Update the end date to end at the beginning of the period of applicability.

Update the start date to begin at the end of the period of applicability.

Delete entirely rows that are covered by the period of applicability.
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Sequenced deletions on

valid-time tables require some

four SQL statements; when

mapped to bitemporal tables, a

total of six statements are

required.

When transaction time is considered (recall that all modi�cations are current in

transaction time), updates turn into a combination of termi-

nating the row with a transaction-stop time of �now� and in-

serting a row with a transaction-start time of �now� and with

the new valid-time date. This concerns both the second and the

third statements. Logically deleting a row turns into an UPDATE,

when transaction time is considered.

In summary, we took CF-7.16, applied it to the Prop Owner

table, being careful to utilize a period of applicability of [1998-

01-02 - 1998-01-05), then applied the second stage of the trans-

formation, to obtain six SQL statements, all consistent with transaction-time se-

mantics. We admit that in this particular situation, the �rst two statements suf�ce

to effect the deletion. However, our previous explanation and provided code cover

all situations.

Code Fragment 10.15 Eva actually purchased the �at on January 5.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE �1998-01-05�, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin < DATE �1998-01-02�

AND VT_End > DATE �1998-01-05�

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE �1998-01-02�,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin < DATE �1998-01-02�

AND VT_End > DATE �1998-01-02�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin < DATE �1998-01-02�

AND VT_End > DATE �1998-01-02�

AND TT_Stop = DATE �9999-12-31�

continued on page 302
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Table 10.5 Result of the sequenced deletion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 9999-12-31

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 9999-12-31

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 9999-12-31

continued from page 301

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE �1998-01-05�, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin < DATE �1998-01-05�

AND VT_End >= DATE �1998-01-05�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin < DATE �1998-01-05�

AND VT_End >= DATE �1998-01-05�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797

AND VT_Begin >= DATE �1998-01-02�

AND VT_End <= DATE �1998-01-05�

AND TT_Stop = DATE �9999-12-31�

Starting from Table 10.3, the sequenced deletion of CF-10.15 results in Table 10.5.

Updates

We learn on January 28 that Peter bought the �at on January 12, not January 15 as

previously thought. This requires a sequenced version of the following update.
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Figure 10.13 A sequenced update performed on January 28: Peter actually purchased
the �at on January 12.

Code Fragment 10.16 Peter actually purchased the �at on January 12 (nontemporal

version).

UPDATE Prop_Owner

SET customer_number = 145

WHERE property_number = 7797

AND customer_number <> 145

Table 10.6 Result of the sequenced update.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28

145 7797 1998-01-05 1998-01-12 1998-01-28 9999-12-31

827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31
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This update requires a period of applicability of January 12 through 15, setting

the customer number to 145, which results in the time diagram in Figure 10.13.

Effectively, the ownership must be transferred from Eva to Peter for those three

days, resulting in Table 10.6.

The two-stage transformation, �rst valid time and then transaction time, applies

here as well. We modify CF-7.18 on page 194 to apply to Prop Owner and to utilize

a period of applicability of [1998-01-12 - 1998-01-15), then contend with trans-

action time in the second stage. INSERTs remain; UPDATEs are mapped to a pair of

INSERT and UPDATE.

Code Fragment 10.17 Peter actually purchased the �at on January 12.

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE �1998-01-12�,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-12�

AND VT_End > DATE �1998-01-12�

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE �1998-01-15�, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-15�

AND VT_End > DATE �1998-01-15�

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT 145, property_number, VT_Begin, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-15�

AND VT_End > DATE �1998-01-12�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998�01-15�

AND VT_End > DATE �1998-01-12�

AND TT_Stop = DATE �9999-12-31�
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INSERT INTO Prop_Owner

SELECT customer_number, property_number, DATE �1998-01-12�, VT_End,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-12�

AND VT_End > DATE �1998-01-12�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-12�

AND VT_End > DATE �1998-01-12�

AND TT_Stop = DATE �9999-12-31�

INSERT INTO Prop_Owner

SELECT customer_number, property_number, VT_Begin, DATE �1998-01-15�,

CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM Prop_Owner

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-15�

AND VT_End > DATE �1998-01-15�

AND TT_Stop = DATE �9999-12-31�

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE property_number = 7797 AND customer_number <> 145

AND VT_Begin < DATE �1998-01-15�

AND VT_End > DATE �1998-01-15�

AND TT_Stop = DATE �9999-12-31�

Sequenced updates require

applying the same two-stage

transformation process,

resulting in some eight SQL

statements to implement a

single sequenced update.

While this series of statements is quite intimidating, the two

stages employed�that of mapping from the initial sequenced

update to the �rst set of �ve statements, taking the valid-

time component into consideration, as discussed in Chapter 7,

then mapping into the eight statements shown here, taking

the transaction-time component into consideration�are largely

mechanical and more tedious than conceptually challenging.

10.2.3 Nonsequenced Modi�cations

We saw before that no mapping was required for nonsequenced modi�cations on

valid-time state tables; such statements treat the (valid) timestamps identically to

the other columns. When considering the transaction timestamps, we just perform

the second-stage mapping discussed above.
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Figure 10.14 A nonsequenced deletion performed on January 30: Delete all records
of exactly one-week duration.

Nonsequenced modi�cations are

initially complex to write, but

require no subsequent

transformations.

As an example, consider the modi�cation �Delete all records with a valid-time

duration of exactly one week.� This modi�cation is clearly (valid-time) nonse-

quenced: (1) it depends heavily on the representation, looking for rows with a par-

ticular kind of valid timestamp, (2) it does not apply on a per

instant basis, and (3) it mentions �records,� that is, the recorded

information, rather than �reality.� The result of this deletion,

evaluated on the 30th, is shown in Figure 10.14.

DELETEs are mapped in the second stage into an UPDATE

on the transaction-stop time, so one statement suf�ces for

nonsequenced deletions on bitemporal tables.

Code Fragment 10.18 Delete all records with a valid-time duration of exactly one week.

UPDATE Prop_Owner

SET TT_Stop = CURRENT_TIMESTAMP

WHERE (VT_End - VT_Begin DAY) = INTERVAL �7� DAY

AND TT_Stop = DATE �9999-12-31�

The result is Table 10.7.

Now that we have a populated bitemporal table, we can discuss bitemporal

queries.



10 . 3 QUER I ES 307

Table 10.7 After a nonsequenced deletion.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28

145 7797 1998-01-05 1998-01-12 1998-01-28 1998-01-30

827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31

10.3 QUERIES

We �rst consider a restricted class of queries, time-slice queries, then move on to

the full spectrum of possible bitemporal queries.

10.3.1 Time-Slice Queries

A transaction time-slice query

corresponds to a vertical slice in

the time diagram.

A common query or view over the valid-time state table of Chapter 6 was to cap-

ture the state of the enterprise at some point in the past (or future). This query

was termed a valid-time time-slice. For the tracking log of Chapter 8, we sought to

reconstruct the state of the monitored table as of a date in the past; that query was

termed a transaction time-slice. As a bitemporal table captures valid and transaction

time, both time-slice variants are appropriate on such tables.

Time-slices are useful also in understanding the information

content of a bitemporal table. A transaction time-slice of a bitem-

poral table takes as input a transaction-time instant and results

in a valid-time state table that was present in the database at that

speci�ed time.

Code Fragment 10.19 Give the history of owners of the �at at Skovvej 30 in Aalborg as

of January 1, 1998.

SELECT customer_number, VT_Begin, VT_End

FROM Prop_Owner

WHERE property_number = 7797

AND TT_Start <= DATE �1998-01-01�

AND DATE �1998-01-01� < TT_Stop

Applying this time-slice to Table 10.7, whose time diagram appears in Figure 10.14,

results in an empty table, as no history was yet known about that property.
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Taking a transaction time-slice as of January 14 results in a history with one

entry:

customer number VT Begin VT End

145 1998-01-10 9999-12-31

On January 14, we thought that Eva was the current owner of that property. We

now know that Peter purchased the property on January 12, and that Eva never

owned the property at all on January 14, but that is 20-20 hindsight. The informa-

tion we had on January 14 indicated that Eva bought the property on the 10th, and

still owns it.

The time-slice as of January 18 tells a different story:

customer number VT Begin VT End

145 1998-01-10 1998-01-15

827 1998-01-15 9999-12-31

On January 18 we thought that Eva had purchased the �at on January 10 and sold

it to Peter, who now owns it. A transaction time-slice can be visualized on the time

diagram as a vertical line situated at the speci�ed date. This line gives the valid-

time history of the enterprise that was stored in the table on that date. Figure 10.15

illustrates this transaction time-slice.

Continuing, we take a transaction time-slice as of January 29:

customer number VT Begin VT End

145 1998-01-05 1998-01-12

827 1998-01-12 1998-01-20

On January 29, we thought that Eva had purchased the �at on January 5 and sold

it to Peter on January 12, who sold the property to someone else on January 20.

Finally, taking the current transaction time-slice,

Code Fragment 10.20 Give the history of owners of the �at at Skovvej 30 in Aalborg as

best known.

SELECT customer_number, VT_Begin, VT_End

FROM Prop_Owner

WHERE property_number = 7797

AND TT_Stop = DATE �9999-12-31�

yields the following result:



10 . 3 QUER I ES 309

customer number VT Begin VT End

827 1998-01-12 1998-01-20

Only Peter ever had ownership of the property, since all records with a valid-time

duration of exactly one week were deleted. Peter's ownership was for all of eight

days, January 12 to January 20.

A valid time-slice query

corresponds to a horizontal slice

in the time diagram, resulting in

a transaction-time state table.

We can also cut the pie (or, more accurately, the time dia-

gram) horizontally. A valid time-slice of a bitemporal table takes

as input a valid-time instant and results in a transaction-time

state table capturing when information concerning that speci-

�ed valid time was recorded in the database. A valid time-slice is

expressed in SQL similarly to the transaction time-slice.

Code Fragment 10.21 When was information about the owners of the �at at Skovvej 30

in Aalborg on January 4, 1998, recorded in the Prop Owner table?

SELECT customer_number, TT_Start, TT_Stop

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin <= DATE �1998-01-04�

AND DATE �1998-01-04� < VT_End
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Figure 10.15 A transaction time-slice as of January 18.
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Figure 10.16 A valid time-slice on January 13.

Table 10.8 The valid time-slice on January 13.

customer number TT Start TT Stop

145 1998-01-10 1998-01-15

145 1998-01-15 1998-01-28

827 1998-01-28 9999-12-31

Applying this time-slice to Table 10.7, whose time diagram appears in Figure 10.14,

results in one row,

customer number TT Start TT Stop

145 1998-01-23 1998-01-26

indicating that this information�that the property was owned by Eva on January

4�was inserted into the table on January 26 and subsequently deleted, as it was

found to be incorrect, on January 26.

The valid time-slice on January 13 is more interesting. Such a time-slice can be

visualized as the horizontal line shown in Figure 10.16. This time-slice results in

Table 10.8.

While the horizontal line in Figure 10.16 intersects two regions, three rows result

from the time-slice. This has to do with the way that the regions in the time diagram

are sliced up into rectangles, each associated with a row in the Prop Owner table.
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Figure 10.17 The underlying rectangles encoding the bitemporal regions.

Examine the rectangles in the time diagram in Figure 10.17, which indicates the

rectangle associated with each of the eight rows of Table 10.7. This �gure makes it

clear why the time-slice on January 13 returned three rows: rows 1, 2, and 8.

A bitemporal time-slice query

extracts a single point from a

time diagram, resulting in a

snapshot table.

A bitemporal time-slice takes as input two instants, a valid-time

and a transaction-time instant, and results in a snapshot state

of the information regarding the enterprise at that valid time,

as recorded in the database at that transaction time. This query,

CF-10.22, is illustrated in Figure 10.18. The result is the facts

located at the intersection of the two lines, in this case, Eva.

customer number

145

Code Fragment 10.22 Give the owner of the �at at Skovvej 30 in Aalborg on January 13

as stored in the Prop Owner table on January 18.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin <= DATE �1998-01-13�

AND DATE �1998-01-13� < VT_End

AND TT_Start <= DATE �1998-01-18�

AND DATE �1998-01-18� < TT_Stop
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Figure 10.18 A bitemporal time-slice on a valid time of January 13 and as of a
transaction time of January 18.

The current bitemporal time-slice uses �now� for both input instants.

Code Fragment 10.23 Give the owner of the �at at Skovvej 30 in Aalborg today as best

known.

SELECT customer_number

FROM Prop_Owner

WHERE property_number = 7797

AND VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < VT_End

AND TT_Stop = DATE �9999-12-31�

10.3.2 The Spectrum of Bitemporal Queries

Chapter 6 discussed the three major kinds of queries on valid-time state tables: cur-

rent (�valid now�), sequenced (�history of�), and nonsequenced (�at some time�).

Chapter 8 showed that there were three analogous kinds of queries on transaction-

time state tables: current (�as best known�), sequenced (�when was it recorded�),

and nonsequenced (e.g., �when was . . . erroneously changed�). As a bitemporal

table includes both valid-time and transaction-time support, and as these two types

of time are orthogonal, it turns out that all nine combinations are possible on such

tables.
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Figure 10.19 A sequenced insertion, performed on January 31, 1998: Peter bought
another �at on January 15.

To illustrate, we will take a nontemporal query and provide all the variations of

that query. Before doing that, we add one more row to the Prop Owner table.

Code Fragment 10.24 Peter Olsen bought another �at, at Bygaden 4 in Aalborg on

January 15, 1998; this was recorded on January 31, 1998.

INSERT INTO Prop_Owner (customer_number, property_number,

VT_Begin, VT_End, TT_Start, TT_Stop)

VALUES (827, 3621, DATE �1998-01-15�, DATE �9999-12-31�,

CURRENT_TIMESTAMP, DATE �9999-12-31�)

Overlaying this information on the time diagram, shown in Figure 10.19, we see

that for �ve days Peter owned two properties, at Bygaden and Skovvej; he sold the

Skovvej property on January 20, but retains the Bygaden property.

We start with a nontemporal query, a simple equijoin, pretending that the Prop

Owner table is a snapshot table.

Code Fragment 10.25 What properties are owned by the customer who owns property

7797?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number
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Table 10.9 The bitemporal state illustrated in Figure 10.19.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28

145 7797 1998-01-05 1998-01-12 1998-01-28 1998-01-30

827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31

827 3621 1998-01-15 9999-12-31 1998-01-31 9999-12-31

We now enumerate the nine kinds of bitemporal queries that are analogous to

this nontemporal query, applying each on the state illustrated in Figure 10.19 and

given in tabular form in Table 10.9.

Case 1 Valid-time current and transaction-time current

Code Fragment 10.26 What properties are owned by the customer who owns property

7797, as best known?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P1.VT_End

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P2.VT_End

AND P2.TT_Stop = DATE �9999-12-31�

Current in valid time is implemented by requiring that the period of validity over-

lap �now�; current in transaction time is implemented by requiring a transaction-

stop time of �until changed.� The result, a snapshot table, is in this case the empty

table because now, as best known, no one owns property 7797. (Peter owned it for

some nine days in January, but doesn't own it now.)
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Case 2 Valid-time sequenced and transaction-time current

Code Fragment 10.27 What properties are or were owned by the customer who owned

at the same time property 7797, as best known?

SELECT P2.property_number,

CASE WHEN DATE P1.VT_Begin < P2.VT_Begin

THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

CASE WHEN DATE P1.VT_End < P2.VT_End

THEN P1.VT_End ELSE P2.VT_End END AS VT_End,

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31�

Sequenced in valid time is implemented by selecting the overlap of the periods

of validity, when the underlying rows were both valid (compare with CF-6.12 on

page 152). The result, a valid-time state table, is the following:

property number VT Begin VT End

3621 1998-01-15 1998-01-20

For those �ve days in January, Peter owned both properties.

Case 3 Valid-time nonsequenced and transaction-time current

Code Fragment 10.28 What properties were owned by the customer who owned at any

time property 7797, as best known?

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31�

Nonsequenced in valid time is implemented by ignoring the valid timestamps. The

result, a snapshot table, is the following:

property number

3621
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Peter owned both properties. While in this case there was a time when Peter owned

both properties simultaneously, the query does not require that. Even if Peter had

bought the second property on a valid time of January 31, that property would still

be returned by this query.

Case 4 Valid-time current and transaction-time sequenced

Code Fragment 10.29 What properties did we think are owned by the customer who

owns property 7797?

SELECT P2.property_number,

CASE WHEN DATE P1.TT_Start < P2.TT_Start

THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P1.VT_End

AND P2.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P2.VT_End

AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

Sequenced in transaction time is implemented identically to sequenced in valid

time: by selecting the overlap of the periods of presence, when the underlying rows

were both present. As emphasized on page 260, the result of a transaction-time

sequenced query is not a transaction-time state table. While the result does indi-

cate what was recorded in the Prop Owner table, it itself was not in existence until

the query was performed. We thus use Recorded Start and Recorded Stop column

names to highlight this distinction. The result, a snapshot table with two addi-

tional timestamp columns, is the empty table because there was no time in which

we thought that Peter currently owns both properties.

Case 5 Valid-time sequenced and transaction-time sequenced

Code Fragment 10.30 When did we think that some property, at some time, was owned

by the customer who owned at the same time property 7797?

SELECT P2.property_number,

CASE WHEN DATE P1.VT_Begin < P2.VT_Begin

THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

CASE WHEN DATE P1.VT_End < P2.VT_End

THEN P1.VT_End ELSE P2.VT_End END AS VT_End,
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Figure 10.20 A query sequenced in both valid time and transaction time, computing
the intersection of two rectangles.

CASE WHEN DATE P1.TT_Start < P2.TT_Start

THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

Here we have sequenced in both valid time and transaction time. This is the most

involved of all the queries, but the parallel between valid time and transaction

time should be apparent in the above query. We must compute the overlap of

the underlying rectangles, with the result being a valid-time state table with ad-

ditional Recorded timestamp columns. Figure 10.20 shows the two rectangles that

are involved (the last row of Table 10.7 and the row inserted by CF-10.24), and the

overlap that is computed. One row results:

property number VT Begin VT End Recorded Start Recorded Stop

3621 1998-01-15 1998-01-20 1998-01-31 9999-12-31
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For those �ve days in January, Peter owned both properties. That information was

recorded on January 31 and is still thought to be true (a transaction-stop time of

�until changed�).

Case 6 Valid-time nonsequenced and transaction-time sequenced

Code Fragment 10.31 When did we think that some property, at some time, was owned

by the customer who owned at any time property 7797?

SELECT P2.property_number,

CASE WHEN DATE P1.TT_Start < P2.TT_Start

THEN P2.TT_Start ELSE P1.TT_Start END AS Recorded_Start,

CASE WHEN DATE P1.TT_Stop < P2.TT_Stop

THEN P1.TT_Stop ELSE P2.TT_Stop END AS Recorded_Stop

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.TT_Start < P2.TT_Stop AND P2.TT_Start < P1.TT_Stop

As before, nonsequenced in valid time is implemented by ignoring the valid time-

stamps. The result, a snapshot table with additional timestamp columns, is the

following:

property number Recorded Start Recorded Stop

3621 1998-01-31 9999-12-31

From January 31 on, we thought that Peter had owned those two properties,

perhaps not simultaneously.

Case 7 Valid-time current and transaction-time nonsequenced

Code Fragment 10.32 When was it recorded that a property is owned by the customer

who owns property 7797?

SELECT P2.property_number, P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P1.VT_End

AND P2.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P2.VT_End

AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop
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Nonsequenced in transaction time is implemented by not testing for full overlap

in transaction time (sequenced) and by not testing the transaction-stop time for

�until changed� (current). The result, a snapshot table, is empty because we never

thought that Peter currently owns two properties.

Case 8 Valid-time sequenced and transaction-time nonsequenced

Code Fragment 10.33 When was it recorded that a property is or was owned by the

customer who owned at the same time property 7797?

SELECT P2.property_number,

CASE WHEN DATE P1.VT_Begin < P2.VT_Begin

THEN P2.VT_Begin ELSE P1.VT_Begin END AS VT_Begin,

CASE WHEN DATE P1.VT_End < P2.VT_End

THEN P1.VT_End ELSE P2.VT_End END AS VT_End,

P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin < P2.VT_End AND P2.VT_Begin < P1.VT_End

AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop

This query is similar to valid-time sequenced/transaction-time current (CF-10.27),

with a different predicate for transaction time. The result, a valid-time state table

with an additional timestamp column, is the following:

property number VT Begin VT End Recorded Start

3621 1998-01-15 1998-01-20 1998-01-31

For those �ve days in January, Peter owned both properties; this information was

recorded on January 31.

Case 9 Valid-time nonsequenced and transaction-time nonsequenced

Code Fragment 10.34 Whenwas it recorded that a propertywas owned by the customer

who owned at some time property 7797?

SELECT P2.property_number, P2.TT_Start AS Recorded_Start

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.TT_Start <= P2.TT_Start AND P2.TT_Start < P1.TT_Stop
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Note how short the FROM list and WHERE clause are. The result, a snapshot table

with an additional timestamp column, is the following:

property number Recorded Start

3621 1998-01-31

The two main points of this exercise are that all combinations do make sense,

and all can be composed by considering valid time and transaction time separately.

� For current queries, just add a predicate to the WHERE clause restricting over-

lap with �now�; for transaction time, this is easiest done by requiring the

transaction-stop time to be �until changed.�

� For sequenced queries, the target list computes a new timestamp by taking the

overlap of the two underlying timestamps (for the temporal join considered

here); the WHERE clause must ensure that the overlap exists. Other kinds of

sequenced queries require different approaches, as discussed in Section 6.3.

� For nonsequenced queries, nothing in the WHERE clause is needed. Depending

on the query, the target list may or may not need to include one or both of the

timestamps.

All combinations of current,

sequenced, and nonsequenced

over valid time and transaction

time are possible and sensible.

Current in valid time translates in English to �at now�; sequenced translates

to �at the same time�; and nonsequenced translates to �at

any time.� Current in transaction time translates to �as best

known�; sequenced translates to �when did we think�; and non-

sequenced translates to �when was it recorded� or �when was it

corrected.�

Current/current queries are

common and can be easily

stated in SQL via currency

predicates.

Of these nine types of queries, a few are more prevalent.

The most common is the current/current queries, �now, as best

known.� These queries correspond to queries on the nontem-

poral version of the table. (The following queries also utilize

the Customer and Property tables, corresponding to the cus-

tomer and property entities of the entity-relationship diagram

in Figure 10.1; we assume that these two tables are also bitemporal.)

Code Fragment 10.35 What is the estimated value of the property at Bygaden 4?

SELECT estimated_value

FROM Property AS P

WHERE P.address = �Bygaden 4�

AND P.VT_Begin <= CURRENT_DATE AND CURRENT_DATE < P.VT_End

AND P.TT_Stop = DATE �9999-12-31�
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Minutes, Seconds, and Jif�es

We've seen (page 22) that the night was parti-

tioned into 12 hours corresponding to the 12 signs

of the zodiac, and then the day was similarly as-

cribed to 12 hours, and hence an hour was eventu-

ally de�ned as 1/24 of a day. But why are there 60

minutes in an hour and 60 seconds in a minute?

King Alfonso X (the Wise) of Castille in the

13th century gathered together Arabic, Jewish, and

Christian scholars to publish scienti�c works, in-

cluding the Alphonsine Tables, which were arguably

the most important astonomical charts of the late

Middle Ages. These tables consistently use the sex-

agesimal division, in which hours (and days, and

degrees of arcs) are divided into minutes, seconds,

and �terciae.� We can detect the etymology of

�minute� from Latin minutus, or small, and �sec-

ond� from Latin secundus. A sixtieth of a second

should then be properly called a tercia, but instead

Unix programmers have dubbed this unit a �jiffy,�

based on the fact that in the United States and

Canada, computer clocks in the 1970s were incre-

mented by 60-cycle power; in most other countries

there are 50 jif�es to a second, due to their 50-cycle

power.

Current/current queries return a snapshot result. The last two lines of the WHERE

clause select the current state in both valid time and transaction time.

Code Fragment 10.36 Who owns the property at Bygaden 4?

SELECT name

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number

AND PO.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < PO.VT_End

AND PO.TT_Stop = DATE �9999-12-31�

AND C.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < C.VT_End

AND C.TT_Stop = DATE �9999-12-31�

AND P.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P.VT_End

AND P.TT_Stop = DATE �9999-12-31�

Sequenced/current queries

allow you to probe the history as

best known.

Although this is a three-way join between bitemporal tables,

the fact that it is a current/current query means that only the

WHERE clause is affected.

Perhaps the next most common kind of query is a sequenced/

current query, �history, as best known.� These queries ignore

transaction time and return a valid-time state table. Sequenced/current queries over

one table are simple to specify.
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Code Fragment 10.37 How has the estimated value of the property at Bygaden 4 varied

over time?

SELECT estimated_value, VT_Begin, VT_End

FROM Property AS P

WHERE P.address = �Bygaden 4�

AND P.TT_Stop = DATE �9999-12-31�

Sequenced joins require more work.

Code Fragment 10.38 Who has owned the property at Bygaden 4?

SELECT name, GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin),

LEAST(PO.VT_End, C.VT_End, P.VT_End)

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number

AND GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) <

LEAST(PO.VT_End, C.VT_End, P.VT_End)

AND PO.TT_Stop = DATE �9999-12-31�

AND C.TT_Stop = DATE �9999-12-31�

AND P.TT_Stop = DATE �9999-12-31�

Current/nonsequenced queries

concern incorrectly stored

information about now.

Here we use Oracle's GREATEST and LEAST functions to com-

pute the intersection of the periods of validity of the three un-

derlying rows. A (somewhat complex) CASE expression could be

substituted for each.

Transaction time is supported in the Prop Owner table to track

the changes and to correct errors. A common query searches for the transaction

that stored the current information in valid time. This is a current/nonsequenced

query.

Code Fragment 10.39 When was the estimated value for the property at Bygaden 4

stored?

SELECT estimated_value, TT_Start AS Recorded_Start

FROM Property

WHERE address = �Bygaden 4�

AND VT_Begin <= CURRENT_DATE AND CURRENT_DATE < VT_End

This query will return a snapshot table giving one or more estimated values, along

with the date of the transaction recording that value.

Sequenced/nonsequenced queries allow you to determine when invalid informa-

tion about the history was recorded.
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Code Fragment 10.40 Who has owned the property at Bygaden 4, and when was this

information recorded?

SELECT name, GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) AS VT_Begin,

LEAST(PO.VT_End, C.VT_End, P.VT_End) AS VT_End,

PO.TT_Start AS PO_Recorded, C.TT_Start AS C_Recorded,

P.TT_Start AS P_Recorded_Start

FROM Prop_Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property_number = PO.property_number

AND C.customer_number = PO.customer_number

AND GREATEST(PO.VT_Begin, C.VT_Begin, P.VT_Begin) <

LEAST(PO.VT_End, C.VT_End, P.VT_End)

AND GREATEST(PO.TT_Start, C.TT_Start, P.TT_Start) <

LEAST(PO.TT_Stop, C.TT_Stop, P.TT_Stop)

Nonsequenced/nonsequenced

queries tease out the interaction

between valid time and

transaction time.

This returns a valid-time state table, with three additional

columns stating when that information was recorded in the un-

derlying tables. Subsequent queries could then isolate the iden-

ti�ed problem.

Finally, nonsequenced/nonsequenced queries can probe the

interaction between valid time and transaction time, identify-

ing, for example, retroactive changes (where the change concerned the past) and

postactive changes (where the change concerned the future).

Code Fragment 10.41 List all retroactive changesmade to the Prop Owner table.

SELECT customer_number, property_number, VT_Begin, VT_End,

TT_Start AS Recorded_Start

FROM Prop_Owner

WHERE VT_Begin < TT_Start

This returns the valid-time state table in Table 10.10, indicating that many of the

modi�cations were retroactive.

10.4 INTEGRITY CONSTRAINTS

An integrity constraint can be

implemented by �rst writing a

SELECT statement, then

embedding it in a CHECK

constraint.

There is a strong connection between queries and integrity con-

straints (here, we are considering general integrity constraints,

not just the particular ones, such as uniqueness and key con-

straints, accorded speci�c language constructs in SQL). An in-

tegrity constraint of the form �it must be the case that . . .� can

be transformed into a query of the form �select those rows such

that . . . is false�; this query can then be inserted into a check

constraint of the form CHECK NOT EXISTS.
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Implementing an integrity constraint

State the constraint as a SELECT that returns offending rows.

Create a CHECK constraint that requires that those rows not exist.

As a (nontemporal) example, consider the integrity constraint �a customer who

owns property 7797 shall own no other property.� (Admittedly, this is a rather

unusual integrity constraint, but it will be clear momentarily why we use this

particular constraint.) We �rst transform this into a query.

Code Fragment 10.42 Select those customers who own property 7797 and another

property.

SELECT P2.customer_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

We then insert this into a NOT EXISTS.

Code Fragment 10.43 Acustomerwhoowns property 7797 shall ownnoother property.

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT P2.customer_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number))

Table 10.10 All retroactive changes made to the Prop Owner table.

customer number property number VT Begin VT End Recorded Start

145 7797 1998-01-10 1998-01-15 1998-01-15

827 7797 1998-01-15 1998-01-20 1998-01-20

145 7797 1998-01-03 1998-01-10 1998-01-23

145 7797 1998-01-05 1998-01-10 1998-01-26

145 7797 1998-01-05 1998-01-12 1998-01-28

827 7797 1998-01-12 1998-01-20 1998-01-28

827 3621 1998-01-15 9999-12-31 1998-01-31
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What does this have to do with bitemporal tables? Well, just as there are many

kinds of bitemporal queries (nine, to be exact), there are many kinds of bitemporal

integrity constraints. We give three to illustrate the correspondence. The �rst is a

current/current constraint.

Code Fragment 10.44 A customerwho owns property 7797 shall own no other property.

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P1.VT_End

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.VT_Begin <= CURRENT_DATE

AND CURRENT_DATE < P2.VT_End

AND P2.TT_Stop = DATE �9999-12-31� ))

You may have noticed that all but the �rst and last lines were copied directly from

CF-10.26.

The above constraint doesn't accommodate the past. Often we wish the con-

straint to hold over all valid time. This can be accomplished with a sequenced/

current constraint.

Code Fragment 10.45 A customer who owned property 7797 shall concurrently own no

other property.

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT *

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.VT_Begin < P2.VT_End

AND P2.VT_Begin < P1.VT_End

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31� ))

This is just CF-10.27, with the target list replaced with *, as the NOT EXISTS could

care less whether there is one column or many in the row returned by the subquery.

To check for ownership of another property, at some possibly different time, we

use a nonsequenced/current constraint.
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Code Fragment 10.46 A customer who owned property 7797 shall own no other prop-

erty, even at a different time.

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT P2.property_number

FROM Prop_Owner AS P1, Prop_Owner AS P2

WHERE P1.property_number = 7797

AND P2.property_number <> P1.property_number

AND P1.customer_number = P2.customer_number

AND P1.TT_Stop = DATE �9999-12-31�

AND P2.TT_Stop = DATE �9999-12-31�))

This is just CF-10.28, placed in a NOT EXISTS.

There are six variants

corresponding to each

nontemporal integrity

constraint.

Integrity constraints are generally applied after modi�cation statements, or at

the end of transactions containing modi�cation statements. As such, current in

transaction time, as in the above constraints, is appropriate. The

rows modi�ed by the transaction will all have a transaction-stop

time of �until changed.� There are nine variants correspond-

ing to each nontemporal integrity constraint, paralleling the sit-

uation with queries. However, transaction-time sequenced in-

tegrity constraints should be speci�ed as current in transaction

time, reducing the number of usable bitemporal integrity con-

straints to six: current/current, sequenced/current, nonsequenced/current, current/

nonsequenced, sequenced/nonsequenced, and nonsequenced/nonsequenced.

We now turn to a particularly important constraint, that of referential integrity,

and focus on Prop Owner.customer number as a sequenced/current foreign key to

the Customer table. The brute-force approach, which always works, is to use the

approach above to get a nontemporal constraint, then use the process discussed in

Section 10.3.2 to obtain the appropriate bitemporal constraint.

For referential integrity, we �rst construct the following (nontemporal) con-

straint:

Code Fragment 10.47 The customer number in Prop Owner is a foreign key referencing

the Customer table (nontemporal version).

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT *

FROM Prop_Owner

WHERE customer_number NOT IN (SELECT customer_number

FROM Customer))

)

We now need to map this into a sequenced/current constraint, which is done by

mapping the SELECT into a sequenced/current query. As noted on page 155, the

NOT IN is actually relational difference and can be expressed using that construct.
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Code Fragment 10.48 The customer number in Prop Owner is a foreign key referencing

the Customer table, using EXCEPT (nontemporal version).

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT customer_number

FROM Prop_Owner

EXCEPT

SELECT customer_number

FROM Customer)

)

A sequenced/current foreign key

constraint can be expressed as

an embedded sequenced/

current query.

We can then map this into a sequenced/current query using the

approach illustrated in CF-6.18 on page 155. To do so, we made

the following changes to that code fragment:

� Replaced INCUMBENTS with Prop Owner for I1 and with Customer

for the other correlation names, I2, I3, and I4.

� Removed the mentions of speci�c PCNs.

� Replaced SSN with customer number.

� Replaced each of the target lists with *.

� Added the transaction currency check to the WHERE clauses for all correlation

names.

Code Fragment 10.49 The customer number in Prop Owner is a foreign key referenc-

ing the Customer table (valid-time sequenced/transaction-time

current version).

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT I1.customer_number

FROM Prop_Owner AS I1, Customer AS I3

WHERE I1.customer_number = I3.customer_number

AND I1.TT_Stop = DATE �9999-12-31�

AND I3.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (SELECT *

FROM Customer AS I4

WHERE I4.customer_number = I1.customer_number

AND I4.TT_Stop = DATE �9999-12-31�

AND I1.VT_Begin < I4.VT_End

AND I4.VT_Begin < I3.VT_Begin)

UNION

SELECT I1.customer_number

FROM Prop_Owner AS I1, Customer AS I2

WHERE I1.customer_number = I2.customer_number

continued on page 328
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continued from page 327

AND I1.TT_Stop = DATE �9999-12-31�

AND I2.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (SELECT *

FROM Customer AS I4

WHERE I4.customer_number = I1.customer_number

AND I4.TT_Stop = DATE �9999-12-31�

AND I2.VT_End < I4.VT_End

AND I4.VT_Begin < I1.VT_End)

UNION

SELECT I1.customer_number

FROM Prop_Owner AS I1, Customer AS I2, Customer AS I3

WHERE I1.customer_number = I2.customer_number

AND I1.customer_number = I3.customer_number

AND I1.TT_Stop = DATE �9999-12-31�

AND I2.TT_Stop = DATE �9999-12-31�

AND I3.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (SELECT *

FROM Customer AS I4

WHERE I4.customer_number = I1.customer_number

AND I4.TT_Stop = DATE �9999-12-31�

AND I2.VT_End < I4.VT_End

AND I4.VT_Begin < I3.VT_Begin)

UNION

SELECT I1.customer_number

FROM Prop_Owner AS I1

WHERE I1.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (SELECT *

FROM Prop_Owner AS I4

WHERE I4.customer_number = I1.customer_number

AND I4.TT_Stop = DATE �9999-12-31�

AND I1.VT_Begin < I4.VT_End

AND I4.VT_Begin < I1.VT_End))

)

By studying the particulars of

the desired temporal integrity

constraint, often a much simpler

expression is possible.

Another way to proceed is to look more closely at what the se-

quenced/current referential integrity is doing and to attempt to

come up with a more streamlined version. We already did that

analysis for valid-time state tables, developing CF-5.23. This can

be generalized to a sequenced/current constraint on bitempo-

ral tables by simply adding a transaction currency predicate for

each correlation name.
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Code Fragment 10.50 The customer number in Prop Owner is a foreign key referenc-

ing the Customer table (valid-time sequenced/transaction-time

current, version 2).

CREATE ASSERTION CHECK (NOT EXISTS (

SELECT *

FROM Prop_Owner AS P

WHERE P.TT_Stop = DATE �9999-12-31�

AND NOT EXISTS (

SELECT *

FROM Customer AS C

WHERE P.PCN = C.PCN

AND C.TT_Stop = DATE �9999-12-31�

AND C.VT_Begin <= P.VT_Begin

AND P.VT_Begin < C.VT_End)

OR NOT EXISTS (

SELECT *

FROM Customer AS C

WHERE P.PCN = C.PCN

AND C.TT_Stop = DATE �9999-12-31�

AND C.VT_Begin < P.VT_End

AND P.VT_End <= C.VT_End)))

This approach yields a much shorter assertion, but requires more analysis; the �rst

approach is largely mechanical.

For referential integrity

constraints between tables

supporting differing aspects of

time, use a current constraint if

the time support is missing.

While the temporal analog of a nontemporal foreign key

integrity constraint is normally a sequenced/sequenced con-

straint, there are exceptions. First, as already noted, transaction-

time sequenced can be replaced with transaction-time current.

Second, for valid time, if the referencing table does not sup-

port valid time, then we should only use the current state of

the referenced table, a valid-time current constraint.

10.5 TEMPORAL PARTITIONING*

While a bitemporal table with valid and transaction period timestamps is conve-

nient for many types of queries, as illustrated in Section 10.3, keeping both the

valid-time history and the history of the changes in a single table often greatly

decreases query performance. To perform a current/current query (�at now as best

known�) may require scanning the entire bitemporal table, rejecting the records re-

lating to prior dates in valid time and the erroneous records that were subsequently

corrected.
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Table 10.11 The bitemporal table corresponding to the time diagram of
Figure 10.19.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28

145 7797 1998-01-05 1998-01-12 1998-01-28 1998-01-30

827 7797 1998-01-12 1998-01-20 1998-01-28 9999-12-31

827 3621 1998-01-15 9999-12-31 1998-01-31 9999-12-31

Temporal partitioning was previously considered in the context of valid time in

Section 7.5 and in the context of transaction time in Section 9.4. The alternatives,

and their potential impact on performance, are even greater for bitemporal tables.

We will brie�y examine a collection of temporal partitioning schemes for bitempo-

ral tables here, continuing with the Prop Owner table. This table will be represented

by two or more tables, each holding a subset of the bitemporal regions. While the

general approach is termed �temporal partitioning,� often the constituent tables

do not actually partition the data; information may be replicated in multiple ta-

bles, with the application held responsible for ensuring that the information is

consistent.

We illustrate the partitioning on the state of the Prop Owner table (Table 10.11)

corresponding to the time diagram of Figure 10.19 on page 313.

10.5.1 VT Current/TT Current + Bitemporal State

If current/current queries are prevalent, it is advantageous to materialize the

current/current state (valid time = transaction time = �now�), in addition to the

bitemporal state, resulting in two tables: the current store (PO Current) and the

bitemporal store (PO Bitemp). The current store in the example will contain but a

single row, indicating that Peter owns the �at at Bygaden 4, as best known:

customer number property number

827 3621
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As an aside, this arrangement is not a strict partitioning, as the rows in the current

store are also in the bitemporal state table. The other variants discussed below are

true partitions.

Current/current queries are easy: just apply them to the current store; no ad-

ditional predicates are required. Of course, all the other kinds of queries can be

applied to the bitemporal state table, which is still available.

A current partition has the

advantage that a valid-end time

of �forever� need not be stored;

the valid-end timestamp is

implicit in the current store.

The current store must be changed as a side effect of modi-

�cations applied to the bitemporal store. Current modi�cations

are simple: transform the modi�cation as discussed in Section

10.2.1 tomodify the bitemporal store, and also apply themodi�-

cation as is to the current store. Sequenced modi�cations would

be also applied to the current store if the period of applica-

bility overlapped �now.� Nonsequenced modi�cations must be

handled on a case-by-case basis.

The current store has the

disadvantage that the passage

of time alone can cause rows to

enter and exit this store;

managing this movement is

awkward.

Interestingly, the current store can change just with the pas-

sage of time. Consider the modi�cation that inserts Peter buying

the Bygaden �at on January 15, illustrated in Figure 10.19 on

page 313. Say that this was instead a postactive modi�cation�

that it was performed on January 5. This row was not present in

the current store on that date. Indeed, it remains absent until

January 15 rolls around, at which point it must be inserted into

the current store.

One way to handle these future events is to execute the following action to

reestablish consistency once a day, say, in the early morning:

Code Fragment 10.51 Bring the PO Current table up-to-date.

INSERT INTO PO_Current

SELECT customer_number, property_number

FROM PO_Bitemp

WHERE TT_Stop = DATE �9999-12-31�

AND VT_Begin = CURRENT_DATE

DELETE FROM PO_Current

WHERE EXISTS ( SELECT *

FROM PO_Bitemp AS B

WHERE PO_Current.customer_number = B.customer_number

AND PO_Current.property_number = B.property_number

AND TT_Stop = DATE �9999-12-31�

AND VT_End = CURRENT_DATE)

In the deletion, we need to delete those rows of the current store associated with

rows in the bitemporal store with the same primary key.
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If the granularity of valid time was smaller, say, a minute, then it might make

sense to record the valid begin and end times in a separate table, PO Future, with a

single column, When. Each modi�cation to the bitemporal store would insert times

into PO Future and would also set some variable indicating when the action should

be evaluated. This action would remove the earliest time from the table and would

reschedule itself for the next begin or end date. Alternatively, the above action

could be run whenever a query was applied to the current store, to ensure that this

state was up-to-date.

Current/current queries are particularly easy and ef�cient: simply query the cur-

rent store. Other queries can be applied to the bitemporal state table, which has all

the information it did before.

10.5.2 VT State/TT Current + State/State Archive

To avoid the complexity of having to modify the current store as a side effect of

the passage of time, we can put the entire valid-time history, as best known, in

what is termed a history store (PO History), with the corrected rows�those with a

transaction-stop time other than �until changed��residing in an archival store (PO

Archive). The history store now has more information than the current store of the

previous section. Note that the history store here has three timestamp columns:

the delimiting times of the valid-time period, and the transaction-start time. The

transaction-stop time is implicit; it is �until changed.� Making this implicit means

that we don't have to come up with an encoding of �until changed� (that value

was encoded as �forever� in the bitemporal state table). The history store contains

all the rectangles with right pointers in Figure 10.19:

customer number property number VT Begin VT End TT Start

827 7797 1998-01-12 1998-01-20 1998-01-28

827 3621 1998-01-15 9999-12-31 1998-01-31

Correspondingly, the archival store (Table 10.12) has fewer rows than the original

bitemporal state table, as the current history is stored elsewhere.

A history store is much easier to

maintain than a current store

and retains many of its

advantages. The archival store

can be maintained

automatically through triggers

de�ned on the history store.

While not illustrated here, it is possible for future valid times

to also be present in the history store, and in the archival store

as well. We don't have to be concerned with moving such rows

in or moving rows that terminate in the future out, as we did

with the current store.

Modi�cations�whether current, sequenced, or nonse-

quenced in valid time (recall that all modi�cations are current

in transaction time)�are applied directly to the history store.

The archival store can be maintained entirely with triggers,
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Table 10.12 Archival store.

customer property

number number VT Begin VT End TT Start TT Stop

145 7797 1998-01-10 9999-12-31 1998-01-10 1998-01-15

145 7797 1998-01-10 1998-01-15 1998-01-15 1998-01-28

827 7797 1998-01-15 9999-12-31 1998-01-15 1998-01-20

827 7797 1998-01-15 1998-01-20 1998-01-20 1998-01-28

145 7797 1998-01-03 1998-01-10 1998-01-23 1998-01-26

145 7797 1998-01-05 1998-01-10 1998-01-26 1998-01-28

145 7797 1998-01-05 1998-01-12 1998-01-28 1998-01-30

generalizing the approach used in Chapter 8 for maintaining a tracking log,

speci�cally CF-8.2 on page 221. These triggers retain a before-image in the archival

store.

Code Fragment 10.52 Triggers for maintaining the PO Archive table.

CREATE TRIGGER Delete_PO

AFTER DELETE ON PO_History FOR EACH ROW

BEGIN

INSERT INTO PO_Archive VALUES (OLD.customer_number,

OLD.property_number, OLD.VT_Begin, OLD.VT_End,

OLD.TT_Start, CURRENT_DATE)

END

CREATE TRIGGER Update_PO

AFTER UPDATE ON PO_History FOR EACH ROW

BEGIN

INSERT INTO PO_Archive VALUES (OLD.customer_number,

OLD.property_number, OLD.VT_Begin, OLD.VT_End,

OLD.TT_Start, CURRENT_DATE)

END

The full bitemporal table can be

expressed as a view.

In Section 10.2, we outlined a two-stage approach to implement modi�cations

on a bitemporal table: �rst deal with valid time, then further transform the se-

quence of SQL statements to deal with transaction time. Under the history/archival

store scheme, only the �rst stage is required; the triggers effect

the second stage, thus greatly simplifying the application code.

(There is one remnant of the second stage: the transaction-start

time must be set/updated to �now� in the application code, in

modi�cations applied to the history store.)
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Table 10.13 Another version of the archival store.

customer number property number VT Begin VT End TT Start

145 7797 1998-01-10 9999-12-31 1998-01-10

145 7797 1998-01-10 1998-01-15 1998-01-15

827 7797 1998-01-15 9999-12-31 1998-01-15

827 7797 1998-01-15 1998-01-20 1998-01-20

145 7797 1998-01-03 1998-01-10 1998-01-23

145 7797 1998-01-05 1998-01-10 1998-01-26

145 7797 1998-01-05 1998-01-12 1998-01-28

Transaction-time current queries are applied to the history store. Transaction-

time sequenced and nonsequenced queries should be applied to the following view:

Code Fragment 10.53 Reinstate the bitemporal state table as a view.

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

VT_End, TT_Start, TT_Stop) AS

(SELECT customer_number, property_number, VT_Begin,

VT_End, TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT *

FROM PO_Archive)

10.5.3 VT State/TT Current + State/Event Archive

This organization differs from that of the previous section in that we use instant

timestamping for transaction time, with the accompanying space savings. (In fact,

this is the scheme that Nykredit utilizes for its property ownership table. The cus-

tomer and property entities are maintained in transaction-time tables, each tem-

porally partitioned into a current store, with the transaction-start timestamp�the

transaction-stop time is implicitly �until changed��and an archival store, instant-

stamped also with the transaction-start date.) Here the history and archival schemes

are identical. The stores themselves will have the same number of rows as the

scheme of the previous section; in fact, the history store is identical in the two

schemes. The archival store (Table 10.13) omits the transaction-stop time.

The reason that the transaction-stop time is not needed is that it can be found in

another row, as the transaction-start time. The transaction-stop time of the �rst row

is found in the second row: January 15. This is because the (sequenced/sequenced)

primary key, customer number and property number, match, and because the valid

times overlap, implying that the second row invalidated the valid-time period of

the �rst row. Following owner 145 (Eva), the period of validity of the �fth row does
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not overlap that of the second row, so it can be viewed as additional information.

However, both the second row and the �fth row are invalidated by the sixth row.

Finally, the fourth row invalidates, and provides the transaction-stop time for, the

third row.

As an aside, the ZPOS COMPENSATION HISTORY table of Chapter 5 includes a

CHRONOLOGY KEY column, serving as a transaction timestamp, along with HIS-

TORY START DATE and HISTORY END DATE columns, indicating when the informa-

tion in the record applied (the period of validity). This table can also be consid-

ered to be a state/event bitemporal table, supporting both valid time (with period

timestamping) and transaction time (with instant timestamping).

The archival store can once again be maintained via triggers de�ned on the

history store. This ensures that the transaction-time semantics is maintained.

As before, to evaluate transaction sequenced or nonsequenced queries, we need

to constitute the bitemporal state table, which is rather more involved than before.

Code Fragment 10.54 Reconstitute the bitemporal state table as a view.

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

VT_End, TT_Start, TT_Stop) AS

(SELECT customer_number, property_number, VT_Begin,

VT_End, TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT P1.customer_number, P1.property_number, P1.VT_Begin, P1.VT_End,

P1.TT_Start, P2.TT_Start

FROM PO_Archive AS P1, PO_Archive AS P2

WHERE P1.customer_number = P2.customer_number

AND P1.property_number = P2.property_number

AND P1.TT_Start < P2.TT_Start

AND NOT EXISTS (SELECT *

FROM PO_Archive AS P3

WHERE P1.customer_number = P3.customer_number

AND P1.property_number = P3.property_number

AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_History AS PH

WHERE PA.customer_number = PH.customer_number

AND PA.property_number = PH.property_number

AND PA.TT_Start < PH.TT_Start

continued on page 336
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continued from page 335

AND NOT EXISTS (SELECT *

FROM PO_Archive AS P3

WHERE PA.customer_number = P3.customer_number

AND PA.property_number = P3.property_number

AND PA.TT_Start < P3.TT_Start)

)

The archival store can be

narrowed by storing only one

transaction timestamp:

transaction start. The drawback

is a more complex view

reconstituting the bitemporal

state table.

For those rows that were invalidated, we need to locate the

row that invalidated it (from either the PO History or the PO

Archive table) to locate the transaction-stop time. Those that

haven't been invalidated (i.e., those in the current store) have a

transaction-stop time of �now.�

There is one complication with the structure. If the entire

history of an owner-property pair can be deleted�say, with a

valid-time sequenced deletion with a period of applicability of

all of time�there is no place to store the transaction time of

that deletion. If this is indeed possible, it is best to create a PO

Deleted table, with columns owner number, property number, and TT Deleted. The

view de�nition would then require another case.

Code Fragment 10.55 Reinstate the bitemporal state table as a view, when history

deletions are allowed.

CREATE VIEW Prop_Owner (customer_number, property_number, VT_Begin,

VT_End, TT_Start, TT_Stop) AS

SELECT customer_number, property_number, VT_Begin, VT_End,

TT_Start, CURRENT_DATE

FROM PO_History

UNION

SELECT P1.customer_number, P1.property_number, P1.VT_Begin, P1.VT_End,

P1.TT_Start, P2.TT_Start

FROM PO_Archive AS P1, PO_Archive AS P2

WHERE P1.customer_number = P2.customer_number

AND P1.property_number = P2.property_number

AND P1.TT_Start < P2.TT_Start

AND NOT EXISTS (SELECT *

FROM PO_Archive AS P3

WHERE P1.customer_number = P3.customer_number

AND P1.property_number = P3.property_number

AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

AND NOT EXISTS (SELECT *

FROM PO_Deleted AS P3

WHERE P1.customer_number = P3.customer_number
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AND P1.property_number = P3.property_number

AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_History AS PH

WHERE PA.customer_number = PH.customer_number

AND PA.property_number = PH.property_number

AND PA.TT_Start < PH.TT_Start

AND NOT EXISTS (SELECT *

FROM PO_Archive AS P3

WHERE PA.customer_number = P3.customer_number

AND PA.property_number = P3.property_number

AND PA.TT_Start < P3.TT_Start)

AND NOT EXISTS (SELECT *

FROM PO_Deleted AS P3

WHERE P1.customer_number = P3.customer_number

AND P1.property_number = P3.property_number

AND P3.TT_Start BETWEEN P1.TT_Start AND P2.TT_Start)

UNION

SELECT PA.customer_number, PA.property_number, PA.VT_Begin, PA.VT_End,

PA.TT_Start, PH.TT_Start

FROM PO_Archive AS PA, PO_Deleted AS PD

WHERE PA.customer_number = PD.customer_number

AND PA.property_number = PD.property_number

AND NOT EXISTS (SELECT *

FROM PO_Archive AS P3

WHERE PA.customer_number = P3.customer_number

AND PA.property_number = P3.property_number

AND P3.TT_Start BETWEEN PA.TT_Start AND PD.TT_Start)

The additional NOT EXISTS in the second and third cases are required if an owner-

property pair's history is removed, then later inserted back.

10.6 VACUUMING*

Vacuuming was �rst introduced in Chapter 9, in the context of transaction-time

state tables. Bitemporal tables present an even greater opportunity, and need, for

vacuuming. Recording the history of the enterprise can result in many rows; also

retaining the change history of the table can dramatically increase the size of the

table.

The relative sizes of the components of a bitemporal table can be surprising.

In our example, Table 10.9, corresponding to the time diagram in Figure 10.19,
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captures three relationships, two involving Peter and one involving Eva. The cur-

rent/current state (�now as best known�) comprises just one row, the last one. The

current transaction-time state (�history as best known�) comprises two rows, the

last plus the next-to-last, both corresponding to Peter. The noncurrent transaction-

time states, those with a transaction-stop time other than �forever,� comprise the

other seven rows; these are usually placed in an archival store. This is in accord with

our intuition: the current/current state should be the smallest; the transaction-time

current should be larger, as it contains the current/current state; and the archival

store should be the largest.

However, often these relative sizes are not found in actual applications. In par-

ticular, it is often the case that the archival store is not large at all. The rows in the

archival store originate from two separate processes. The �rst is when a row is in-

serted with an unknown valid-time end time; in such cases we simply use �forever.�

Later, the end time becomes known and is stored in the bitemporal table, with the

previous row moved to the archival store. Two of the rows of Table 10.9, the �rst

and third rows, thus came into being.

The second situation is when erroneous data was discovered and corrected; the

data in error is retained in the archival store. This was the source of �ve of the rows

in the example table.

Often the history store is the

largest component of a

bitemporal state table, implying

that vacuuming the archival

store may not be effective in

substantially reducing the size of

such a table.

The �rst source of archival rows is not invoked when the pe-

riod of validity is known a priori. Insurance policies, car loans,

and �xed-term appointments are examples in which archival

rows need not be generated. And the second source of archival

rows is thankfully not that common; a good percentage of data

is in fact correct and will not later be changed. (Alternatively,

the data may be incorrect, but we may never discover that.) For

these reasons, in many applications the current transaction state

(�history as best known�) dominates the bitemporal table, with

the archival store being a fraction of the rows.

We can apply all of the techniques discussed in Section 9.5 to the archival por-

tion of a bitemporal state table. Because valid time is present in such tables, it can

be used to further re�ne the vacuuming.

Code Fragment 10.56 Temporally vacuum old unused entities from the archival store

for which no recent history exists.

DELETE FROM Prop_Owner

WHERE (CURRENT_DATE - TT_Stop DAY) > INTERVAL �731� DAY

AND NOT EXISTS (SELECT *

FROM Prop_Owner AS R

WHERE TT_Stop = DATE �9999-12-31�

AND (CURRENT_DATE - VT_End DAY) > INTERVAL �731� DAY

AND customer_number = C.customer_number

AND property_number = C.property_number)
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The �rst predicate identi�es archival rows that are old in transaction time (the cor-

rection was made more than two years ago); the second predicate ensures that no

recent history (less than two years) exists in valid time.

10.7 IMPLEMENTATION CONSIDERATIONS

The CD-ROM contains all the code fragments in this chapter in Oracle8 Server,

which run without change after transforming assertions to triggers.

10.8 SUMMARY

A bitemporal table combines both valid time and transaction time into a single

structure. It contains four timestamps, two denoting the valid-time period of va-

lidity and two denoting the transaction-time period of presence. Such a table can

also be represented by several tables, such as a current store, a history store, and an

archival store.

Primary key constraints on such tables are generally valid-time sequenced and

transaction-time current. Expressing such a constraint requires an SQL PRIMARY

KEY constraint and an assertion. Often you will also want to constrain the valid-

time history for an entity (or relationship) to not have any gaps; this requires

another assertion.

Modi�cations on bitemporal tables can be challenging. We examined several

variants, all current in transaction time: valid-time current insertions, deletions,

and updates; valid-time sequenced insertions, deletions, and updates; and valid-

time nonsequenced deletions. We saw that valid-time current modi�cations were

tedious, and valid-time sequenced modi�cations even more so. For the latter, we

advocated a two-stage conversion process: �rst deal with valid time, with each such

modi�cation resulting in a series of SQL statements, then deal with transaction

time, mapping each SQL statement into one or more statements that maintain the

transaction-time semantics. The mapping was mechanical, but resulted in a long

series of SQL statements. The worst case was that of sequenced update, in which a

nontemporal update of only a few lines expanded to some 60 lines of SQL.

We �rst considered time-slice queries, in transaction, valid, and bitemporal va-

rieties, then showed that there are nine versions of any nontemporal query. Some

of these are more useful than others, but the bene�t of a bitemporal table is that it

admits the full generality of temporal queries.

Temporal integrity constraints parallel temporal queries; in fact, any temporal

integrity constraint can be expressed as a temporal query embedded in a NOT
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EXISTS assertion. This mechanical translation allows you to map a temporal

constraint into SQL; further analysis may enable the assertion to be simpli�ed.

We examined several ways to represent a bitemporal state table via several ta-

bles, each holding a portion of the temporal extent of the table. There are two

somewhat orthogonal decisions to be made: how to divide up the time diagram

among the representational tables, and for each table, whether to use instant or

period timestamping.

Partitioning a bitemporal table renders some queries more ef�cient, at the

expense of other queries. Transaction-time sequenced and nonsequenced queries

are negatively affected; transaction-time current queries, especially the valid-time

current subset, are made faster. If the performance of current/current queries is

critical, having a separate materialized current store can be quite effective, though

this arrangement introduces dif�culties in maintaining the current store. A nice

compromise is a history/archival pair, with the former containing the transaction-

current rows and the latter containing those rows with a transaction-stop time be-

fore �now.� The history store is period-stamped in valid time and instant-stamped

in transaction time (the transaction-start time); the transaction-stop time is implicit

and is equal to �until changed.� The archival store is period-stamped in both valid

and transaction time. It is convenient to maintain the archival store via triggers

de�ned on the history store.

If space is at a premium, then it is best to use instant stamping in transaction

time in the archival store, at a cost in query time for noncurrent transaction queries.

The archival store component of bitemporal tables can be vacuumed; having

valid time around allows more speci�c vacuuming speci�cations.

10.9 READINGS

The bitemporal time diagram was introduced by Christian S. Jensen and the author

[53]. A variation of this diagram was independently explored by James Clifford and

Tomás Isakowitz [24]; the diagram has also been extended to incorporate reference

time [23]. Heidi Gregersen and Christian S. Jensen discuss implementing integrity

constraints on tables with various kinds of temporal support [39].

Blaha and Premerlani differentiate, for portfolio databases, �the time when a

transaction occurs� (in our terminology, the valid time of the transaction), �the

time when the user records a transaction� (the transaction time of the transaction),

�the time of valuation of an asset� (the valid time of the valuation), �the time a

portfolio value is computed� (the valid time of the computed value), and �the time

interval (starting time and ending time) for computing ROI� (the valid time of the

ROI fact) [9, p. 195].
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Table 10.14 Böhlen's classes of temporal integrity constraints.

Böhlen's This book's

terminology terminology Example

nontemporal nontemporal Every employee must be assigned to at least

one project.

intrastate valid-time

sequenced

At any point in his employment an employee

must be assigned to at least one project.

interstate valid-time

nonsequenced

An employee who was assigned to the KAP92

project may not be assigned to the PMT

project.

static transaction-time

sequenced

At every database state, credit entries are

limited to $20 million.

dynamic transaction-time

nonsequenced

A project credit may not be deleted and

subsequently (i.e., at a later database state)

reasserted with an increased credit value.

transition transaction-time

nonsequenced
1

A project credit may not be increased by

updating the credit value.

intraelement valid-time

sequenced/

transaction-time

sequenced

At every database state, it must hold that, at

any point of his employment, an employee is

assigned to at least one project.

interelement valid-time

nonsequenced/

transaction-time

nonsequenced

If a project gets credits over a period of six

years, which is extended to a period of ten

years, then the number of employees

assigned to that project must be decreased

by two within one year.

1
The predicate will be of the form of meets, that is, TT Stop = TT Start.

Michael Böhlen has investigated bitemporal integrity constraints in some detail.

He developed a taxonomy of such constraints [15]. His terms can be mapped into

our terminology, as illustrated in Table 10.14 with the constraints listed in that

paper.

The theory behind oscillators is presented in a delightfully approachable manner

by James Jespersen and Jane Fitz-Randolph in their concise and highly readable

book, From Sundials to Atomic Clocks [58]. Also approachable, though at a more

advanced level, is Philip Woodward's book, My Own Right Time [104].

Gerhard Rossum's book History of the Hour: Clocks and Modern Temporal Orders

[81] is an expansive history of the mechanical clock and its impact on European

society, from the Middle Ages to the industrial revolution. The de�nition of �jiffy�

may be found in the Hacker's Dictionary [98].
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The case studies in the preceding chapters

have covered a lot of ground. The major

concepts�including valid time; transaction

time; current, sequenced, and nonsequenced

queries; integrity constraints; modi�cations;

user-de�ned time; and the expression of these

concepts in SQL-92�have been discussed in

detail.

We now reprise the initial case study�Brad

De Groot's feed yard application. We have two

aims in doing so. First, we use this case to show

howbest to design a temporal application. And

second, this case study serves to review all of

these concepts within the context of a single

application.



Temporal Database Design

T
he �rst case study we studied was that of Brad De Groot's feed yard applica-

tion, discussed informally in Chapter 2. We now return to that case study,

this time with the bene�t of a deep understanding of temporal semantics

conveyed in the intervening chapters.

Brad started his investigation into the temporal relationships between putative

risk factor exposure and subsequent health events by understanding the structure

of the data �les maintained by the feed yards as they track the movement of cattle

between pens. He carefully merged these data de�nitions into a global schema.

After months of work, Brad had constructed an entity-relationship (ER) schema

with some 40 entity types and relationships and over 150 roles. Even when printed

in a small font, this ER diagram required a large poster to see it in its entirety.

The relational schema generated from this conceptual model contains 55 tables

and about 850 columns. In sum, the schema is typical: large and complex and

somewhat overwhelming.

After Brad had �nished the schema, he read an early draft of this book and real-

ized that he had a bitemporal database on his hands. He worked with the author to

understand his application in the framework presented in this book. This analysis

pointed out semantic problems with the schema, which were solved by applying

the methodology presented here.

11.1 PROPERLY SEQUENCING THE DESIGN

The case studies appearing in the preceding chapters are inextricably entwined with

the design decisions relevant to their particular needs. Should a new application

match those needs closely, then perhaps the design decisions would be appropriate
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for that application. The purpose of the present chapter is to take a more general

view, to outline precisely when each time-related decision should be considered.

Application design and implementation consist fundamentally of making a se-

ries of decisions, each impacting subsequent trade-offs, often in subtle and unex-

pected ways. Over the past two decades, experience and research has converged

on a sequence of three basic steps: (1) conceptual design using the ER model, (2)

logical design using the relational model, and �nally (3) physical design to ensure

adequate performance.

Unfortunately, because both the ER and the relational model do not themselves

adequately support time-varying information, current practice using these mod-

els is actually counterproductive in places. Among the most egregious is temporal

partitioning, which is generally considered very early in conceptual design, when

in fact it should be one of the last considerations in physical design. Overly com-

plex ER schemas and relational schemas have resulted from considering time earlier

rather than later.

The temporal aspects of the

application should be initially

ignored when developing the

conceptual schema.

In the approach we espouse here, conceptual design initially

ignores the time-varying nature of the application. We focus

on capturing the current reality and temporarily ignore any his-

tory that may be useful to capture. This selective amnesia some-

what simpli�es what is often a highly complex task of capturing

the full semantics of the application. An added bene�t is that

existing conceptual design metholodologies apply in full.

Only after the full design is complete do we augment the ER schema with the

time-varying semantics of the application. We consider each component of the

ER schema in turn, annotating that component with its temporal semantics. Entity

types, relationship types, attributes, and keys are each individually addressed. These

annotations are expressed in prose, so that they do not clutter the ER schema.

Similarly, logical design proceeds in two stages. First, the nontemporal ER schema

is mapped to a nontemporal relational schema, a collection of tables. Here again

we ignore the temporal aspects of the application, and thus can apply existing

mapping strategies, unencumbered by considering how to capture history.

In the second stage of logical design, each of the annotations is applied to the

logical schema, modifying the tables or integrity constraints to accommodate that

temporal aspect. We proceed in a disciplined fashion, dealing with each annotation

in turn.

In the following, we start with a nontemporal ER schema and proceed to a fully

elaborated SQL schema, taking into account the time-varying nature of the appli-

cation. This serves as yet another �ight through the core temporal concepts, and

also serves to emphasize the utility of thinking of time-varying data in these terms.



11 . 2 CONCEPTUAL DES IGN 345

11.2 CONCEPTUAL DESIGN

Contrary to current practice, all temporal aspects should be ignored during most

of conceptual design. An ER schema should be constructed that has no temporal

features. All design considerations should be visited at this time, including keys,

integrity constraints, composite attributes, multivalued attributes, relationship

participation (one-to-one, one-to-many, many-to-many, optional, or mandatory),

weak and strong entity types, subclasses, superclasses, categories, specialization,

generalization, and attribute inheritance.

Once a carefully worked-out ER schema has been constructed, only then should

the temporal aspects be considered.

11.2.1 Nontemporal ER Schema

Figure 11.1 shows a fairly small portion (about a sixth) of the initial ER schema

for Brad's application, in the traditional notation of rectangles for entities and dia-

monds for relationships. Note that in describing this diagram, we use present tense,

as time is not yet involved. Entity and relationship type names are in all caps, at-

tribute names are capitalized, and individual entities (such as a particular lot) and

individual relationships are not capitalized.

Strong Entity Types

There are two (strong) entity types present: FEEDYARD and APPLICATION. Brad has

data from �ve feed yards.

Weak Entity Types

There are four weak entity types, indicated by a double rectangle; a double diamond

indicates the identifying relationship type, which relates a strong entity type to the

weak entity type. By necessity, this relationship is total, indicated with a double line.

A pen is a fenced-in plot of land that can hold cattle. It is related to the FEEDYARD

strong entity type via the IN PEN relationship type. Since the relationship is total,

every PEN entity must be in a particular FEEDYARD entity.

A lot is a speci�c group of cattle, resident in one pen or divided into multiple

pens. The analysis of treatments and putative factors is carried out on lots of cattle.

LOT is related to FEEDYARD through the IN LOT relationship type.

The feed yards use FoxPro to collect this information; FoxPro stores each table in

a dbf �le. Brad then periodically copies these �les onto a �oppy disk and loads the

information into his SQL database, running on Sybase SQLAnywhere. He terms

each such transfer and loading, which can involve coordinating the data from

multiple dbf �les, a backup, for which a BACKUP weak entity is created.
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Figure 11.1 A nontemporal entity-relationship schema.
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Entity Type Key Attributes

In the ER model, every entity must have an attribute that identi�es that entity.

Strong entity types have a key, which is underlined in the ER schema; weak en-

tity types have a partial key, which is indicated with a dotted line. The key for

FEEDYARD is Feedyard ID; for APPLICATION it is A Name.

A combination of the key for the strong entity type and the partial key for

the weak entity type identi�es each weak entity. Hence, a particular (Feedyard ID,

Pen ID) pair will identify an individual pen.

Attributes

A few other attributes are included. You might ask, Why does the LOT entity type

have both Lot ID and Lot ID Num attributes? It turns out that the former is a char-

acter string used by the feed yard; the latter is an assigned integer and is designated

the partial key.

The most interesting attributes in this context are the user-de�ned time attri-

butes: Proj Closeout in LOT (the projected date that the lot will leave the feed yard),

and Year Month and Date Processed in BACKUP, indicating when the backup was

processed, and which month the data was associated with. These attributes are in-

dependent of the other attributes and of the relationships that the entity type par-

ticipates in. In particular, they do not indicate the valid-time or transaction-time

extent of the entities or relationships. Rather, they approximate when the backup

was taken and when it was processed. Data within the backup is used to calculate a

more precise valid time (to the granularity of day). Because of various consistency

checking and cleansing activities, the actual transaction time may be different than

the Date Processed.

LOT.Valid is a Boolean attribute indicating whether the information in the entity

has passed various validation tests.

Note that we do not include timestamp attributes. Those attributes will be added

when we map to the relational model (that is, to tables).

Relationship Types

There are �ve relationship types, in addition to the identifying relationship types

discussed earlier. LOCATION identi�es the pen(s) each lot is in. Cattle in a lot can

reside in multiple pens, and a pen can hold cattle from multiple lots (thereby com-

plicating the analysis of disease propagation). DESCRIBES relates lots to backups.

A dbf �le contains one or more lots. MASS TRTMNT is the administration of some

drug regime to the cattle of a lot resident in one or more pens. This is a ternary rela-

tionship type, as we associate each individual relationship with the backup during

which it was loaded.

The MOVE relationship type is complex: it is quintary, capturing the movement

of a (perhaps partial) lot of cattle from one pen (in the �from� role) to another pen
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(in the �to� role). This movement was loaded during a backup, from a particular

dbf �le.

Several of the relationship types have associated attributes. Both the MOVE

and LOCATION relationship types include a Hd Cnt attribute; the MASS TRTMNT

relationship type includes Avg Wgt and Trtmnt Code attributes.

Participation Constraints

Participation constraints must be speci�ed for each entity type participating in a re-

lationship type. Each constraint is denoted in the ER schema with a pair of integers,

denoting the minimum and maximum participation.

The minimum participation constraint (the �rst component of the pair) differ-

entiates optional from mandatory participation. A minimum participation of 0 is

termed optional; a minimum participation greater than zero is termed total, or

mandatory. All but the LOCATION relationship type are total; a particular pen may

be empty.

The maximum participation constraint (the second component of the pair) iden-

ti�es the relationship as one-to-one, one-to-many, or many-to-many. For example,

the DESCRIBES LOT relationship is many-to-one. A backup describes many lots,

but a lot is described by one backup.

In a nontemporal ER schema, these constraints are considered to hold at any

point in time. When the schema is later interpreted to be a temporal ER schema,

the constraints will then be considered as sequenced, holding at each isolated point

in time.

In the feed yard schema, IN PEN, IS DESCRIBED BY, CREATES, DESCRIBES PEN,

and DESCRIBES LOT are all one-to-many relationship types. Each location relation-

ship denotes cattle from one lot residing in one or more pens. Each move relation-

ship denotes the movement of cattle from one lot from one pen to another pen, as

recorded by one dbf �le and one backup. Each mass trtmnt relationship captures a

treatment being applied to one lot in one pen, as recorded by one backup.

11.2.2 Adding Temporal Annotations

Once the nontemporal conceptual schema is complete, it is annotated with the

time-varying semantics of each component. You can either indicate such semantics

in the ER schema with icons, or you can list the annotations separately, in prose, as

we do here.

Entity Lifespans

Entities have a lifespan denoting when they existed. Entities are instantaneous (with

an extremely short lifespan) or have a lifespan with a duration. The lifespan of an

entity can be an instant, a single period, or a set of periods. An application may
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Puncta and Ostenta

One 10th-century table divided the day into hours

(horae), which were further divided into points

(puncta, �ve points to the hour) and ostenta (12

osts to the punct); each ost is equivalent to our

minute. Other divisions, which could not have

been measurable, included the 12th-century divi-

sion of an hour into 4 points, 10 minutes, 15 parts,

40 movements, 60 marks, and 22,500 atoms (a

second is exactly 61=4 atoms).

choose to model the lifespan of a person

entity as starting at birth and terminat-

ing at death, while the lifespan of an em-

ployee entity may include several non-

contiguous periods if she resigned and

was later rehired.

The designer may choose whether to

record the lifespan. If the entities of an

entity type exist for all of (modeled)

time, there may be no need to record the

lifespan explicitly. Entity types with an

implied lifespan are termed nontemporal.

If the lifespan of entities is a subset of the

modeled time, then the designer must decide whether it is relevant to the applica-

tion to record the lifespan explicitly. If so, the designer should also specify the

granularity of the lifespan.

Interestingly, only one entity type, LOT, has a lifespan that we wish to record

in the database; that entity type has an associated granularity of DAY. The entities

of the other �ve entity types exist for all of the modeled time (though we note in

passing that two have a relevant transaction-time extent that should be stored).

Relationship Valid Time

A relationship type can either model instantaneous events, or it can model relation-

ships that have a duration. The valid time for any speci�c relationship must be a

subset of the intersection of the lifespans of the associated entities. A relationship is

always associated with the same entities, regardless of whether it has a temporal du-

ration and whether its attributes vary over time. The designer must choose whether

to record the valid time of the relationship. If the valid time of the relationship

type is recorded, the granularity should also be noted.

For each entity and relationship

type, decide whether the valid

time should be recorded, and if

so, its granularity.

Table 11.1 summarizes the valid times of the 10 relationship

types. The valid time of most relationships is not recorded; such

types are considered nontemporal relationship types. The granu-

larities of the MOVE and LOCATION lifespans are indicated as

�ner than a DAY. It turns out that several moves are possible in a

day, so the granularity is expressed as DATE along with a Move

Order; multiple moves in a day are sequenced by the Move Order value. (As noted

above, we do not include timestamp attributes in the ER schema, so the Move

Order attribute will appear explicitly only when we map to tables.)



350 CHAPTER EL EVEN : TEMPORAL DATABASE DES IGN

Table 11.1 Valid time of relationship types.

Valid-Time

Relationship Type Granularity Comments

IN PEN Nontemporal This relationship type is between two

nontemporal entity types, and is itself

nontemporal.

IS DESCRIBED BY Nontemporal

CREATES Nontemporal

CONTAINS Nontemporal This relationship type is between a

nontemporal entity type, DBF FILE, and a

time-varying entity type, LOT. The

relationship itself does not vary over valid

time.

IN LOT Nontemporal While lots have a lifespan, their entire lifespan

is spent in one feed yard.

DESCRIBES PEN Nontemporal This relationship type is between two

nontemporal entity types.

DESCRIBES LOT Nontemporal The relationship does not vary over time.

MOVE Sub-DAY This relationship type doesn't have a duration:

a move is an instantaneous event. Hence, it

should be associated with a single valid

time indicating the instant when the move

event occurred.

LOCATION Sub-DAY This is an important component, capturing

which pen(s) the lot resides in. The location

is de�nitely a time-varying relationship, so

we record the lifespan. The granularity is

the same as that of the MOVE relationship

type. In fact, each LOCATION period is

delimited by two MOVE instants.

MASS TRTMNT DAY A treatment of the cattle of a speci�ed lot in a

speci�ed pen is an instantaneous event.

Valid Time of Attributes

For each attribute, determine if

the valid time of the attribute's

value should be captured, and if

so, the associated granularity.

The value of an attribute may change over the lifespan of the associated entity or

the valid time of the associated relationship, or may not vary over time. The valid

time of an attribute's value for any speci�c entity (or relation-

ship) must be a subset of the lifespan (valid time) of that entity

(relationship).

We may want to record the valid time of the attribute. If the

value is �xed for all time, capturing the valid time is probably

not useful. Even if the attribute's value varies over time, we may

be interested just in the current value, in which case there is no

need to record the valid time. An attribute for which the valid time is not captured
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The Fourth Harrison

�H-4� is the laconic name given to perhaps the

most famous watch of all time. It was the fourth

in a series of clocks that John Harrison (1693�

1776) constructed in an effort to win the longitude

prize, $20,000 (several million dollars in today's

currency), promised by the British Parliament for a

solution to the problem of determining a ship's lon-

gitudinal position while at sea. H-4, a large pocket

watch at 13 centimeters (5 inches) in diameter

and weighing 1.5 kilograms (3 pounds), was the

�rst marine chronometer of suf�cient precision to

be used reliably for navigation. John Harrison ul-

timately collected the monetary award, though it

took over 40 years (from H-1, which he started in

1730, to 1773) for Harrison to re�ne this exquisite

manifestation of his mechanical genius. The watch

and its predecessors are on display at the National

Maritime Museum in the Old Royal Observatory at

Greenwich, naturally.

is termed nontemporal. For each such attribute, we associate but a single value with

each entity.

Table 11.2 summarizes the valid-time extent of the attributes, including some

attributes for which there wasn't room in the ER schema. The attributes not men-

tioned are nontemporal.

The Hd Cnt attributes for the MOVE and LOCATION relationship types differ in

their valid time, emphasizing the need to consider the valid time of attributes sepa-

rately from their associated entity or relationship type. An individual location rela-

tionship indicates that cattle from the speci�ed lot resided in the speci�ed pen. The

valid time of this relationship extends from the �rst day that at least one head was

moved to that pen, to the day the last head of cattle from that lot was transferred

out of the pen.

During that period, other transfers may have taken place. As long as some cattle

remained in the pen, this time-varying head count is associated with a single loca-

tion relationship. For this reason, we wish to record the valid time of the Hd Cnt

attribute, to the granularity of DAY.

A time-varying key uniquely

identi�es a particular entity at

each point in time. A

nontemporal key identi�es a

particular entity over all time.

A particular move relationship captures the transfer of cattle

from one pen to another. Recall that this models an instanta-

neous event. Hence, the head count is �xed for this particular

relationship, indicating that the attribute is itself nontemporal.

The Hd Cnt attribute of MASS TRTMNT is nontemporal for the

same reason.

Key attributes are particularly interesting. For such attributes,

we may or may not record the valid time, independently of

whether we record the lifespan of the entity type. In either case, it is important that

the entity be identi�able by its key value, and that this value be unique. Associating
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Table 11.2 Valid time of attributes.

Valid-Time

Attribute Granularity Comments

BACKUP.Quirks Nontemporal This is a comment attribute.

BACKUP.VTRC Last

Date Mod

Nontemporal This is a user-de�ned time attribute, utilized in

consistency checking. As such, it is relevant

to transaction time (when the data was

cleansed and stored in Brad's database) but

not valid time (when the data was valid in

the real world). In fact, there is no

real-world correspondent to this attribute,

and so valid time is not relevant.

BACKUP.BRDR Last

Date Mod

Nontemporal This is also used during consistency checking.

BACKUP.ARCH Last

Date Mod

Nontemporal This is a third user-de�ned time attribute, used

during consistency checking.

LOT.Gndr Code DAY See the discussion on page 14.

LOT.Proj Closeout DAY The projected closeout is a user-de�ned

attribute, indicating when the cattle are

scheduled to be moved from the feed yard

to the slaughterhouse. This scheduled date

can change, as the weight and health of

the individual animals vary.

LOT.In-Weight DAY As cattle are added to the lot, the value of this

attribute may change.

LOT.Owner DAY

LOT.Comment DAY Comments can be tied to particular periods.

LOT.Valid DAY Consistency checks are performed on the data

from the feed yard as it is moved into

Brad's database. If any of these checks fail,

the Valid attribute is set to false, until Brad

manually checks the data and corrects any

problems. The information at each day can

be independently valid or invalid.

MOVE.Hd Cnt Nontemporal For a particular MOVE relationship, this

attribute is nontemporal.

LOCATION.Hd Cnt DAY The head count for a particular location

relationship is time-varying.

MASS TRTMNT.Hd

Cnt

Nontemporal For a particular mass trtmnt relationship, this

attribute is nontemporal.
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Table 11.3 Transaction time of entity types.

Transaction-Time

Entity Type Granularity Comments

APPLICATION �

BACKUP DAY A backup is a dump of a FoxPro database �le

at a particular date. The information in that

backup is processed and inserted into the

database, at which time a BACKUP entity is

created.

DBF FILE �

FEEDYARD �

LOT DAY This is perhaps the most important entity type

in the entire schema. The lots track cattle

through the feed yard; data on lots must be

as clean as possible. For this reason, Brad

needs to record the transaction time of

changes to the LOT entity, to a granularity

of DAY (with the understanding that only a

partial picture is captured).

PEN �

a time-varying key with an entity type indicates that, while the value changes over

time, at any point in time it uniquely identi�es an entity. It turns out that for this

schema, the valid time of the keys for all six entity types is not recorded.

Transaction Time

Recall that recording transaction time retains the sequence of stored states. This

aspect is entirely orthogonal to valid time and should be considered separately for

entity types, relationship types, and individual attributes.

We �rst consider the six entity types (see Table 11.3). Unlike valid time, the

transaction time of an entity cannot be instantaneous.

The transaction-time extent may not be relevant if the application doesn't care

to track the changes of the database, or it may be explicitly stored. If the transaction

time is to be recorded, then we also indicate the granularity.

Transaction time is important in this application because the data from the

feed yards is quite dirty (the feed yards themselves are very dirty). Inconsisten-

cies abound, which must be corrected manually. By recording the transaction-time

extent, Brad is able to track when the changes were made and can thus work

backwards to �nd exactly where the erroneous data originated.

The idiosyncrasies of this application do not permit all changes to be captured.

Brad visits each feed yard about once a month and makes copies of the FoxPro �les

created by the various feed yard programs. He then brings these �les back to his
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Table 11.4 Transaction time of relationship types.

Transaction-Time

Relationship Type Granularity Comments

CREATES �

CONTAINS DAY This relationship type is between an entity

type that does not support transaction

time (DBF FILE) and an entity type that

supports transaction time (LOT).

IN LOT �

IN PEN �

IS DESCRIBED BY �

DESCRIBES PEN �

DESCRIBES LOT �

LOCATION DAY Brad wishes to track changes to this

particularly important relationship for

putative risk factor exposure.

MASS TRTMNT �

MOVE DAY This relationship directly affects the

LOCATION relationship, so changes to

MOVE are tracked as well.

For each entity and relationship

type, decide whether the

transaction-time extent should

be captured, and if so, its

granularity. For each attribute,

determine if the transaction

time should be recorded, and if

so, its granularity.

database server, where he cleans and loads the data into his data

warehouse. As such, he captures most changes to the granular-

ity of a day. However, if some data were entered into a feed yard

program, then subsequently modi�ed before Brad had a chance

to grab the �le, then the older version will be lost. Hence, the

record of the changes as re�ected in the transaction-time sup-

port is necessarily partial. One way to address this loss of in-

formation would be to modify all of the feed yard programs to

maintain transaction time with their data.

Next, we consider the relationship types (Table 11.4). If trans-

action time is recorded for none of the participating entity types,

recording the transaction time for the relationship type is generally not indicated,

but is still possible. In any case, the transaction time of a relationship must be

contained by the intersection of the transaction times of the participating entities.

Following the entity and relationship types, we draw our attention to the attri-

butes (Table 11.5); again, we omit attributes whose transaction-time extent is not

recorded. The transaction-time support of individual attributes is independent of

the associated entity or relationship type, or of other attributes of that entity or re-

lationship type. However, in any case, the transaction-time extent of an attribute's

value must be contained in the transaction time of the associated entity or

relationship.
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Table 11.5 Transaction time of attributes.

Transaction-Time

Attribute Granularity Comments

BACKUP.Year Month

DAY Multiple backups might pertain to a particular

year and month. Transaction time is

recorded to a granularity of DAY, in order

to tease apart the sequence of changes.

BACKUP.Date

Processed

DAY As noted before, because of various

consistency checking and cleansing

activities, the actual transaction time may

be different than the Date Processed.

BACKUP.Quirks DAY

BACKUP.VTRC Last

Date Mod

DAY

BACKUP.BRDR Last

Date Mod

DAY

BACKUP.ARCH Last

Date Mod

DAY

LOT.Lot ID Num DAY Changes to the attributes of this critical

relationship are tracked by recording the

transaction time.

LOT.Lot ID DAY

LOT.Gndr Code DAY

LOT.Proj Closeout DAY

LOT.In-Weight DAY

LOT.Owner DAY

LOT.Comment DAY

LOT.Valid DAY

LOT.DBF Valid DAY

LOCATION.Hd Cnt DAY This is also an important attribute to track.

MOVE.Hd Cnt DAY This attribute relates to that of the same name

in LOCATION.

CONTAINS.

DBF Update RecNo

DAY This attribute speci�es the record number

utilized in the update.

11.3 LOGICAL DESIGN

At this point, we have a nontemporal entity-relationship conceptual schema (Fig-

ure 11.1), augmented with annotations in prose that describe the time-varying as-

pects of this schema. These annotations concern the lifespan and transaction-time

aspects of entity types and the valid- and transaction-time aspects of relationship

types, attributes, and integrity constraints.
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We now map this schema into a logical data model, here, the relational model,

resulting in a collection of tables. This mapping is done in two stages. In the �rst

stage, the temporal annotations are for the most part ignored, thereby arriving at

a nontemporal logical schema. This logical schema is then modi�ed to accommo-

date the time-varying aspects, adding timestamp column(s) and decomposing some

tables into multiple constituent tables. Also during this second stage, various SQL

assertions and constraints are de�ned on the tables to capture temporal integrity

constraints.

11.3.1 Mapping to Relational Schema

In this �rst stage, the following mapping actions are performed. We are laconic

only because this process doesn't concern time, and so should be familiar to you.

Indeed, this stage can be performed automatically by CASE tools, as the steps do

not concern temporal aspects.

To keep things straight, we use a Roman font for conceptual constructs (e.g., the

LOT entity type) and a sans-serif font for logical constructs (e.g., the LOT table).

1. Create a table for each regular entity type (FEEDYARD, APPLICATION). Add

columns for each attribute. The primary key is the key of the corresponding

entity type.

2. Create a table for each weak entity type (PEN, BACKUP, LOT, DBF FILE). In-

clude the key of the strong entity type as a foreign key. The primary key is a

combination of this entity type's partial key and the key of the strong entity

type.

3. For each one-to-one relationship type, extend a table corresponding to one of

the entity types with the key of the other entity type as a foreign key. We have

no such relationship types here.

4. For each one-to-many binary relationship type, either extend a table or cre-

ate a new table for the relationship type. For the DESCRIBES PEN, DESCRIBES

LOT, and CONTAINS relationships, we extend the table on the �one� side (PEN,

LOT, and LOT, respectively) with the key of the other entity type (of BACKUP, of

BACKUP, and of DBF FILE, respectively) as a foreign key, as well as the attributes

of the relationship.

5. Create a table for each remaining relationship type (MOVE, MASS TRTMNT, LO-

CATION). Add foreign keys for all participating entity types. The primary key is

in general a subset of these foreign keys, but is usually (and in these cases) just

the combination of them.

6. Create a table for each multivalued attribute. There are no such attributes here.

The result of this �rst stage is the nontemporal database schema listed in Fig-

ure 11.2, with the primary key columns underlined. We omit some of the FDYD
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FDYD ( FDYD_ID, NAME, FDYD_SHORT_NAME, FDYD_MNGR_LNAME,...,

UNIQUE (FDYD_SHORT_NAME))

LOT (FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT,

VALID, OWNER, COMMENT, BKP_ID, A_NAME, DBF_NAME,

DBF_UPDATE_RECNO,

UNIQUE (FDYD_ID, LOT_ID_NUM, LOT_ID),

FOREIGN KEY (FDYD_ID) REFERENCES FDYD,

FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP,

FOREIGN KEY (A_NAME, DBF_NAME) REFERENCES DBF_FILE

)

PEN (FDYD_ID, PEN_ID, PEN_TYPE_CODE, BUNK_LENGTH, APRON_WIDTH,

PEN_AREA, WATER_SPACE, BKP_ID,

FOREIGN KEY (FDYD_ID) REFERENCES FDYD,

FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP

)

APPLICATION (A_NAME, A_DESCRIPTION, A_DATA_DIRECTORY)

DBF_FILE (A_NAME, DBF_NAME, DBF_DESCRIPTION, DBF_USED,

FOREIGN KEY (A_NAME) REFERENCES APPLICATION

)

BKP (FDYD_ID, BKP_ID, YEAR_MONTH, DATE_PROCESSED, QUIRKS,

VTRC_LAST_DATE_MOD, BRDR_LAST_DATE_MOD, ARCH_LAST_DATE_MOD,

FOREIGN KEY (FDYD_ID) REFERENCES FDYD

)

Figure 11.2 Initial nontemporal logical schema (continued on page 358).

columns to save space. Finally, we've changed a few table and column names to

re�ect the actual names that Brad used.

In Figure 11.3, the same (nontemporal) schema is shown using the crow's-feet

notation employed by the PowerDesigner tool that Brad used to create the schema.

The diamonds represent foreign keys, the crow's feet represent relationships that are

many participation, the small circles denote optional participation, and the small

slashes across links denote mandatory participation.

11.3.2 Applying Temporal Annotations

In this second stage, we apply the temporal annotations, elaborated in Section

11.2.2. As we are revisiting the ground traversed in previous chapters, back point-
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LOT_MOVE (FDYD_ID, LOT_ID_NUM, FROM_PEN_ID, TO_PEN_ID, HD_CNT, BKP_ID,

A_NAME, DBF_NAME,

FOREIGN KEY (FDYD_ID, FROM_PEN_ID) REFERENCES PEN(FDYD_ID, PEN_ID),

FOREIGN KEY (FDYD_ID, TO_PEN_ID) REFERENCES PEN(FDYD_ID, PEN_ID),

FOREIGN KEY (A_NAME, DBF_NAME) REFERENCES DBF_FILE,

FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT,

FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP

)

LOT_LOC (FDYD_ID, LOT_ID_NUM, PEN_ID, HD_CNT, YEAR_MONTH,

FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT,

FOREIGN KEY (FDYD_ID, PEN_ID) REFERENCES PEN

)

MASS_TRTMNT (FDYD_ID, LOT_ID_NUM, PEN_ID, M_TRTMNT_AVG_WGT,

M_TRTMNT_CODE, M_TRTMNT_HD, BKP_ID,

FOREIGN KEY (FDYD_ID, PEN_ID) REFERENCES PEN,

FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT,

FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP

)

Figure 11.2 (continued)

ers (in the form of page numbers in parentheses) are provided to the pages that

introduce these approaches via the case studies, providing elaboration and other

alternatives.

User-De�ned Time Attributes

Each attribute is mapped to a column in the associated table. Attributes that record

user-de�ned time values are differentiated by type: an instant (page 26), an interval

(page 30), or a period (page 89). All temporal values have a granularity (page 74),

though some DBMSs �x the granularity of their temporal type(s). For anchored

values (instants and periods), SQL-92 and some DBMSs allow a speci�ed time zone

to be stored (page 29). For the rest, the time zone is either implicit or �xed. �Now�

should be represented with �forever,� or a close approximation (page 120).

For each attribute that is a

user-de�ned time, choose a

granularity supported by

SQL-92.

Periods may be represented as a pair of instants (page 89),

whether the representation of each of the delimiting instants is

closed (contained in the period) or open (just outside the pe-

riod). A closed-open period representation, in which the end

timestamp speci�es the granule after the last granule of the

period, is preferable (page 91). The time zone, if any, may be

stored with the �rst instant (page 90).
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FDYD

FDYD_ID

NAME

MNGR_LNAME

 …

LOT

LOT_ID_NUM
LOT_ID
GNDR_CODE
PROJ_CLOSEOUT
IN_WEIGHT
VALID
OWNER
COMMENT

PEN

PEN_ID

PEN_TYPE_CODE

BUNK_LENGTH

APRON_WIDTH

PEN_AREA

WATER_SPACE

BKP

BKP_ID

YEAR_MONTH

DATE_PROCESSED

QUIRKS

VTRC_LAST_DATE_MOD

BRDR_LAST_DATE_MOD

ARCH_LAST_DATE_MOD

LOT_LOC

HD_CNT

LOT_MOVE

HD_CNT

MASS_TRTMNT

M_TRTMNT_AVG_WGT

M_TRTMNT_CODE

M_TRTMNT_HD

DBF_FILE

DBF_NAME

DBF_DESCRIPTION

DBF_USED

APPLICATION

A_NAME

A_DESCRIPTION

A_DATE_DIRECTORY

FROM
TO

Figure 11.3 A nontemporal crow's-feet schema.
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There are six user-de�ned time columns: LOT.PROJ CLOSEOUT, of type DATE; BKP.

YEAR MONTH, of type CHAR (since SQL-92 has no instant type of a MONTH granu-

larity); BKP.PROCESSED, of type DATE; and the last three LAST DATE MOD columns in

BKP, of type DATE.

Entity Lifespans

To each table corresponding to an entity type for which the lifespan, or valid time

of an associated attribute, is captured (page 114), there are two alternatives for time-

stamps. One possibility is a single time specifying (1) when the entity occurred, if it

is instantaneous, (2) when the entity's lifespan began, if the entity has duration, or

(3) when an attribute became valid. Another possibility is a period of validity (page

116), generally represented with two instants, start and end. If the entity's lifespan

consists of several disjoint periods, or if attributes change values over time, a single

entity will be mapped to several rows in the corresponding table.

One entity type has a recorded lifespan: LOT. Hence, we add FROM DATE and TO

DATE columns to record the individual periods of that lifespan.

Code Fragment 11.1 LOT is a valid-time state table.

ALTER TABLE LOT ADD COLUMN FROM_DATE DATE

ALTER TABLE LOT ADD COLUMN TO_DATE DATE

Relationship Valid Time

For tables corresponding to

entity and relationship types for

which valid time is to be

recorded, add either a single

instant timestamp column or a

period timestamp, represented

with two instant timestamp

columns.

To each table corresponding to a relationship type with a recorded valid-time ex-

tent or having attribute(s) whose valid time is recorded, we add

either instant or period timestamps.

As indicated in Table 11.1, the valid time of three relation-

ship types, LOCATION, MOVE, and MASS TRTMNT, is recorded.

The LOCATION relationships have a temporal duration; rela-

tionships of the other two relationship types are instantaneous.

The LOT LOC table has an interesting timestamp, consisting of

four (!) columns: FROM DATE, FROM MOVE ORDER, TO DATE, and TO

MOVE ORDER. Recall that cattle can be moved twice (or more) in a

day; the move order differentiates these moves.

Code Fragment 11.2 LOT LOC is a valid-time state table.

ALTER TABLE LOT_LOC ADD COLUMN FROM_DATE DATE

ALTER TABLE LOT_LOC ADD COLUMN FROM_MOVE_ORDER INT

ALTER TABLE LOT_LOC ADD COLUMN TO_DATE DATE

ALTER TABLE LOT_LOC ADD COLUMN TO_MOVE_ORDER INT

For instantaneous relationship types, an instant timestamp is added to the asso-

ciated table. For the LOT MOVE table, we add AT DATE and AT MOVE ORDER.



11 . 3 LOG ICAL DES IGN 361

Code Fragment 11.3 LOT MOVE is a valid-time event table.

ALTER TABLE LOT_MOVE ADD COLUMN AT_DATE DATE

ALTER TABLE LOT_MOVE ADD COLUMN AT_MOVE_ORDER INT

Code Fragment 11.4 MASS TRTMNT is a valid-time event table.

ALTER TABLE MASS_TRTMNT ADD COLUMN AT_DATE DATE

Valid Time of Attributes

All attributes have a valid time; sometimes this time is recorded. If so, it is asso-

ciated with a granularity. If the lifespan of the associated entity or the valid time

of the associated relationship is not recorded, the time-varying columns should be

placed in a separate table, along with the primary key of the original table, which

also serves as a foreign key to that table. This task is termed temporal support de-

composition. Fortunately, the only time-varying attributes listed in Table 11.2 are

those associated with the LOT and LOCATION entity types, both of which have a

recorded valid time.

Symmetrically, if this time is recorded, but the valid time of an attribute is not

recorded, it may be useful to put that column in a separate table, with a foreign key

referencing the original, time-varying table.

Decompose tables so that all

attributes of a table have an

identical temporal support and

precision.

Another rub occurs when the granularity of the attribute is

�ner than that of the entity or relationship type to which the

attribute is attached. In such situations, there are two possible

paths. Either we can change the granularity of the associated

table to that of the column (say, from YEAR to DAY), or we can

break off those columns(s) into a separate table, termed precision

decomposition. The attributes of the LOT entity type all have the same granularity

(DAY) as LOT itself; the Hd Cnt attribute of LOCATION has a granularity of DAY,

which is coarser than the granularity (Sub-DAY) of the associated relationship type.

Our analysis thus indicates that neither �avor of decomposition applies to this

schema.

Transaction Time

For each table associated with an entity or relationship type for whose transaction-

time periods are recorded, or that is associated with attribute(s) whose

transaction-time periods are recorded (page 249), there are two basic alternatives:

instant-stamped or period-stamped tables.

For an instant-stamped table, the choices are a tracking log, a restricted back-

log, or a general backlog. A tracking log is a transaction-time table that retains

the original, snapshot table (page 220). Its schema comprises the columns of the
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For tables corresponding to

entity and relationship types for

which transaction time is to be

recorded, add either two

timestamps denoting the period

of presence or a single

transaction timestamp,

optionally with an additional

operation column, if the table is

to be a backlog.

monitored table, along with a single transaction timestamp col-

umn, indicating when the transaction committed. The value of

the timestamp column can never extend past now (page 249). A

backlog is a transaction-time table with an additional column,

the operation, which may be an insertion, a deletion, or an up-

date (page 233). In some cases, a restricted backlog, with inser-

tions not recorded (page 220), is perfectly �ne; in most other

cases, it is best to go with the fully general backlog, using after-

images consistently (page 235).

The other alternative is a table with a period timestamp indi-

cating the period of presence (page 254), generally represented

with two instants, start and end, specifying the period starting

when the row was inserted or updated and ending when the

period was removed, as a side effect of a deletion or update.

For the LOT table, we use period timestamps, adding two columns of the appro-

priate granularity to the associated tables. For the LOT MOVE, LOT LOC, and BKP tables,

we use an instant timestamp, speci�cally, a backlog containing after-images.

Code Fragment 11.5 LOT, LOT MOVE, LOT LOC, and BKP are transaction-time tables.

ALTER TABLE LOT ADD COLUMN START_DATE DATE

ALTER TABLE LOT ADD COLUMN STOP_DATE DATE

ALTER TABLE LOT_MOVE ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE LOT_MOVE ADD COLUMN OPERATION CHAR(1)

ALTER TABLE LOT_LOC ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE LOT_LOC ADD COLUMN OPERATION CHAR(1)

ALTER TABLE BKP ADD COLUMN WHEN_CHANGED DATE

ALTER TABLE BKP ADD COLUMN OPERATION CHAR(1)

As the LOT, LOT MOVE, and LOT LOC tables already had valid timestamps, adding

transaction-time support renders them bitemporal (page 279).

Transaction-time support may

induce additional temporal

support decomposition.

As with valid time, we must also consider temporal support

decomposition. Basically, the tables should be decomposed un-

til the temporal support (which includes the details of whether

valid time is recorded, whether transaction time is recorded, and

the granularity of each) of all attributes is identical.

There is one place in this schema where temporal decomposition is indicated.

Most of the attributes in LOT are bitemporal, but BKP ID, A NAME, DBF NAME, and DBF

UPDATE RECNO, because they were obtained from the CONTAINS relationship type,

which records only transaction time, do not vary in valid time, and thus differ from
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the other attributes in that table in their temporal support. We move those attri-

butes to a separate table, LOT CONTAINS, include the primary key of LOT, and transfer

the foreign keys involving these attributes to LOT CONTAINS. Finally, we make LOT

CONTAINS a backlog.

Code Fragment 11.6 Move the BKP ID, A NAME, DBF NAME, and DBF UPDATE RECNO columns

into a separate backlog table.

ALTER TABLE LOT DROP COLUMN BKP_ID

ALTER TABLE LOT DROP COLUMN A_NAME

ALTER TABLE LOT DROP COLUMN DBF_NAME

ALTER TABLE LOT DROP COLUMN DBF_UPDATE_RECNO

CREATE TABLE LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,

DBF_NAME, DBF_UPDATE_RECNO,

WHEN_CHANGED DATE, OPERATION CHAR(1),

PRIMARY KEY (FDYD_ID, LOT_ID_NUM),

FOREIGN KEY (FDYD_ID, LOT_ID_NUM) REFERENCES LOT,

FOREIGN KEY (FDYD_ID, BKP_ID) REFERENCES BKP,

FOREIGN KEY (A_NAME, DBF_FILE) REFERENCES DBF_FILE

)

Primary Keys

Primary keys are handled differently for valid-time, transaction-time, and bitempo-

ral tables, which we'll consider in order.

If the entity (or relationship) type captures neither valid nor transaction time,

the primary key remains as speci�ed in the initial logical schema. This case applies

to the FDYD, PEN, APPLICATION, and DBF FILE tables in Figure 11.2 on page 357.

For entity types, we previously differentiated instantaneous entity types from

entity types that have a temporal duration. All of these aspects will come into play

when determining precisely what comprises the primary and foreign keys for the

tables, as well as what additional assertions are required to correctly re�ect the ER

schema as tables.

A valid-time sequenced primary

key may require an assertion

and an additional surrogate

identi�er column; there are

three cases.

Integrity constraints (ICs) for valid-time tables can be classi-

�ed according to whether they apply to the current state, termed

a current IC (page 123); apply to each point in time indepen-

dently, termed a sequenced IC (page 118); or apply to the table

treating the timestamp as just another column(s), termed a non-

sequenced IC (page 123).

It is easy to confound keys in the conceptual ER schema with

keys in the logical relational schema. To keep them straight, we

strictly follow the terminological convention of referring to conceptual keys with-

out the adjectives �primary� or �foreign� (e.g., the key of the LOT entity type)



364 CHAPTER EL EVEN : TEMPORAL DATABASE DES IGN

The Bulova Accutron

This watch advanced chronometry in two ways

when it was introduced in 1960: it guaranteed a

precision of at least a minute a month (2 seconds a

day), and ensured that this guarantee would hold

over the life of the watch. Previous watches, even if

they started out with high precision, gradually be-

came less accurate due to wear and the changing

viscosity of the lubrication between moving parts.

The Accutron did not use a pendulum to regulate

an uncoiling spring; rather, it used the vibrations

of an electrically driven tuning fork to advance the

hands. This fork vibrated at 360 Hz, which moved a

tiny arm back and forth, turning a miniscule ratchet

wheel with 300 microscopic teeth, each separated

from the next by a distance of 0.001 inch. Due to

the very small forces involved, there is no wear,

and since there is no oil at the tuning fork, the

watch will hold its rate far better than a lubricated

timepiece. The drawback is the dif�culty of repair;

Bulova provides microscope kits for this purpose.

and to logical keys with �primary� or �foreign� adjectives (e.g., the primary key of

the LOT table). Also, logical keys may be current, sequenced, or nonsequenced, but

conceptual keys never are.

The primary key of a table associated with an entity or relationship type captur-

ing its valid-time extent is a sequenced primary key.

We have three cases to consider:

Case 1 The entity or relationship type is instantaneous and the valid-time instant is

recorded.

A particular entity could occur at multiple points in time. A sequenced primary

key constraint is required, but is especially easy to state for instantaneous enti-

ties and relationships: the timestamp column is added to the primary key of the

associated table. This case applies to the MASS TRTMNT table.

Case 2 The entity type has lifespanwith duration, and the lifespan is recorded.

An entity whose lifespan has duration raises the question of how to identify that

two rows, with different primary key values, are associated with the same entity.

The approach is to add a new column, a surrogate identi�er column, to the table,

which then constitutes a time-invariant key, even as the original key varies over

time. (As we'll see on page 378, sometimes the surrogate identi�er column is not

required.)

The surrogate identi�er column should be made the sequenced primary key of

the table. Such keys cannot be expressed solely using SQL-92's PRIMARY KEY con-

struct (page 117). Adding the start time of the timestamp of the row, or the end

time, or both, does not serve to convert a nontemporal key to a sequenced key

(page 118). Instead, a sequenced primary key can be expressed as an SQL assertion
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or table constraint (page 118); to keep SQL happy, we also add FROM DATE to the

declared primary key.

Two other changes are required: (a) add an assertion stating that the combination

of the surrogate column and the original primary key is sequenced unique, and

(b) replace all foreign keys referencing this table with the new surrogate column.

This case is not present in the example schema.

Case 3 The relationship type has a valid-time extent, which is recorded.

The original primary key on the valid-time state table should be interpreted as a

sequenced primary key, which can be expressed as an SQL assertion or table con-

straint (page 118); we also add FROM DATE to the declared primary key. This case is

not present.

Code Fragment 11.7 MASS TRTMNT's primary key is valid-time sequenced.

ALTER TABLE MASS_TRTMNT DROP PRIMARY KEY

ALTER TABLE MASS_TRTMNT

ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM, PEN_ID, AT_DATE)

The WHEN CHANGED column

should be added to the primary

key of transaction-time tables to

effect a current, and thus

sequenced, primary key.

For transaction-time tables, things are a little easier because instantaneous tables

are not possible. The original primary key on the table should

be interpreted as a transaction-time sequenced primary key. As

contrasted with valid time, such keys can be expressed solely

using SQL-92's PRIMARY KEY construct, by simply adding the

STOP DATE column, which serves to convert the original key to a

current key, which is equivalent to a sequenced key in the case

of a transaction-time table (page 254).

BKP and LOT CONTAINS are transaction-time tables.

Code Fragment 11.8 The primary key of BKP and LOT CONTAINS is transaction-time se-

quenced.

ALTER TABLE BKP DROP PRIMARY KEY

ALTER TABLE BKP ADD PRIMARY KEY (FDYD_ID, BKP_ID, WHEN_CHANGED)

ALTER TABLE LOT_CONTAINS DROP PRIMARY KEY

ALTER TABLE LOT_CONTAINS PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

WHEN_CHANGED)

For bitemporal tables, things get more interesting because the two kinds of time

must be considered simultaneously. Fortunately, the alternatives combine in the

predictable way.
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There are three cases for the

primary key of bitemporal

tables, mirroring those for

valid-time tables.

This schema includes three bitemporal tables, LOT, LOT LOC, and LOT MOVE. The

�rst is associated with an entity type, and the other two are as-

sociated with relationship types. The �rst two have a valid-time

extent, and the third is instantaneous.

The LOT entity type has a recorded lifespan, so we use the

second case for valid time to state that the LOT primary key

is valid-time sequenced/transaction-time sequenced. Again, we

implement transaction-time sequenced with transaction-time current. As will be

discussed on page 378, for LOT it turns out that the surrogate identi�er column is

not required, so we don't include it here.

Code Fragment 11.9 LOT has a valid-time sequenced/transaction-time sequenced pri-

mary key of (FDYD ID, LOT ID NUM).

ALTER TABLE LOT DROP PRIMARY KEY (FDYD_ID, LOT_ID_NUM)

ALTER TABLE LOT ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

FROM_DATE, STOP_DATE)

CREATE ASSERTION LOT_seq_seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM LOT AS L1

WHERE L1.STOP_DATE = DATE �9999-12-31�

AND 1 < (SELECT COUNT(*)

FROM LOT AS L2

WHERE L1.FDYD_ID = L2.FDYD_ID

AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

AND L1.FROM_DATE < L2.TO_DATE

AND L2.FROM_DATE < L1.TO_DATE

AND L2.STOP_DATE = DATE �9999-12-31�))

)

MOVE is an instantaneous relationship type, and thus utilizes the �rst case for

valid time. We need only add the valid and transaction timestamps to the primary

key.

Code Fragment 11.10 LOT MOVEhas a valid-time sequenced/transaction-time sequenced

primary key of (FDYD ID, LOT ID NUM, FROM PEN ID, TO PEN ID).

ALTER TABLE LOT_MOVE DROP PRIMARY KEY

ALTER TABLE LOT_MOVE ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

FROM_PEN_ID, TO_PEN_ID, AT_DATE, AT_MOVE_ORDER,

WHEN_CHANGED)
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For transaction-time tables

implemented as backlogs, only

the last insert or update entry is

relevant.

Finally, the key for LOT LOC, being associated with a noninstantaneous relation-

ship type, utilizes the last case for valid time, resulting in a valid-

time sequenced/transaction-time sequenced primary key. How-

ever, because LOT LOC is implemented as a backlog, rather than as

a transaction-time state table, we can't simply check for a STOP

DATE of �forever.� Instead, we must use the last relevant entry in

the backlog that is an insert or an update entry.

Code Fragment 11.11 LOT LOC has a valid-time sequenced/transaction-time sequenced

primary key of (FDYD ID, LOT ID NUM, PEN ID).

ALTER TABLE LOT_LOC DROP PRIMARY KEY (FDYD_ID, LOT_ID_NUM, PEN_ID)

ALTER TABLE LOT_LOC ADD PRIMARY KEY (FDYD_ID, LOT_ID_NUM,

PEN_ID, FROM_DATE, WHEN_CHANGED)

CREATE ASSERTION LOT_LOC_seq_seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM LOT_LOC AS L1

-- L1 is the last insert or update entry

WHERE (L1.OPERATION = �I� OR L1.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT_LOC AS L3

WHERE L3.FDYD_ID = L1.FDYD_ID

AND L3.LOT_ID_NUM = L1.LOT_ID_NUM

AND L3.PEN_ID = L1.PEN_ID

AND L3.WHEN_CHANGED > L1.WHEN_CHANGED)

AND 1 < (SELECT COUNT(*)

FROM LOT_LOC AS L2

WHERE L1.FDYD_ID = L2.FDYD_ID

AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

AND L1.PEN_ID = L2.PEN_ID

AND L1.FROM_DATE < L2.TO_DATE

AND L2.FROM_DATE < L1.TO_DATE

-- L2 is the last insert or update entry

AND (L2.OPERATION = �I� OR L2.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT_LOC AS L3

WHERE L3.FDYD_ID = L2.FDYD_ID

AND L3.LOT_ID_NUM = L2.LOT_ID_NUM

AND L3.PEN_ID = L2.PEN_ID

AND L3.WHEN_CHANGED > L2.WHEN_CHANGED)))

)
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Referential Integrity

There are 17 foreign keys speci�ed in Figure 11.2: 7 for the one-to-many binary

relationship types, 2 for the many-to-many LOCATION relationship type, 3 for the

MASS TRTMNT ternary relationship type, and 5 for the quintary MOVE relation-

ship type. The LOT CONTAINS table also comes with a foreign key (CF-11.6).

If the referenced table is

nontemporal, the original

foreign key constraints may be

retained.

The original foreign key constraints work �ne if the refer-

enced table is nontemporal (assuming that a nontemporal table

contains time-invariant data (page 126), which is the common

assumption). Most relationship types here are nontemporal, and

so the associated referential integrity constraints speci�ed before

can remain. Similarly, foreign keys referencing nontemporal ta-

bles are �ne as is. We're thus satis�ed with LOT ! FDYD, LOT CONTAINS ! DBF FILE,

PEN ! FDYD, DBF FILE ! APPLICATION, BKP ! FDYD, LOT MOVE ! PEN (two referen-

tial integrity constraints), LOT MOVE! DBF FILE, LOT LOC! PEN, and MASS TRTMNT!

PEN.

Referential integrity on

valid-time tables should be

expressed as a sequenced

constraint.

There are six variants of temporal integrity constraints (page

326). However, for referential integrity, the valid-time sequenced

variety is generally indicated. If both tables are valid-time tables,

then an assertion is required, either on the referencing table in-

dividually (page 128), or on the referenced table stating that the

histories are contiguous and on the referenced table stating that

the history is contained in that of the referenced table (page 129). Ensuring the his-

tories are contiguous can be done by �lling the gaps in the referenced table (page

180).

No foreign key constraints here apply to valid-time tables.

If both tables are transaction-time tables, transaction-time current constraints

suf�ce, which can be implemented by adding the STOP DATE to the foreign key

(page 254). This also works for LOT MOVE! BKP; since LOT MOVE is valid timestamped

with an instant, we can ignore the valid time in the referential integrity constraint.

Code Fragment 11.12 (LOT MOVE.FDYD ID, LOT MOVE.BKP ID) is a nonsequenced/current

foreign key for BKP.

ALTER TABLE LOT_MOVE DROP FOREIGN KEY (FDYD_ID, BKP_ID)

REFERENCES BKP

ALTER TABLE LOT_MOVE ADD FOREIGN KEY

(FDYD_ID, BKP_ID, WHEN_CHANGED) REFERENCES BKP

If the referencing table is a nontemporal table (e.g., PEN ! BKP), then the most

recent transaction-time state should be used. As BKP is a backlog, we employ the

trick of CF-11.11 of using the last entry (or entries) in the backlog that is an insert

or an update entry.
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Code Fragment 11.13 (PEN.FDYD ID, PEN.BKP ID) is a transaction-time current foreign

key for BKP.

ALTER TABLE PEN DROP FOREIGN KEY (FDYD_ID, BKP_ID)

REFERENCES BKP

CREATE ASSERTION PEN__Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM PEN AS P

WHERE NOT EXISTS (

SELECT *

FROM BKP AS B

WHERE P.FDYD_ID = B.FDYD_ID

AND P.BKP_ID = B.BKP_ID

AND (B.OPERATION = �I� OR B.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM BKP AS B2

WHERE B2.FDYD_ID = B.FDYD_ID

AND B2.BKP_ID = BKP._ID

AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))

)

For a valid-time table referencing a transaction-time table, a current/current con-

straint is appropriate. In the case of MASS TRTMNT ! BKP, the referencing table is

an instant-stamped table, so we use a valid-time nonsequenced constraint, simply

ignoring the valid time.

Code Fragment 11.14 (MASS TRTMNT.FDYD ID, MASS TRTMNT.BKP ID) is a nonsequenced/

current foreign key for BKP.

ALTER TABLE MASS_TRTMNT DROP FOREIGN KEY (FDYD_ID, BKP_ID)

REFERENCES BKP

CREATE ASSERTION MASS_TRTMNT__Curr_Curr_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM MASS_TRTMNT AS M

WHERE NOT EXISTS (

SELECT *

FROM BKP AS B

WHERE M.FDYD_ID = B.FDYD_ID

AND M.BKP_ID = B.BKP_ID

continued on page 370
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continued from page 369

AND (B.OPERATION = �I� OR B.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM BKP AS B2

WHERE B2.FDYD_ID = B.FDYD_ID

AND B2.BKP_ID = B.BKP_ID

AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))

)

For foreign keys referencing

bitemporal tables, if the

referencing table supports

transaction time, use a

transaction-time current

constraint. If the referencing

table is instant-stamped in valid

time, simply ignore the valid

time.

For foreign keys involving bitemporal tables, we use an asser-

tion to ensure that the foreign key is valid-time sequenced, on

the current state of the two tables (page 329), with variations

if one of the two tables doesn't have valid-time or transaction-

time support, or if one or both of the tables is associated with

an instantaneous entity or relationship type.

For this schema, we need to consider the referential integrity

constraints in Table 11.1 that arise from the time-varying MOVE,

LOCATION, and MASS TRTMNT relationship types. However,

only the LOT participating entity type has a recorded lifespan,

so we are left with �ve foreign key constraints to consider fur-

ther: LOT CONTAINS! BKP, LOT MOVE! LOT, LOT LOC! LOT, MASS

TRTMNT ! LOT, and LOT CONTAINS ! LOT.

To specify a sequenced/current foreign key constraint between two bitemporal

tables, we augment the valid-time sequenced referential integrity assertion with

a predicate selecting the currently valid information. For LOT, this translates to

checking for a STOP DATE of �forever.� For LOT LOC, which is a backlog containing

after-images, we use the last entry trick.

Code Fragment 11.15 (LOT LOC.FDYD ID, LOT LOC.LOT ID NUM) is a sequenced/current

foreign key for LOT.

ALTER TABLE LOT_LOC DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

REFERENCES LOT

CREATE ASSERTION LOT_LOC_Seq_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM LOT_LOC AS LL

-- LL is one of the last entries

WHERE (LL.OPERATION = �I� OR LL.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT_LOC AS L3
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WHERE L3.FDYD_ID = LL.FDYD_ID

AND L3.LOT_ID_NUM = LL.LOT_ID_NUM

AND L3.PEN_ID = LL.PEN_ID

AND L3.WHEN_CHANGED > LL.WHEN_CHANGED)

AND (NOT EXISTS (

SELECT *

FROM LOT AS L

WHERE LL.FDYD_ID = L.FDYD_ID

AND LL.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND L.FROM_DATE <= LL.FROM_DATE

AND LL.FROM_DATE < L.TO_DATE)

OR NOT EXISTS (

SELECT *

FROM LOT AS L

WHERE LL.FDYD_ID = L.FDYD_ID

AND LL.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND L.FROM_DATE < LL.TO_DATE

AND LL.TO_DATE <= L.TO_DATE)

OR EXISTS (SELECT *

FROM LOT AS L

WHERE LL.FDYD_ID = L.FDYD_ID

AND LL.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND LL.FROM_DATE < L.TO_DATE

AND L.TO_DATE < LL.TO_DATE

AND NOT EXISTS (

SELECT *

FROM LOT AS L2

WHERE L2.FDYD_ID = L.FDYD_ID

AND L2.LOT_ID_NUM = L.LOT_ID_NUM

AND L2.STOP_DATE = DATE �9999-12-31�

AND L2.FROM_DATE <= L.TO_DATE

AND L.TO_DATE < L2.TO_DATE)))

))

The LOT CONTAINS table is a transaction-time table with a foreign key to LOT. For

transaction time we need only consider the most recent additions to the table, so

this can be implemented as a transaction-time current foreign key. Since LOT also

records valid time, we utilize the current valid-time state.
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Code Fragment 11.16 (LOT CONTAINS.FDYD ID, LOT CONTAINS.LOT ID NUM) is a current/

current foreign key for LOT.

ALTER TABLE LOT_CONTAINS DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

REFERENCES LOT

CREATE ASSERTION LOT_CONTAINS_Current_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM LOT_CONTAINS AS C

WHERE (C.OPERATION = �I� OR C.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT_CONTAINS AS C2

WHERE C2.FDYD_ID = C.FDYD_ID

AND C2.LOT_ID_NUM = C.LOT_ID_NUM

AND C2.WHEN_CHANGED > C.WHEN_CHANGED)

AND NOT EXISTS (

SELECT *

FROM LOT AS L

WHERE C.FDYD_ID = L.FDYD_ID

AND C.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND L.FROM_DATE <= CURRENT_DATE

AND CURRENT_DATE < L.TO_DATE))

)

For LOT CONTAINS ! BKP, both the referencing and referenced tables are

transaction-time tables. This translates into a transaction-time current integrity

constraint. As both tables are backlogs, we need to get the most recent entry from

each.

Code Fragment 11.17 (LOT CONTAINS.FDYD ID, LOT CONTAINS.BKP ID) is a transaction-

time current foreign key for BKP.

ALTER TABLE LOT_CONTAINS DROP FOREIGN KEY (FDYD_ID, BKP_ID)

REFERENCES BKP

CREATE ASSERTION LOT_CONTAINS_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM LOT_CONTAINS AS C

-- C is the last relevant entry

WHERE (C.OPERATION = �I� OR C.OPERATION = �U�)

AND NOT EXISTS (

SELECT *
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FROM LOT_CONTAINS AS C2

WHERE C2.FDYD_ID = C.FDYD_ID

AND C2.LOT_ID_NUM = C.LOT_ID_NUM

AND C2.WHEN_CHANGED > C.WHEN_CHANGED)

-- There is not a match for C in BKP

AND NOT EXISTS (

SELECT *

FROM BKP AS B

WHERE B.FDYD_ID = C.FDYD_ID

AND B.BKP_ID = C.BKP_ID

-- B is the last relevant entry

AND (B.OPERATION = �I� OR B.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM BKP AS B2

WHERE B2.FDYD_ID = B.FDYD_ID

AND B2.BKP_ID = B.BKP_ID

AND B2.WHEN_CHANGED > B.WHEN_CHANGED)))

)

For a sequenced referential integrity constraint from an event table to a state

table, each instant timestamp in the referencing table must be contained in a period

timestamp of the referenced table.

Code Fragment 11.18 (LOT MOVE.FDYD ID, LOT MOVE.LOT ID NUM) is a sequenced/current

foreign key for LOT.

ALTER TABLE LOT_MOVE DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

REFERENCES LOT

CREATE ASSERTION LOT_MOVE_Seq_Current_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM LOT_MOVE AS M

WHERE (M.OPERATION = �I� OR M.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT_MOVE AS M2

WHERE M2.FDYD_ID = M.FDYD_ID

AND M2.LOT_ID_NUM = M.LOT_ID_NUM

AND M2.FROM_PEN_ID = M.FROM_PEN_ID

AND M2.TO_PEN_ID = M.TO_PEN_ID

AND M2.WHEN_CHANGED > M.WHEN_CHANGED)

continued on page 374
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continued from page 373

AND NOT EXISTS (

SELECT *

FROM LOT AS L

WHERE M.FDYD_ID = L.FDYD_ID

AND M.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND L.FROM_DATE <= M.AT_DATE

AND M.AT_DATE < L.TO_DATE))

)

For foreign keys over bitemporal

tables, use sequenced/current

constraints.

This is shorter than CF-11.15 because for each row of LOT MOVE,

there need be only one row of LOT whose period of validity con-

tains the (instant) lifespan. In contrast, for each row of LOT LOC,

many rows from LOTmay coordinate to contain LOT LOC's period

of validity. In general, for foreign keys over bitemporal tables,

use sequenced/current constraints, unless one of the participating tables doesn't

include valid- or transaction-time support or is associated with an instantaneous

entity or relationship type, in which case the assertion is simpli�ed.

The �nal foreign key to consider, MASS TRTMNT ! LOT, is even simpler because

MASS TRTMNT does not record transaction time.

Code Fragment 11.19 (MASS TRTMNT.FDYD ID, MASS TRTMNT.LOT ID NUM) is a valid-time

sequenced foreign key for LOT.

ALTER TABLE MASS_TRTMNT DROP FOREIGN KEY (FDYD_ID, LOT_ID_NUM)

REFERENCES LOT

CREATE ASSERTION MASS_TRTMNT_Seq_Referential_Integrity

CHECK (NOT EXISTS (

SELECT *

FROM MASS_TRTMNT AS M

WHERE NOT EXISTS (

SELECT *

FROM LOT AS L

WHERE M.FDYD_ID = L.FDYD_ID

AND M.LOT_ID_NUM = L.LOT_ID_NUM

AND L.STOP_DATE = DATE �9999-12-31�

AND L.FROM_DATE <= M.AT_DATE

AND M.AT_DATE < L.TO_DATE))

)

We have now considered the implications of time-varying tables on all the for-

eign key constraints.
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Uniqueness Constraints

The temporal analog of UNIQUE is sequenced uniqueness, which requires a table

constraint (page 124). Other forms (current, value-equivalent, nonsequenced) are

less useful, as they are more representational than semantic (page 139).

FDYD SHORT NAME is unique. Since FDYD does not record valid time, the original

UNIQUE statement may be retained.

Concerning the LOT table, (FDYD ID, LOT ID NUM, LOT ID) is also unique. Since this

relation is bitemporal, this corresponds to sequenced/current uniqueness, which

requires an assertion.

Code Fragment 11.20 (LOT.FDYD ID, LOT.LOT ID) is sequenced/current unique.

ALTER TABLE LOT DROP UNIQUE (FDYD_ID, LOT_ID)

ALTER TABLE LOT ADD ASSERTION LOT_ID_Seq_Curr_UNIQUE

CHECK (NOT EXISTS ( SELECT *

FROM LOT AS L1

WHERE L1.STOP_DATE = DATE �9999-12-31�

AND 1 < (SELECT COUNT(*)

FROM LOT AS L2

WHERE L1.FDYD_ID = L2.FDYD_ID

WHERE L1.LOT_ID = L2.LOT_ID

WHERE L1.LOT_ID_NUM = L2.LOT_ID_NUM

AND L2.STOP_DATE = DATE �9999-12-31�

AND L1.FROM_DATE < L2.TO_DATE

AND L2.FROM_DATE < L1.TO_DATE))

)

11.4 PHYSICAL DESIGN

There is a sharp line between logical and physical design: logical design concerns

preserving the semantics of the application as expressed in the ER schema, and

physical design concerns ensuring ef�cient execution of application queries and

modi�cations. Physical design should properly be done after logical design, so that

ef�ciency considerations do not muddy the semantics.

Conventional physical design involves specifying indexes and storage structures,

and perhaps decomposing tables or merging tables. That some tables are time-

varying adds temporal partitioning to this phase of the design.

Tables with a valid-time extent can be temporally partitioned into a current store

containing only current information and a history store storing data that became

invalid before �now� (page 206).
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Crystal Clocks

The longer the pendulum, or the longer the coiled

spring, the more accurate the clock. However,

physical constraints bound the achievable preci-

sion. The next advance exploited the �piezoelec-

tric effect� of a quartz crystal, which vibrates when

an electronic current of the correct frequency is

applied to it. A quartz crystal can thereby replace

the pendulum or hairspring as the resonator with a

battery and simple electronic circuit providing the

energy. Although a quartz oscillator will drift with

temperature and with age, it is accurate to tenths

of a second a day, due to its frequency of 32,768

Hz versus 360 Hz in an Accutron. A crystal clock is

also much easier to manufacture and, hence, has

sounded the death knell to mechanical watches.

While there are still mechanical watches be-

ing manufactured, the attraction is more nostalgic

than economic or desire for quality. Consumer Re-

ports did a small experiment, comparing a $3 kid's

quartz watch against a $1200 Rolex Oyster Per-

petual, a superb mechanical watch. Over 6 days,

the kid's watch lost 11 seconds, and the Rolex

gained 22 seconds [41]. Mechanical clocks, and

perhaps even analog displays, will soon be museum

curiosities, right next to slide rules and mercury

thermometers.

The only valid-time table in this schema is MASS TRTMNT, which is associated with

an instantaneous relationship, and thus cannot be temporally partitioned.

A transaction-time state table may be temporally partitioned into a current store,

an archival store, and possibly the monitored table itself (page 264). Sometimes

the monitored table is best de�ned as a view, generally on the current store; often

the state table itself is de�ned as a view (page 268). If a full backlog is used, the

monitored table can be de�ned as a view on the tracking log (page 235).

The only transaction-time tables are BKP and LOT CONTAINS, which we retain as

audit logs.

A bitemporal state table can be temporally partitioned into a current store

(current/current), a history store (current in transaction time), and an archival store

(not current in transaction time) (page 329). A current store improves the perfor-

mance of current/current queries, but is awkward to maintain (page 331). A history

store will also result in good current/current retrieval performance and is much eas-

ier to maintain (page 332). To reduce the space requirements of the archival store,

it may be advantageous to store just one transaction timestamp (page 334).

We have three bitemporal tables: LOT (a valid-time state/transaction-time state

table), LOT LOC (a valid-time state/audit log table), and LOT MOVE (a valid-time event/

audit log table). Since most of the queries will be over the valid-time history of cattle

coresiding in pens, an appropriate partitioning of the LOT table is a valid-time state/

transaction-time current history store and a valid-time state/transaction-time state

archive, since disk space is not at a premium. We'll call the history table LOT and

create a new archive table, LOT Archive.
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Code Fragment 11.21 Partition LOT into a history store and an archival store.

ALTER TABLE LOT DROP COLUMN STOP_DATE

CREATE TABLE LOT_Archive (FDYD_ID, LOT_ID_NUM, LOT_ID,

GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT, VALID, OWNER,

COMMENT, FROM_DATE, TO_DATE, START_DATE, STOP_DATE,

PRIMARY KEY (FDYD_ID, LOT_ID_NUM, FROM_DATE, STOP_DATE)

)

CREATE ASSERTION LOT_Archive_seq_seq_primary_key

CHECK (NOT EXISTS ( SELECT *

FROM LOT_Archive AS L1

WHERE L1.STOP_DATE = DATE �9999-12-31�

AND 1 < (SELECT COUNT(*)

FROM LOT_Archive AS L2

WHERE L1.FDYD_ID = L2.FDYD_ID

AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

AND L1.FROM_DATE < L2.TO_DATE

AND L2.FROM_DATE < L1.TO_DATE

AND L2.STOP_DATE = DATE �9999-12-31�))

)

Foreign key assertions that reference LOT (CF-11.15, CF-11.16, CF-11.18, CF-11.19)

substantially remain as they are, except that the WHERE condition

LOT.STOP_DATE = DATE �9999-12-31�

is no longer needed.

Since LOT LOC and LOT MOVE both have instant transaction timestamps, partition-

ing either into a history store and an archival audit log is possible, but would not

have a dramatic impact on integrity constraints or queries.

11.5 ADVANCED DESIGN ASPECTS*

The time-varying nature adds a few further wrinkles that can be expressed as tem-

poral annotations to the conceptual schema and mapped to changes to SQL tables.

11.5.1 Additional Temporal Annotations

We �rst list additional annotations that might be useful to include with the con-

ceptual schema.
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Time-Invariant Keys

In the nontemporal ER schema, the key of an entity type is assumed to identify an

entity at each point in time. We may want to express a stronger integrity constraint,

such as that the (Feedyard ID, Pen ID) value identi�es a particular pen over all time.

This is termed a time-invariant key. As all the keys in this schema are nontemporal,

they are automatically valid time-invariant.

Time-Invariant Uniqueness Constraints

In the nontemporal ER schema, the integrity constraints on individual attributes

are assumed to hold at each point in time. We may want to express a stronger

integrity constraint, such as that the Fdyd Short name for a particular feed yard is

unique over all time. This is termed a time-invariant uniqueness constraint, as it applies

over the entire lifespan of the entity.

As another example, the LOT.Lot ID attribute is also time-invariant unique. Lots

enter the feed yard with a Lot ID value. Once that lot has left the feedyard, a sub-

sequently arriving lot could be assigned the same Lot ID value; Lot IDs are reused.

So Brad generates a nonreusable Lot ID Num attribute to uniquely identify the lot;

this attribute is the partial key for the LOT entity type.

While Lot IDs may be reused, for any given lot entity, the Lot ID is unique over

all time, termed time-invariant unique.

Such constraints are not applicable to attributes associated with instantaneous

entity and relationship types.

Time-Invariant Participation Constraints

This notion of a time-invariant constraint also applies to participation constraints.

Conventional participation constraints are assumed to hold at any point in time.

So, for example, each in pen relationship denotes a pen located in at most one

(actually, exactly one) feed yard at any point in time, and each location relationship

denotes cattle from one lot residing in one or more pens, at any point in time.

Some key, uniqueness, and

participation constraints may

hold over the entire lifespan (or

valid time) of the associated

entity (or relationship) type, and

are thus designated as

time-invariant.

We may want to express a stronger participation constraint,

such as that each pen is located in exactly one feed yard over

all time. If a particular pen is located in a particular feed yard

at one point in time, that pen will be located in that same feed

yard at all other points of time during the lifespans of the pen

and feed yard. This is termed a time-invariant participation con-

straint. Such constraints are not applicable to instantaneous re-

lationship types.

Of the relationships in this schema, the LOCATION relation-

ship type has a many-to-many participation constraint applied

over its valid-time extent, so this participation constraint is time-invariant. IN

PEN, IN LOT, IS DESCRIBED BY, CREATES, CONTAINS, DESCRIBES PEN, and



11 . 5 ADVANCED DES IGN ASPECTS* 379

DESCRIBES LOT are nontemporal relationship types, and so their nontemporal par-

ticipation constraints are also valid across their lifespan. The MOVE and MASS

TRTMNT relationship types model instantaneous events.

Transaction Time-Invariant Constraints

As with valid time, we also consider whether the integrity constraints hold over the

entire transaction-time period.

Two of the entity types, LOT and BACKUP, have transaction-time support, so we

must consider whether we wish to record the values of their key attributes as they

vary.

The (partial) key of the LOT entity, Lot ID Num, is generated when the data is

loaded. As such, it normally doesn't change, unless some data is later discovered to

be dirty and subsequently corrected. Hence, the Lot ID Num can possibly vary over

transaction time.

The partial key for BACKUP, BKP ID, is generated when the backup is taken, and

so is invariant in transaction time.

Also consider whether the key,

uniqueness, and participation

constraints hold over the entire

transaction-time extent.

No attribute listed in Table 11.5 is transaction time-invariant unique. While DE-

SCRIBES PEN and DESCRIBES LOT are many-to-one relationship types, they are

both transaction time-invariant many-to-many because a partic-

ular pen or lot entity can be described by several backup entities

at different transaction times. Similarly, the LOCATION, MOVE,

andMASS TRTMNT relationship types all have transaction time-

invariant participation constraints of many-to-many.

Temporal Specialization

Temporal specialization indicates whether the valid timestamp (or lifespan) and trans-

action timestamp of an entity, relationship, or attribute are coupled. One entity

type, LOT, is bitemporal; two relationship types, MOVE and LOCATION, are also

bitemporal.

Classify each bitemporal entity

and relationship type as fully

general, retroactive,

degenerate, or postactive.

LOCATION is a fully general bitemporal relationship type (also termed nonspe-

cialized). A transaction changing the database�speci�cally, the

location of a lot of cattle in a pen�can mention a valid time

in the past, if some information is being corrected, or in the fu-

ture, if moves in the future are anticipated. There is no a priori

coupling between valid and transaction time for this relation-

ship.

MOVE is a retroactive relationship type, denoting that the valid time is always

before (or equal to) the transaction time. Move records come directly from the

feed yard FoxPro database, and thus concern the past; no updates are possible to a

particular move relationship once it has been recorded.
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A degenerate entity type denotes that the beginning of the entity's lifespan ex-

actly corresponds to the beginning of the transaction time. Here, any change in

the modeled reality is immediately recorded in the database, so that the valid and

transaction times exactly correspond.

A �nal temporal specialization is a postactive entity or relationship type, in which

the valid time is always after (or equal to) the transaction time: modi�cations all

concern the future, recording something that will later be true.

11.5.2 Applying Temporal Annotations

We map these annotations to SQL constructs.

Time-Invariant Keys

If the key is valid time-invariant, a surrogate identi�er column, as discussed on

page 364, is not needed, as for example with the LOT table.

A transaction time-invariant

sequenced primary key requires

an assertion stating that the

periods associated with any

particular key value are

contiguous.

To ensure that the key is transaction time-invariant, we add

an assertion stating that the periods associated with any partic-

ular key value are contiguous, which is a nonsequenced con-

straint (page 129).

That the primary key for BKP is transaction time-invariant re-

quires checking for contiguity, which fortunately is straightfor-

ward on a backlog: the most recent entry cannot be an insert

entry that followed a previous delete entry.

Code Fragment 11.22 BKP's primary key is contiguous.

CREATE ASSERTION BKP_Contiguous_History

CHECK (NOT EXISTS (

SELECT *

FROM BKP AS B, BKP AS B2

WHERE B.WHEN_CHANGED < B2.WHEN_CHANGED

AND B.FDYD_ID = B2.FDYD_ID AND B.BKP_ID = B2.BKP_ID

AND B.OPERATION = �D� AND B2.OPERATION = �I�

-- I is the last operation

AND NOT EXISTS (

SELECT *

FROM BKP AS B3

WHERE B3.FDYD_ID = B.FDYD_ID AND B3.BKP_ID = B.BKP_ID

AND B2.WHEN_CHANGED < B3.WHEN_CHANGED)

-- There are no operations between the delete and the insert

AND NOT EXISTS (

SELECT *

FROM BKP AS B3

WHERE B3.FDYD_ID = B.FDYD_ID AND B3.BKP_ID = B.BKP_ID
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Table 11.6 An excerpt of the LOT table.

. . . LOT ID . . . FROM DATE TO DATE

. . . 17 . . . 1998-01-01 1998-03-23

. . . 19 . . . 1998-03-23 1998-04-01

. . . 19 . . . 1998-05-12 9999-12-31

AND B.WHEN_CHANGED < B3.WHEN_CHANGED

AND B3.WHEN_CHANGED < B2.WHEN_CHANGED))

)

Time-Invariant Uniqueness Constraints

Time-invariant uniqueness constraints can be speci�ed only if there is a time-

invariant primary key available. Consider the excerpt of the LOT table shown in

Table 11.6. Is LOT ID time-invariant unique, that is, having only one value over all

time for a particular LOT entity?

It is impossible to tell whether the appearance of LOT ID values of 17 and 19

are problematic without knowing which rows are associated with which lots. So,

in Table 11.7, we focus on the primary key of the LOT table, (FDYD ID, LOT ID NUM),

which has already been speci�ed as a time-invariant primary key.

Time-invariant uniqueness

requires an assertion that the

column(s) are unique with

respect to the time-invariant

primary key.

We can now see that this instance violates the time-invariant

uniqueness constraint for LOT ID, as a single lot, with a LOT ID

NUM of 101, has two distinct values for the LOT ID.

For (FDYD ID, LOT ID) to be time-invariant unique, it must be

unique with respect to the time-invariant primary key, (FDYD

ID, LOT ID NUM). So we replace the assertion in CF-11.20 with the

following assertion.

Code Fragment 11.23 (LOT.FDYD ID, LOT.LOT ID) is valid time-invariant unique.

ALTER TABLE LOT DROP ASSERTION LOT_ID_Seq_Curr_UNIQUE

ALTER TABLE LOT ADD ASSERTION LOT_ID_VT_Invariant_UNIQUE

CHECK (NOT EXISTS ( SELECT *

FROM LOT AS L1

WHERE 1 < (SELECT DISTINCT COUNT(LOT_ID)

FROM LOT AS L2

WHERE L1.FDYD_ID = L2.FDYD_ID

AND L1.LOT_ID_NUM = L2.LOT_ID_NUM

AND L2.STOP_DATE = DATE �9999-12-31�))

)
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Table 11.7 Focusing on the primary key.

FDYD ID LOT ID NUM LOT ID . . . FROM DATE TO DATE

1 101 17 . . . 1998-01-01 1998-03-23

1 101 19 . . . 1998-03-23 1998-04-01

1 799 19 . . . 1998-05-12 9999-12-31

Temporal Specialization

The valid-time start column may

be dropped from a table

corresponding to a degenerate

entity type.

A degenerate entity type allows us to simplify the table(s) of that

type. Since the beginning of the entity's lifespan (FROM DATE) ex-

actly corresponds to the beginning of transaction time (START

DATE), we can omit the latter column and replace all mention of

it with the former column.

No tables in this schema are degenerate.

11.6 BENEFITS

This case study provides empirical evidence of the ef�cacy of the design method-

ology followed in this chapter. Brad spent several months designing an initial log-

ical schema for the 55-odd tables of his applications. He later then worked with

the author to design tables following this methodology. The result is a set of two

logical schemas drawn from the same re-

quirements, one developed using the tradi-

tional approach, in which time is consid-

ered from the beginning, and the schema

developed here, in which time is consid-

ered only in the second stage of conceptual

and logical design.

Brad feels that the latter design is prefer-

able in several ways. In particular, when

the methodology is followed and temporal

aspects are added later, rather than in the

initial ER diagram, the following bene�ts

speci�c to this case study accrue:

� The ER diagram was simpli�ed.

� The semantics of LOT LOC was cleaned

up considerably.

� The valid-time semantics of LOT was

highlighted.

Atomic Clocks

The cesium atom has a natural vibration at

9,192,631,770 Hz. If the driving frequency is just

a little off of that natural frequency of the atom,

it doesn't resonate. Laboratory cesium oscillators

keep time to about one second in 370,000 years,

or, alternatively, to about 3 microseconds per year.

Satellites in geosynchronous orbit contain

atomic clocks and send out timing signals from

them. Small GPS (global positioning system) re-

ceivers use triangulation and the speed of light

to calculate highly accurate location data; such

calculations depends heavily on a highly accurate

clock.
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� We discovered during this analysis that LOT LOC has a transaction-time

component.

� The transaction-time semantics of BKP was emphasized.

� Several of the integrity constraints were corrected.

� Some of the nullable columns were rendered not nullable.

� Twenty-�ve columns were removed. One table and sixteen columns were added,

thereby somewhat simplifying the logical model.

� Queries are easier to express on the revised logical model.

Patience, in considering time later, is indeed a virtue.

11.7 APPLICATION DEVELOPMENT

We now brie�y revisit the queries and modi�cations mentioned in Chapter 2, as a

review of the approaches discussed at length in the other case studies.

11.7.1 Queries

We can express any nontemporal query in the three variants, current, sequenced,

and nonsequenced. Note the correspondence between these variants.

Current queries are the temporal analog of nontemporal queries. They require a

simple addition to the WHERE clause (page 143).

Code Fragment 11.24 How many head of cattle from lot 219 in yard 1 are (currently) in

each pen?

SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

AND TO_DATE = DATE �9999-12-31�

Sequenced queries, which are the �and when� analog of nontemporal queries,

must be broken down into their algebraic equivalents to be translated into SQL.

Selection, projection, sorting, and union are simple (page 145).

Code Fragment 11.25 Give the history of howmany head of cattle from lot 219 in yard 1

were in each pen.

SELECT PEN_ID, HD_CNT, FROM_DATE, TO_DATE

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

Nonsequenced queries, which treat the timestamps as regular columns, are gen-

erally dif�cult to express in English, but relatively straightforward to express in SQL

on state tables.
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Code Fragment 11.26 Howmanyheadof cattle from lot219 inyard1were, at some time,

in each pen?

SELECT PEN_ID, HD_CNT

FROM LOT_LOC

WHERE FDYD_ID = 1 AND LOT_ID_NUM = 219

We now turn to temporal joins. Consider the following nontemporal join query.

The query involves a self-join on the table, along with projection and selection.

The �rst predicate ensures that we don't get identical pairs; the second and third

predicates test for coresidency.

Code Fragment 11.27 Which lots are coresident in a pen (nontemporal version)?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

The current version of this query on the temporal table is constructed by adding

a currency predicate (a TO DATE of forever) for each correlation name in the FROM

clause.

Code Fragment 11.28 Which lots are currently coresident in a pen?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND L1.TO_DATE = DATE �9999-12-31�

AND L2.TO_DATE = DATE �9999-12-31�

As before, nonsequenced joins are easy to specify: just ignore the timestamp

columns.

Code Fragment 11.29 Which lots were in the same pen, perhaps at different times?

SELECT DISTINCT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

A sequenced join is challenging to express in SQL (page 151). We assume that

the underlying table contains no (sequenced) duplicates; that is, a lot can be in a

pen at most once at any time.
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Code Fragment 11.30 Give the history of lots being coresident in a pen.

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L1.FROM_DATE, L1.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND L2.FROM_DATE <= L1.FROM_DATE

AND L1.TO_DATE <= L2.TO_DATE

UNION

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L1.FROM_DATE, L2.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND L1.FROM_DATE > L2.FROM_DATE

AND L2.TO_DATE < L1.TO_DATE

AND L1.FROM_DATE < L2.TO_DATE

UNION

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L2.FROM_DATE, L1.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND L2.FROM_DATE > L1.FROM_DATE

AND L1.TO_DATE < L2.TO_DATE

AND L2.FROM_DATE < L1.TO_DATE

UNION

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID, L2.FROM_DATE, L2.TO_DATE

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND L2.FROM_DATE >= L1.FROM_DATE

AND L2.TO_DATE <= L1.TO_DATE

The SQL-92 CASE expression allows this query to be written as a single SELECT

statement (page 152).

Code Fragment 11.31 Sequenced temporal join using CASE.

SELECT L1.LOT_ID_NUM, L2.LOT_ID_NUM, L1.PEN_ID,

CASE WHEN L1.FROM_DATE > L2.FROM_DATE

THEN L1.FROM_DATE

continued on page 386
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continued from page 385

ELSE L2.FROM_DATE END,

CASE WHEN L1.TO_DATE > L2.TO_DATE

THEN L2.TO_DATE

ELSE L1.TO_DATE END

FROM LOT_LOC AS L1, LOT_LOC AS L2

WHERE L1.LOT_ID_NUM < L2.LOT_ID_NUM

AND L1.FDYD_ID = L2.FDYD_ID

AND L1.PEN_ID = L2.PEN_ID

AND (CASE WHEN L1.FROM_DATE > L2.FROM_DATE

THEN L1.FROM_DATE

ELSE L2.FROM_DATE END) <

(CASE WHEN L1.TO_DATE > L2.TO_DATE

THEN L2.TO_DATE

ELSE L1.TO_DATE END)

Reconstructing the monitored table at a point in time is a simple query or view

on a transaction-time state table (compare with CF-9.7).

Code Fragment 11.32 Provide the state of the LOT CONTAINS table on January 12, 1998.

SELECT LOT_ID_NUM, BKP_ID, A_NAME, DBF_NAME, DBF_UPDATE_RECNO

FROM LOT_CONTAINS

WHERE START_TIME <= DATE �1998-01-12�

AND DATE �1998-01-12� < STOP_DATE

We end with two queries on the bitemporal table LOT, one a sequenced/

nonsequenced query and one a nonsequenced/nonsequenced query.

Code Fragment 11.33 Provide the history as best known onMarch 15, 1998.

SELECT LOT_ID_NUM, GNDR_CODE, PROJ_CLOSEOUT, IN_WEIGHT,

VALID, OWNER, COMMENT

FROM LOT

WHERE START_TIME <= DATE �1998-03-15�

AND DATE �1998-03-15� < STOP_DATE

Code Fragment 11.34 When were steerings scheduled (as opposed to being recorded

after the fact)?

SELECT S.LOT_ID_NUM, S.FROM_DATE AS When_Scheduled,

S.START_DATE AS When_Recorded

FROM LOT AS C, LOT AS S

WHERE C.FDYD_ID = S.FDYD_ID

AND C.LOT_ID_NUM = S.LOT_ID_NUM

AND C.GNDR_CODE = �c� AND S.GNDR_CODE = �s�



11 . 7 APPL ICAT ION DEVELOPMENT 387

AND C.TO_DATE = S.FROM_DATE

AND S.START_DATE < S.FROM_DATE

11.7.2 Modi�cations

When one or more of the tables managed by a legacy application is rendered tem-

poral, all of the modi�cations must be converted to current modi�cations, whose

period of applicability is �now� to �forever� (page 216).

Modi�cations on bitemporal state tables are written in two stages. First, the

modi�cation is transformed according to the valid-time semantics. Second, the re-

sulting SQL statements are further transformed according to the transaction-time

semantics (page 286).

Current insertions are easy to code in SQL; the second transformation merely

requires that the transaction timestamp be included. We illustrate such an insertion

on the LOT table. Recall that this table is temporally partitioned into a history store

(see CF-11.21), containing those rows with a transaction-stop time of �forever,� and

an archival store, containing those rows with a transaction-stop time before �now.�

We need not record a transaction-stop time in the LOT table because it is assumed

to be �forever.�

Code Fragment 11.35 Lot 433 arrives today.

INSERT INTO LOT

VALUES (1, 433, 7, �h�, DATE �1998-12-15�, 14533, 1, �Empire�, �B�, 2,

CURRENT_DATE, DATE �9999-12-31�, CURRENT_DATE)

A logical current deletion in the general scenario (page 183) is implemented as

a physical update and a physical delete. But because LOT has transaction-time sup-

port, the update and delete cause the previous values to be retained in LOT Archive.

The update is transformed into moving the old value to the archival store, thus

retaining the new value in the history store. The delete is transformed into moving

the row to be deleted to the archival store.

Code Fragment 11.36 Lot 101 leaves the feed yard.

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 101

continued on page 388
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continued from page 387

AND TO_DATE >= CURRENT_DATE

AND FROM_DATE < CURRENT_DATE

UPDATE LOT

SET TO_DATE = CURRENT_DATE

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 101

AND TO_DATE >= CURRENT_DATE

AND FROM_DATE < CURRENT_DATE

-- transformed deletion

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 101

AND FROM_DATE > CURRENT_DATE

DELETE FROM LOT

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 101

AND FROM_DATE > CURRENT_DATE

These two pairs of statements can be done in either order, as the rows they alter are

disjoint, but the insertion into the archival store should occur before the second

statement of the pair.

In the general scenario, a logical current update is more complicated, as there

may exist rows that start in the future, as well as rows that end before �forever.� For

the former, only the GNDR CODE need be changed. For the latter, the TO DATE must be

retained on the inserted row. Compare with CF-7.11; again, we transform a physical

update into an update of the history store and an insertion into the archival store,

here, twice.

Code Fragment 11.37 The cattle in lot 799 are being steered today.

-- transformed insertion

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, �s�, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

CURRENT_DATE, DATE �9999-123-31�, CURRENT_DATE

FROM LOT

WHERE FDYD_ID = 1
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AND LOT_ID_NUM = 799

AND FROM_DATE <= CURRENT_DATE

AND TO_DATE > CURRENT_DATE

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 799

AND GNDR_CODE <> �s�

AND FROM_DATE < CURRENT_DATE

AND TO_DATE > CURRENT_DATE

UPDATE LOT

SET TO_DATE = CURRENT_DATE

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 799

AND GNDR_CODE <> �s�

AND FROM_DATE < CURRENT_DATE

AND TO_DATE > CURRENT_DATE

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 799

AND FROM_DATE >= CURRENT_DATE

UPDATE LOT

SET GNDR_CODE = �s�

WHERE FDYD_ID = 1

AND LOT_ID_NUM = 799

AND FROM_DATE >= CURRENT_DATE

The last pair can appear anywhere, but the second and third statements must occur

after the insertion. This store grows monotonically.

Note that in a temporally partitioned store, only insertions are applied to the

archival store.
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A current modi�cation applies from �now� to �forever.� A sequenced modi-

�cation generalizes this to apply over a speci�ed period, termed the period of

applicability. This period could be in the past, in the future, or overlap �now.�

Most of the previous discussion applies to sequenced modi�cations, with CUR-

RENT DATE replaced with the start of the period of applicability of the modi�cation

and DATE �9999-12-31� replaced with the end of the period of applicability.

In a sequenced insertion, the application provides the period of applicability

(page 188).

Code Fragment 11.38 Lot 426, a collection of heifers, was on the feed yard from March

26 to April 14.

INSERT INTO LOT

VALUES (1, 426, 7, �h�, DATE �1998-12-15�, 14533, 1, �Empire�, � �,

DATE �1998-03-26�, DATE �1998-04-14�, CURRENT_DATE)

Sequenced deletions (page 190) require a little more work because the period of

applicability of the deletion may end before the row ends. Recall that a current dele-

tion in the general scenario is implemented as an update for those currently valid

rows, and a delete for periods starting in the future. A sequenced deletion requires

seven physical modi�cations. In the following deletion, the period of applicability

is DATE �1998-10-01� to DATE �1998-10-22�.

Code Fragment 11.39 Lot 234will be absent from the feed yard for the �rst three weeks

of October, when the steering will take place (applied on a valid-

time version of LOT).

-- transformed insertion

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

DATE �1998-10-22�, TO_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE <= DATE �1998-10-01�

AND TO_DATE > DATE �1998-10-22�

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-01�

AND TO_DATE >= DATE �1998-10-01�
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UPDATE LOT

SET TO_DATE = DATE �1998-10-01�

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-01�

AND TO_DATE >= DATE �1998-10-01�

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-22�

AND TO_DATE >= DATE �1998-10-22�

UPDATE LOT

SET FROM_DATE = DATE �1998-10-22�

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-22�

AND TO_DATE >= DATE �1998-10-22�

-- transformed deletion

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE >= DATE �1998-10-01�

AND TO_DATE <= DATE �1998-10-22�

DELETE FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE >= DATE �1998-10-01�

AND TO_DATE <= DATE �1998-10-22�

Updates are equivalent to a current deletion followed by a current insertion, and

so can be implemented that way, taking care to correlate these two modi�cations

(pages 186 and 194). The �rst transformation of a sequenced update yields two

insertions and three updates; the second transformation explodes this into eight

statements. In the following sequenced update, the period of applicability is DATE

�1998-03-01� to DATE �1998-04-01�.
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Code Fragment 11.40 The lot was steered only for the month of March.

-- transformed insertion

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, DATE �1998-03-01�, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-03-01�

AND TO_DATE > DATE �1998-03-01�

-- transformed insertion

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

DATE �1998-04-01�, TO_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-04-01�

AND TO_DATE > DATE �1998-04-01�

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-04-01�

AND TO_DATE > DATE �1998-03-01�

UPDATE LOT

SET GNDR_CODE = �s�

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-04-01�

AND TO_DATE > DATE �1998-03-01�

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 799
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AND FROM_DATE < DATE �1998-03-01�

AND TO_DATE > DATE �1998-03-01�

UPDATE LOT

SET FROM_DATE = DATE �1998-03-01�

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-03-01�

AND TO_DATE > DATE �1998-03-01�

-- transformed update

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-04-01�

AND TO_DATE > DATE �1998-04-01�

UPDATE LOT

SET TO_DATE = DATE �1998-04-01�

WHERE LOT_ID_NUM = 799

AND FROM_DATE < DATE �1998-04-01�

AND TO_DATE > DATE �1998-04-01�

Nonsequenced modi�cations (page 197) are rare. They are generally easy to im-

plement in SQL (since they are representational in nature). As with constraints

and queries, a nonsequenced modi�cation treats the timestamps identically to the

other columns. A (nonsequenced/current) deletion turns into a pair of statements

that move the row to the archival store.

Code Fragment 11.41 Delete the recordsof lot 234 thathavedurationgreater than three

months.

-- transformed deletion

INSERT INTO LOT_Archive

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, TO_DATE, START_DATE, CURRENT_DATE

FROM LOT

WHERE LOT_ID_NUM = 234

AND (TO_DATE - FROM_DATE MONTH) > INTERVAL �3� MONTH

DELETE FROM LOT

WHERE LOT_ID_NUM = 234

AND (TO_DATE - FROM_DATE MONTH) > INTERVAL �3� MONTH
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The current and sequenced deletions mention what happened in reality because

they model changes. The nonsequenced statement concerns the speci�c represen-

tation (deleting particular records). Conversely, the associated SQL statements for

the current and sequenced variants are much more complex than that for the

nonsequenced delete for the same reason: the latter is expressed in terms of the

representation.

The following is a current update on a transaction-time table implemented as a

backlog (compare with CF-9.6). All modi�cations on backlogs are implemented as

insertions, with the operation code indicating the type of modi�cation.

Code Fragment 11.42 Correct the backup identi�er for lot 433 to 37.

-- transformed insertion

INSERT INTO LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,

DBF_NAME, DBF_UPDATE_RECNO, WHEN_CHANGED, OPERATION)

SELECT FDYD_ID, LOT_ID, 37, A_NAME, DBF_NAME,

DBF_UPDATE_RECNO, CURRENT_DATE, �I�

FROM LOT_CONTAINS AS L

WHERE LOT_ID_NUM = 433

AND (OPERATION = �I� OR OPERATION = �U�)

AND NOT EXISTS (SELECT *

FROM LOT_CONTAINS AS L2

WHERE L.FDYD_ID = L2.FDYD_ID

AND L.LOT_ID_NUM = L2.LOT_ID_NUM

AND L.WHEN_CHANGED < L2.WHEN_CHANGED)

-- transformed deletion

INSERT INTO LOT_CONTAINS (FDYD_ID, LOT_ID_NUM, BKP_ID, A_NAME,

DBF_NAME, DBF_UPDATE_RECNO, WHEN_CHANGED, OPERATION)

SELECT FDYD_ID, LOT_ID, BKP_ID, A_NAME, DBF_NAME,

DBF_UPDATE_RECNO, CURRENT_DATE, �D�

FROM LOT_CONTAINS AS L

WHERE LOT_ID_NUM = 433

AND BKP_ID <> 37

AND (OPERATION = �I� OR OPERATION = �U�)

AND NOT EXISTS (SELECT *

FROM LOT_CONTAINS AS L2

WHERE L.FDYD_ID = L2.FDYD_ID

AND L.LOT_ID_NUM = L2.LOT_ID_NUM

AND L.BKP_ID = L2.BKP_ID

AND L.WHEN_CHANGED < L2.WHEN_CHANGED)

We �nish with a sequenced/current deletion on a bitemporal table (compare

with CF-10.15).
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Code Fragment 11.43 Lot 234will be absent from the feed yard for the �rst three weeks

of October, when the steering will take place (applied on the

bitemporal version of LOT).

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

DATE �1998-10-22�, TO_DATE, CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-01�

AND TO_DATE > DATE �1998-10-22�

AND STOP_DATE = DATE �9999-12-31�

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

FROM_DATE, DATE �1998-10-01�, CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-01�

AND TO_DATE > DATE �1998-10-01�

AND STOP_DATE = DATE �9999-12-31�

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-01�

AND TO_DATE > DATE �1998-10-01�

AND STOP_DATE = DATE �9999-12-31�

INSERT INTO LOT

SELECT FDYD_ID, LOT_ID_NUM, LOT_ID, GNDR_CODE, PROJ_CLOSEOUT,

IN_WEIGHT, VALID, OWNER, COMMENT,

DATE �1998-10-22�, TO_DATE, CURRENT_TIMESTAMP, DATE �9999-12-31�

FROM LOT

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-22�

AND TO_DATE >= DATE �1998-10-22�

AND STOP_DATE = DATE �9999-12-31�

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

continued on page 396
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continued from page 395

WHERE LOT_ID_NUM = 234

AND FROM_DATE < DATE �1998-10-22�

AND TO_DATE >= DATE �1998-10-22�

AND STOP_DATE = DATE �9999-12-31�

UPDATE LOT

SET STOP_DATE = CURRENT_TIMESTAMP

WHERE LOT_ID_NUM = 234

AND FROM_DATE >= DATE �1998-10-01�

AND TO_DATE <= DATE �1998-10-22�

AND STOP_DATE = DATE �9999-12-31�

11.8 IMPLEMENTATION CONSIDERATIONS

The CD-ROM contains all the code fragments in this chapter in Oracle8 Server. As

in previous chapters, assertions must be implemented as triggers.

As an example, CF-11.17 can be implemented by the following Oracle8 Server

trigger.

Code Fragment 11.44 (LOT CONTAINS.FDYD ID, LOT CONTAINS.BKP ID) is a transaction-

time current foreign key for BKP, in Oracle8.

CREATE TRIGGER LOT CONTAINS Cur Ref Integrity

BEFORE INSERT OR DELETE OR UPDATE ON LOT

DECLARE

valid INTEGER;

BEGIN

SELECT 1

INTO valid

FROM DUAL

WHERE NOT EXISTS (

SELECT *

FROM LOT CONTAINS C

-- C is the last relevant entry

WHERE (C.OPERATION = �I� OR C.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM LOT CONTAINS C2

WHERE C2.FDYD ID = C.FDYD ID

AND C2.LOT ID NUM = C.LOT ID NUM

AND C2.WHEN CHANGED > C.WHEN CHANGED )

-- There is not a match for C in BKP
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AND NOT EXISTS (

SELECT *

FROM BKP B

WHERE B.FDYD ID = C.FDYD ID

AND B.BKP ID = C.BKP ID

-- B is the last relevant entry

AND (B.OPERATION = �I� OR B.OPERATION = �U�)

AND NOT EXISTS (

SELECT *

FROM BKP B2

WHERE B2.FDYD ID = B.FDYD ID

AND B2.BKP ID = B.BKP ID

AND B2.WHEN CHANGED > B.WHEN CHANGED ) ) );

EXCEPTION

WHEN NO DATA FOUND THEN

RAISE APPLICATION ERROR( -20007,

�FDYD ID and BKP ID violate current/current foreign key� );

END;

11.9 SUMMARY

We followed a �ve-step methodology in designing the feed yard application: (1) per-

form conceptual design ignoring time, yielding a conventional ER schema, (2) add

temporal annotations in prose, (3) map the conventional ER schema into a logi-

cal SQL schema, (4) apply the temporal annotations, modifying the logical schema

along the way, and (5) �nish with physical design, including temporal partitioning.

This approach moves consideration of temporal aspects from early in the design

process to much, much later. The methology includes a systematic evaluation of

the temporal aspects of each modeling construct, thereby breaking down the design

task into answering (many) brief questions about individual constructs. Brad char-

acterizes the process as �effecting Descartes's reductionism without losing sight of

the whole.� More pragmatically, initially ignoring time results in less convoluted ER

schemas, fewer errors introduced during logical design, and a deeper understanding

of the application.

11.10 READINGS

This case study was discussed in two articles in the August and September 1998

issues of Database: Programming and Design; the series has been collected in a tech-
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nical report [88]. These articles focused on sequenced queries and on modi�cations

to the gender attribute.

Heidi Gregersen and Christian S. Jensen have surveyed the many temporal entity-

relationship models that have been proposed over the previous two decades [38].

Their model, the Time Extended EER Model (TIMEER [37]), is particularly elegant; I

borrowed heavily from their characterization in my presentation in Section 11.2.2.

TIMEER goes further, by proposing iconic indicators of the temporal aspects spec-

i�ed in this chapter in prose. Their approach to mapping TimeER schemas to the

relational model [39] is the basis for the steps listed in Section 11.3.

Christian S. Jensen and the author have written a comprehensive treatise on tem-

poral logical design [55], as well as a more accessible example of these strategies [57],

which informed the presentation of Section 11.3.2.

The term lifespan was introduced by Manfred Klopprogge [62], time-invariant keys

(TIKs) were �rst mentioned by Shamkant Navathe and Ra� Ahmed [74], and the

concept of temporal specialization was advanced by Christian S. Jensen and the

author [54].

David Landes discusses the alternative divisions puncta and ostenta [65]. He also

summarizes the history of timing races in sports events, which slowly transitioned

from quarter-seconds (1864) to �fths, to tenths (the 1932 Olympics), to hundredths

of a second (the Olympics in the 1970s). �There are few people outside the realm

of organized religion who are as conservative as sports of�cials.� As an example,

instruments capable of resolving hundredths of a second were introduced at the

1924 Paris Olympic games, yet handheld mechanical watches continued to pick

the winner until the 1960 games. Handheld watches generally yielded faster races,

as human judges had a tendency to jump the �nish.

Harrison's marine clocks (H-1 through H-5) provide the central thread of Dava

Sobel's masterful account of the solving of what was considered the greatest scien-

ti�c problem of the time [95]. This short (184-page) and diminutive (13 cm�20 cm)

book, just slightly larger than H-4 itself, has just been reissued as a lavish coffee-

table edition [96], with illustrations located and selected by William Andrewes, and

has inspired a PBS science series, Lost at Sea: The Search for Longitude.
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The case studies in this book have amply

demonstrated that SQL-92 does not look fa-

vorably upon time-oriented applications. Even

the most simple tasks, such as specifying a pri-

mary key or joining two tables, become mired

in complexity when time is introduced.

Fortunately, the clouds part at the hori-

zon. A minor language extension proposed for

SQL3 dramatically simpli�es coding such appli-

cations by providing support for periods, valid

time, and transaction time. In this chapter we

rephrase the applications of previous chapters

using these new constructs. That all can be

reimplemented in a single chapter is an indica-

tion of the reduction in code length and com-

plexity occasioned by these new constructs.

Finally, we examine some public domain

and commercial tools that ease the transition

until temporal support is directly incorporated

into database systems.



Language Directions

T
he case studies have shown that expressing integrity constraints, queries,

and modi�cations on time-varying data in SQL is challenging. We now look

to the future, examining enhancements to SQL that bring temporal process-

ing to the masses. With just a few additional concepts, SQL can as easily express

temporal queries as it does now for nontemporal queries.

12.1 SQL-92

Many knotty problems arise when we have to contend with time-varying data in

SQL-92.

� Avoiding duplicates in a time-varying table requires an aggregate (CF-5.14) or a

complex trigger (e.g., CF-5.26).

� A simple 3-line join when applied to time-varying tables explodes to a 29-line

query consisting of four SELECT statements (CF-6.11) or a complex 23-line state-

ment with four CASE expressions (CF-6.12).

� A 3-line UPDATE of a time-varying table translates into �ve modi�cation state-

ments totaling 27 lines (CF-7.18).

� Maintaining a tracking log requires several triggers comprising some three dozen

lines (CF-9.2).

� The same UPDATE of a bitemporal table translates into eight modi�cation state-

ments totaling 58 lines (CF-10.17)!

In addition to being long, these statements are often highly convoluted, with mul-

tiple levels of correlated subqueries. Clearly something is amiss.

12.2 SQL-92 LIMITATIONS

What is the source of this daunting complexity? While SQL-92 supports time-

varying data through the DATE, TIME, and TIMESTAMP data types, the language
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Second

By de�nition, there are exactly 24 sidereal hours

in a sidereal day, 60 sidereal minutes in a sidereal

hour, and 60 sidereal seconds in a sidereal minute.

However, because the orbit and rotation of the

earth vary slightly, the duration of a sidereal sec-

ond is not constant. So instead, astronomers use an

ephemeris second, which is a constant duration of

time: 1/31,556,925.9747 of the period of the trop-

ical year between the vernal equinoxes of 1899 and

1900. While this may seem an odd de�nition, the

ephemeris second is actually the average value of a

second calculated from astronomical observations

over the 18th and 19th centuries.

The advent of atomic clocks has provided an-

other unit that is �xed for all practical purposes. In

October 1967, the atomic second was adopted as

the fundamental unit of time (the SI second) by the

international standards community, thereby shift-

ing the basis of time from celestial to quantum me-

chanics. Speci�cally, the second in the International

System of Weights and Measures was de�ned to be

9,192,631,770 periods of the radiation emitted by

the transition between two hyper�ne states of the

cesium 133 atom in the ground state. On January

1, 1972, the atomic second became the practical

unit of time. The UTC clock runs just a little fast with

respect to mean solar time, gaining about a second

a year. UTC is adjusted by applying leap seconds on

January 1 or July 1 to keep UTC within 0.7 seconds

of solar time.

really has no notion of a time-varying table. SQL also has no concept of current or

sequenced constraints, queries, modi�cations, or views, nor of the critical distinc-

tion between valid time (modeling the behavior of the enterprise in reality) and

transaction time (capturing the evolution of the stored data). In our terminology,

all that SQL supports is nonsequenced operations, which we saw were often the

least useful.

12.3 SQL3

All the time in the world

Climbs the walls, swells the doors

It goes �ying out the window

All the time in the world. . .

These precious days we live through

Thrown away like tissue

I wish that I could give you all the time in the world

�Beth Nielsen Chapman and Bill Lloyd, �All the Time in the World�

At the heart of this book is the profound revelation that time is much more than

just a column, and that SQL-92 is abysmally de�cient in the constructs it provides

to express time-varying applications. Fortunately, there are now speci�c proposals
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for temporal support in SQL3 that are being considered by the standards commit-

tees (see Section 12.16) and are being incorporated into products by vendors. This

chapter will summarize these new SQL3 constructs and revisit the preceding case

studies, showing how these constructs greatly simplify writing SQL for time-varying

applications. In the following, when I mention an SQL3 construct, I am referring

to the constructs introduced in proposals or already present in the draft SQL3. I

should emphasize that these proposals are still under consideration for SQL3. The

constructs may well change; indeed, SQL3 as a whole is still undergoing re�ne-

ment as it inches towards publication as an international standard. It is doubtful

that SQL/Temporal will reach ISO standard status before the next millennium. That

said, we examine these constructs as an indication of where things are going. Com-

mercial implementations are already starting to appear; it is likely that one of the

prevalent database systems will provide temporal support before such support is

of�cially accepted as part of the SQL3 standard.

We retain the chapter numbers of the case studies as section numbers in this

chapter. As an example, the topic of Chapter 6, querying state tables (in SQL-92),

parallels Section 6 of this chapter, on querying state tables in SQL3. That we can

reimplement in SQL3 in a single chapter all four case studies, which took the bulk

of this book to code in SQL-92, is itself testament to the purity and expressive power

of the new constructs.

12.4 PERIODS

SQL3 has a period type

constructor. Period types can be

constructed from datetime and

exact numeric element types.

SQL3 adds the PERIOD( ) constructor. An SQL data type con-

structor speci�es a new type constructed out of a speci�ed type.

Examples are SQL sets, multisets (i.e., with duplicates), and lists

(i.e., with ordering). In the case of the period type constructor,

you can specify period data types of the SQL datetime data types

as well as of exact numerics with a scale of 0 (i.e., integers).

Hence, the following period data types are available.

� PERIOD(DATE)

� PERIOD(TIME) and PERIOD(TIME WITH TIME ZONE)

� PERIOD(TIMESTAMP) and PERIOD(TIMESTAMP WITH TIME ZONE)

� PERIOD(INT) and PERIOD(INTEGER)

� PERIOD(SMALLINT)

� PERIOD(NUMERIC)

� PERIOD(DECIMAL)

All but the �rst allow a scale (number of fractional digits) to be speci�ed, though

for the last four types, this scale must be 0.
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12.4.1 Period Literals

SQL3 period literals support all

combinations of open and

closed delimiting datetimes.

Period literals are quite complex, for several reasons. First, all

four variants of closed-closed, closed-open, open-closed, and

open-open are supported. The closed variants use square brack-

ets (`[' and `]'); the open variants, parentheses (`(' and `)'). Note,

however, that this distinction concerns the period value that the

literal denotes; it has nothing to do with the internal representation of a period,

which is properly not speci�ed in the standard. Second, the delimiters can each

be a date value (denoting a date period literal), a time value (denoting a time pe-

riod literal), or both (denoting a timestamp period literal). Third, only the ending

delimiter can have an (optional) time zone; if present, it applies to both delim-

iters. Finally, the separator between the delimiting values can be either a minus

sign, in which case there must be spaces around it, or a comma, in which case the

surrounding spaces are optional.

The following are all valid period literals and denote the same value, of type

PERIOD(DATE).

� PERIOD �[1997-01-01 - 1997-12-31]�

� PERIOD �[1997-01-01 - 1998-01-01)�

� PERIOD �(1996-12-31 - 1997-12-31]�

� PERIOD �(1996-12-31 - 1998-01-01)�

� PERIOD �[1997-01-01,1997-12-31]�

The following are also valid literals, of type PERIOD(TIMESTAMP WITH TIME ZONE).

The time zone appears last in the literal.

� PERIOD �[1997-01-01 00:00:00 - 1997-12-31 23:59:59-07:00]�

� PERIOD �[1997-01-01 00:00:00 - 1998-01-01 00:00:00-07:00)�

� PERIOD �(1996-12-31 23:59:59 - 1997-12-31 23:59:59-07:00]�

� PERIOD �(1996-12-31 23:59:59 - 1998-01-01 00:00:00-07:00)�

12.4.2 Predicates

SQL3 de�nes several predicates on periods:

� p OVERLAPS q (discussed for SQL-92 on page 35) is extended in SQL3 to allow

either operand to be a period value, in addition to the datetime-datetime and

datetime-interval pairs supported in SQL-92. p OVERLAPS q implements p overlaps

q _ p overlaps�1 q _ p starts q _ p starts�1 q _ p �nishes q _ p �nishes�1 q _ p

during q _ p during�1 q _ p equals q.

� p PRECEDES q implements before.

� p SUCCEEDS q implements before�1.

� p MEETS q implements p meets q _ p meets�1 q.
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The Hour Hand (First Major Advance)

There have been three great transitions marking

the increasing accuracy of clocks, enabled through

technological advance. Interestingly, while some

2000 years separated the �rst from the third tran-

sition, the latter came about just as this book was

being written.

The �rst major advance was the addition of an

hour hand, or indicator, on a sundial when an ac-

curacy of suf�ciently less than a day was possible.

As we saw in the �Hours� sidebar in Chapter 2, the

Chaldeans around 300 B.C.E. divided the day into

12 parts, based on the night being also divided into

12 parts, measuring these hours on a sundial.

� p CONTAINS q implements p during q ^ p 6= q.

SQL3 raises an exception if the result of a period constructor is not a valid period.

12.4.3 Constructors

SQL3 adds several datetime constructors:

� BEGIN implements beginning.

� END implements ending.

� LAST implements last.

� PRIOR implements �-1�, when applied to a datetime. Hence, previous(p) can be

expressed in SQL3 as PRIOR(BEGIN(p)).

� NEXT implements �+1�, when applied to a datetime.

SQL3 adds one interval constructor, INTERVAL(p), which implements duration.

An interval quali�er can also be speci�ed, as in INTERVAL(p DAY).

SQL3 adds several period constructors:

� PERIOD[a, b) yields a period beginning at a and ending at b ; closed-closed, open-

closed, and open-open variants are also included.

� p P UNION q implements `[' over periods; an exception is raised if NOT p OVERLAPS

q.

� p P EXCEPT q implements `�' over periods; an exception is raised if p CONTAINS q

OR q CONTAINS p.

� p P INTERSECT q implements `\' over periods; an exception is raised if NOT p

OVERLAPS q.

� CAST(p AS type) allows you to change the granularity of p.

Table 12.1 summarizes how the period operations can be implemented in SQL/

Temporal. In the �rst column, p and q denote period values, and i denotes an
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interval value. The OVERLAPS in the �rst column, next-to-last line of the predicates

is the SQL-92 OVERLAPS predicate.

12.5 DEFINING VALID-TIME STATE TABLES

The University Information System consists of some 300 tables, 4 of which are listed

below:

EMPLOYEES(SSN, LAST NAME, FIRST NAME, ANNUAL SALARY)

INCUMBENTS(SSN, PCN)

POSITIONS(PCN, JOB TITLE CODE1)

JOB TITLES(JOB TITLE CODE, JOB TITLE)

These tables are snapshot tables, in that they capture the current state of the mod-

eled reality. The EMPLOYEES table speci�es each employee's current annual salary,

the INCUMBENTS table identi�es the position code for each current employee, and

the POSITIONS and JOB TITLES tables in concert provide the job title(s) for each

position. SQL3 can express many useful queries on these tables.

Code Fragment 12.1 What is Bob's position?

SELECT JOB TITLE CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

SQL3 can also express integrity constraints on such tables. The following is an

especially useful one.

Code Fragment 12.2 (SSN, PCN) is a sequenced primary key for INCUMBENTS.

ALTER TABLE INCUMBENTS ADD PRIMARY KEY (SSN, PCN)

Valid-time support is speci�ed

in SQL3 with an ADD VALIDTIME

clause.

To indicate that the history of the time-changing reality is to

be captured in the INCUMBENTS table, valid-time support is added

to that table, associating with each row a period indicating when

that row was valid in reality. SQL3 includes speci�c constructs to

de�ne, query, and modify tables with valid-time support.
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Table 12.1 Period operations in SQL3.

Period Operations SQL3 Equivalent

Types:

period PERIOD(datetime type)

Predicates:

p equals q p = q

p before q p PRECEDES q

p before�1 q p SUCCEEDS q

p meets q END(p) = BEGIN(q)

p meets�1 q END(q) = BEGIN(p)

p overlaps q BEGIN(p) < BEGIN(q) AND BEGIN(q) < END(p)

p overlaps�1 q BEGIN(q) < BEGIN(p) AND BEGIN(p) < END(q)

p during q BEGIN(q) < BEGIN(p) AND END(p) < END(q)

p during�1 q BEGIN(p) < BEGIN(q) AND END(q) < END(p)

p starts q BEGIN(p) = BEGIN(q) AND END(p) < END(q)

p starts�1 q2 BEGIN(p) = BEGIN(q) AND END(q) < END(p)

p �nishes q BEGIN(q) < BEGIN(p) AND END(p) = END(q)

p �nishes�1 q BEGIN(p) < BEGIN(q) AND END(p) = END(q)

p OVERLAPS q p OVERLAPS q

p IS NULL p IS NULL

Datetime Constructors:

beginning(p) BEGIN(p)

previous(p) PRIOR(BEGIN(p))

last(p) LAST(p)

ending(p) END(p)

Interval Constructors:

duration(p) INTERVAL(p), INTERVAL(p AS qual )

extract time zone(p) CAST(EXTRACT(TIMEZONE HOUR

FROM BEGIN(p)) AS HOUR) +

CAST(EXTRACT(TIMEZONE MINUTE

FROM BEGIN(p)) AS MINUTE)

Period Constructors:

p + i PERIOD[BEGIN(p) + i, END(p) + i)

i + p PERIOD[BEGIN(p) + i, END(p) + i)

p - i PERIOD[BEGIN(p) - i, END(p) - i)

p extend q not possible

p \ q p P INTERSECT q

p - q p P EXCEPT q

p [ q p P UNION q

p AT TIME ZONE i PERIOD[BEGIN(p) AT TIME ZONE i,

END(p) AT TIME ZONE i)

p AT LOCAL PERIOD[BEGIN(p) AT LOCAL,

END(p) AT LOCAL)

Other Operators:

CAST(a AS PERIOD) PERIOD[a, a]

CAST(p AS CHAR) CAST(p AS CHAR)
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Code Fragment 12.3 Add valid-time support to INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME PERIOD(DATE)

The period initially associated with each row has the indicated granularity, here,

day, of �now� (that is, CURRENT DATE) to �forever� (that is, �9999-12-31�).

12.5.1 Temporal Keys and Uniqueness

The primary key was speci�ed when INCUMBENTS was a snapshot table. An important

property of SQL3 is that such integrity constraints continue to hold after valid-time

support is added. This property is termed temporal upward compatibility, and requires

that each integrity constraint on an associated snapshot database (e.g., the original

INCUMBENTS table) be interpreted to hold on the current time-slice of the temporal

counterpart of the database (the table with valid-time support).

Constraints expressed on

nontemporal tables are

interpreted in SQL3 as current

constraints when valid-time

support is added to the table.

When INCUMBENTS did not have valid-time support, it mod-

eled the current reality. As position assignments changed, the

table was modi�ed to re�ect the new situation. Integrity con-

straints such as primary and foreign keys applied to the infor-

mation currently in the table.

When history is retained, by adding valid-time support to the

table, these integrity constraints still apply to the current infor-

mation. Temporal upward compatibility thus implies that exist-

ing constraints on a nontemporal table become current constraints when valid-time

support is added to the table. Compare the primary key constraint, CF-12.2 above,

which still holds, with CF-5.12, which does the same thing in SQL-92, but requires

nine lines in a CHECK constraint.

An SQL-92 statement can be

converted into a sequenced

statement in SQL3 simply by

prepending VALIDTIME.

This primary key constraint is perfectly �ne if only current

modi�cations are made to the table. If sequenced or nonse-

quenced modi�cations are possible, then we need to ensure that

the primary key holds on all instants of time, even when the

information valid on a particular day may be changed by a later

modi�cation. For that, we need a sequenced primary key con-

straint: �No employee can have the same position more than once simultaneously.�

In SQL3, any statement can be rendered sequenced by prepending the reserved

word VALIDTIME.

Code Fragment 12.4 (SSN, PCN) is a sequenced primary key for INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME PRIMARY KEY (SSN, PCN)

Compare this with CF-5.8, a 10-line CHECK constraint containing an aggregate and

two levels of nested subqueries.
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The Minute Hand (Second Major Advance)

After the hour hand was invented around 300

B.C.E., the next transition had to await the passage

of two millennia, to Huygens's pendulum clock in

1656 C.E. The dramatic vault in accuracy afforded

by the pendulum enabled the addition of a minute

hand. It is dif�cult to imagine now a society in

which time was known only to roughly an hour.

As we've seen throughout this book,

the sequenced variant is generally the

one to use. It is for that reason that the

SQL3 syntax is designed to succinctly in-

dicate that a sequenced semantics is de-

sired.

As one further example, consider the

uniqueness constraint: �No employee

can have two identical positions.� On

the original, nontemporal INCUMBENTS

table, this is expressed as a uniqueness

constraint.

Code Fragment 12.5 Prevent duplicates in INCUMBENTS.

ALTER TABLE INCUMBENTS ADD UNIQUE (SSN, PCN)

When valid-time support is added to the INCUMBENTS table, this constraint

continues to be interpreted as current uniqueness.

Expressing sequenced uniqueness, �At no time can an employee have two

identical positions,� requires but a single additional reserved word.

Code Fragment 12.6 Prevent sequenced duplicates in INCUMBENTS.

ALTER TABLE INCUMBENTS ADD VALIDTIME UNIQUE (SSN, PCN)

(Compare with CF-5.14.)

12.5.2 Referential Integrity

We now revisit the various kinds of referential integrity (RI) and show how they

may be expressed with the proposed constructs by examining the four cases from

Section 5.6.

Case 1 Neither table is temporal.

Assume initially that neither the INCUMBENTS nor the POSITIONS table has

temporal support. Referential integrity can then be expressed in SQL-92 as follows:

Code Fragment 12.7 INCUMBENTS.PCN is a foreign key for POSITIONS.PCN (neither table

is temporal).

ALTER TABLE INCUMBENTS

ADD FOREIGN KEY (PCN) REFERENCES POSITIONS
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Case 2 Only the referencing table is temporal.

When valid-time support was added to the INCUMBENTS table, via ADD VALID-

TIME PERIOD, the foreign key constraint still applies directly. It translates to a

current constraint: �For each currently valid row of INCUMBENTS, the PCN is also

in POSITIONS.� Temporal upward compatibility ensures that applications are not

broken when temporal support is added to an underlying table.

Case 3 Both tables are temporal.

We now add temporal support to the referenced table, POSITIONS.

Code Fragment 12.8 INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (both

tables are temporal).

ALTER TABLE POSITIONS ADD VALIDTIME PERIOD(DATE)

Unlike the complex statements

required in SQL-92, the

sequenced variant in SQL3 is

almost identical to the

nontemporal analog.

The foreign key speci�ed above (CF-12.7) when applied to refer-

encing and referenced tables with valid-time support continues

to be interpreted as a current foreign key. (Compare with the

SQL-92 version, CF-5.20, at 12 lines.)

The sequenced RI constraint, �At each point in time, each in-

cumbent's PCN is valid at that time,� is the most natural applica-

tion of the nontemporal RI constraint to time-varying informa-

tion. This required a complex 32-line assertion (CF-5.21). Using

the proposal constructs, only one additional keyword, VALIDTIME, is necessary to

obtain a sequenced integrity constraint.

Code Fragment 12.9 INCUMBENTS.PCN is a sequenced foreign key for POSITIONS.PCN

(both tables are temporal).

ALTER TABLE INCUMBENTS

ADD VALIDTIME FOREIGN KEY (PCN) REFERENCES POSITIONS

An SQL-92 statement can be

converted into a nonsequenced

statement in SQL3 simply by

prepending NONSEQUENCED

VALIDTIME.

A nonsequenced RI constraint (�For each value of INCUM-

BENTS.PCN, there existed at some, possibly different, time that

value in POSITIONS.PCN�) is equally simple to specify: we need

only prepend the reserved word NONSEQUENCED. While non-

sequenced constraints (and queries) are notoriously awkward

to express in English, their translations to SQL-92 and SQL3

are almost identical, differing only in that single reserved word

NONSEQUENCED.
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Code Fragment 12.10 INCUMBENTS.PCN is a nonsequenced foreign key for

POSITIONS.PCN (both tables are temporal).

ALTER TABLE INCUMBENTS ADD NONSEQUENCED VALIDTIME

FOREIGN KEY (PCN) REFERENCES POSITIONS

Case 4 Only the referenced table is temporal.

Here we drop the temporal support on the referencing table.

Code Fragment 12.11 INCUMBENTS.PCN is a current foreign key for POSITIONS.PCN (only

POSITIONS is temporal).

ALTER TABLE INCUMBENTS DROP VALIDTIME

The original RI constraint, CF-12.7, continues to apply and is equivalent to the 10-

line assertion in CF-5.24, in which every PCN value in INCUMBENTS must also occur

in the current state of the POSITIONS table.

In summary, temporal upward compatibility ensures that existing constraints,

such as the referential integrity constraint of CF-12.7, are interpreted as current

constraints when applied to tables with valid-time support. Sequenced constraints

are speci�ed by prepending VALIDTIME.

12.6 QUERYING STATE TABLES

Although INCUMBENTS now has valid-time support, standard SQL queries still

apply directly, retrieving (as before valid-time support was added) the current

information.

Code Fragment 12.12 What is Bob's position?

SELECT JOB TITLE CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

This query is identical to CF-6.2 on the original INCUMBENTS table, without valid-

time support. This is another example of temporal upward compatibility (TUC).

TUC in this context requires that each query will return the same result on an as-

sociated snapshot database (e.g., the original INCUMBENTS table) as on the temporal

counterpart of the database (the table with valid-time support).

TUC applies uniformly to all corners of the language. CF-6.3 requires 10 lines

in SQL-92, but is shorter in SQL3 because the timestamp columns need not be

mentioned.
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Code Fragment 12.13 What is Bob's current position and salary?

SELECT JOB TITLE CODE1, AMOUNT

FROM EMPLOYEES, INCUMBENTS, POSITIONS, SAL HISTORY

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND SAL HISTORY.SSN = EMPLOYEES.SSN

Code Fragment 12.14 What employees currently have no position?

SELECT FIRST NAME

FROM EMPLOYEES

WHERE NOT EXISTS ( SELECT *

FROM INCUMBENTS

WHERE EMPLOYEES.SSN = INCUMBENTS.SSN)

(Compare with CF-6.4.)

12.6.1 Extracting States

A valid time-slice query is

nonsequenced, with the

associated timestamp period

compared with the speci�ed

instant.

A valid time-slice query is nonsequenced. It is not a current

query because it involves information in the past or future, and

it is not a sequenced query because the result of the query has

no timestamp.

Nonsequenced queries are signaled by the NONSEQUENCED

reserved word in SQL3. Additionally, the valid time-slice query

needs to access the period timestamp to ensure information

valid at the speci�ed date is retrieved. To access the valid

timestamp of a row, use the VALIDTIME( ) function, which evaluates to a period.

Code Fragment 12.15 What was Bob's position at the beginning of 1997?

NONSEQUENCED VALIDTIME SELECT JOB TITLE CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND VALIDTIME(INCUMBENTS) OVERLAPS DATE �1997-01-01�

(Compare with CF-6.5.)

12.6.2 Sequenced Queries

In all cases, a nontemporal query can be rendered sequenced by simply prepending

VALIDTIME.
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Code Fragment 12.16 Whomakes or has mademore than $50,000annually?

VALIDTIME SELECT *

FROM SAL HISTORY

WHERE AMOUNT > 50000

Code Fragment 12.17 List the social security numbers of current and past employees.

VALIDTIME SELECT SSN

FROM SAL HISTORY

In CF-6.7, we had to explicitly mention the timestamp columns. Here, SQL3

handles them automatically.

Code Fragment 12.18 Sequenced sort INCUMBENTS on the position code (�rst version).

VALIDTIME SELECT *

FROM INCUMBENTS

ORDER BY PCN

Here again, we needn't be concerned with where the timestamp columns should be

placed in the ORDER BY clause (compare with CF-6.8).

Code Fragment 12.19 Whomakes or has mademore than $50,000 annually or less than

$10,000?

VALIDTIME SELECT *

FROM SAL HISTORY

WHERE AMOUNT > 50000

UNION ALL

SELECT *

FROM SAL HISTORY

WHERE AMOUNT < 10000

Here, the VALIDTIME applies to the entire query expression, which is SELECT . . .

UNION ALL SELECT . . ..

Sequenced joins are quite dif�cult in SQL-92, but only require adding one re-

served word in SQL3. The sequenced variant in SQL3 of a nontemporal query re-

tains the nontemporal query, adding only VALIDTIME. In SQL-92, converting to

the sequenced analog requires completely rewriting the query.

Code Fragment 12.20 Provide the salary and position history for all employees.

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

In SQL-92, this query required some four UNIONs and 29 lines (CF-6.11), or four

CASE expressions and 23 lines (CF-6.12), or two SQL/PSM FUNCTIONs (CF-6.14).
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The Second Hand (Not a Major Advance)

While the minute hand was invented in 1656, af-

ter a period of two millennia, the second hand

appeared astonishingly quickly, after but three

decades, in 1690, for doctors' watches. The second

hand was perfectly �ne for determining a person's

pulse rate, but was of little use in telling the time,

for watches weren't, and generally still aren't, of

suf�cient accuracy to need a second hand: the sec-

ond hand carries no information as to which in-

stant it is. In 1776, an independent second train,

an extraordinarily complex mechanical device, was

invented to start and stop the second hand. That

most modern watches do not have such a facility

is more a testament to marketing (implying that

the watch is accurate to the second) than to util-

ity or performance. The second hand on the watch

on your wrist is undoubtedly of the same use as

on watches of 300 years ago: to provide a visual

indication that your watch hadn't stopped.

Nested queries are similarly converted into their sequenced analog.

Code Fragment 12.21 List the employees who are or were department heads but were

not also professors.

VALIDTIME SELECT SSN

FROM INCUMBENTS AS I1

WHERE PCN = 455332

AND NOT EXISTS (SELECT *

FROM INCUMBENTS AS I2

WHERE I2.SSN = I1.SSN

AND I2.PCN = 821197)

The entire query, including the nested portion, is (conceptually) evaluated inde-

pendently at each instant. This query requires four SELECTs UNIONed together, or

45 lines of SQL-92 (CF-6.18).

This query can also be expressed via EXCEPT.

Code Fragment 12.22 List the employees who are or were department heads but were

not also professors (an equivalent version).

VALIDTIME SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197
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12.6.3 Nonsequenced Queries

Nonsequenced queries require (naturally) the NONSEQUENCED adverb in SQL3.

As before, the timestamp is available via VALIDTIME( ).

Code Fragment 12.23 List all the salaries, past and present, of employees who had been

a hazardous waste specialist at some time.

NONSEQUENCED VALIDTIME SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL HISTORY

WHERE INCUMBENTS.SSN = SAL HISTORY.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND JOB TITLE CODE1 = 20730

The phrases �past and present� and �at some time� indicate that the query is a

nonsequenced one. This query in SQL3 is similar to the SQL-92 variant (CF-6.19);

the only difference is the two added keywords.

Code Fragment 12.24 When did employees receive raises?

NONSEQUENCED VALIDTIME

SELECT S2.SSN, BEGIN(VALIDTIME(S2)) AS RAISE DATE

FROM SAL HISTORY AS S1, SAL HISTORY AS S2

WHERE S2.AMOUNT > S1.AMOUNT

AND S1.SSN = S2.SSN

AND VALIDTIME(S1) MEETS VALIDTIME(S2)

Here, we access the timestamp in two places, in the SELECT clause, where we

grab the beginning date of the timestamp (we could have just as easily used

END(VALIDTIME(S1))), and in the WHERE clause. The MEETS predicate is quite

useful in such situations.

A nonsequenced query does not view the underlying table with valid-time sup-

port as a sequence of states; rather, it views the underlying table as one with an

additional timestamp column (of type period) that can be accessed in the query via

the function VALIDTIME( ).

12.6.4 Eliminating Duplicates

Duplicate removal of any variant�current, sequenced, or nonsequenced�is spec-

i�ed in SQL3 using DISTINCT. You will notice an appealing consistency to the

following three queries:

Code Fragment 12.25 Remove current duplicates from INCUMBENTS.

SELECT DISTINCT SSN, PCN

FROM INCUMBENTS
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Code Fragment 12.26 Remove sequenced duplicates from INCUMBENTS.

VALIDTIME SELECT DISTINCT SSN, PCN

FROM INCUMBENTS

Code Fragment 12.27 Remove nonsequenced duplicates from INCUMBENTS.

NONSEQUENCED VALIDTIME SELECT DISTINCT *

FROM INCUMBENTS

The SQL-92 queries (CF-6.23, CF-6.24�6.26, and CF-6.21, respectively) vary dramat-

ically, from 2 lines for nonsequenced to 19�30 lines for sequenced.

12.7 MODIFYING STATE TABLES

SQL3's explicit support for current, sequenced, and nonsequenced statements

applies equally to modi�cation statements.

12.7.1 Current Modi�cations

Modi�cations that don't involve the new reserved words when applied to tables

with valid-time support are interpreted as current modi�cations.

Code Fragment 12.28 Bob joins as associate director of the Computer Center.

INSERT INTO INCUMBENTS

VALUES (111223333, 999071)

Current modi�cations in SQL3

are the same whether applied to

nontemporal tables or to tables

with valid-time support.

The default timestamp of PERIOD[CURRENT DATE, DATE �9999-

12-31�) is automatically provided when the underlying table

has valid-time support. Current uniqueness, primary key, and

referential integrity constraints are automatically maintained, so

the gymnastics of CF-7.2�CF-7.5 is not necessary.

Code Fragment 12.29 Bobwas just �red as associate director of the Computer Center.

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

Compare with CF-7.7, in which a current deletion in the restricted case is imple-

mented in SQL-92 as an UPDATE, or CF-7.8, in which a current deletion in the

general case is implemented as an UPDATE and a DELETE statement.
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Code Fragment 12.30 Today, Bobwas promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Compare with CF-7.10 and CF-7.11. In particular, no complex case analysis is

required.

12.7.2 Sequenced Modi�cations

The period of applicability of a

sequenced modi�cation is

speci�ed in SQL3 immediately

after VALIDTIME.

A current modi�cation applies from �now� to �forever.� A se-

quenced modi�cation generalizes this to apply over a speci�ed

period of applicability, which could be in the past, in the future,

or overlap �now.�

In SQL3, the period of applicability is speci�ed immediately

after VALIDTIME.

Code Fragment 12.31 Bob was assigned the position of associate director of the Com-

puter Center for 1997.

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� INSERT INTO INCUMBENTS

VALUES (111223333, 999071)

Of course, all (current and sequenced) primary key and referential integrity con-

straints continue to be checked. In SQL-92, these must be checked within the

insertion (CF-7.13 and CF-7.14).

Deletions also allow a period of applicability to be speci�ed.

Code Fragment 12.32 Bob was removed as associate director of the Computer Center

for 1997.

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� DELETE FROM INCUMBENTS

WHERE SSN=111223333

AND PCN = 999071

(Compare with CF-7.16.)

Code Fragment 12.33 Bobwas promoted to director of the Computer Center for 1997.

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Compare with CF-7.18, which consists of �ve separate SQL-92 statements. No

complex case analysis is required.



418 CHAPTER TWELVE : LANGUAGE D IR ECT IONS

A True Second Hand (Third Major Advance)

The hour hand was invented around 300 B.C.E.,

and the minute hand in 1656. A truly accurate sec-

ond hand is just now becoming prevalent, in the

form of radio watches that enclose Lilliputian radio

receivers that tune into signals to synchronize with

the standard atomic clocks. The most inexpensive

of these watches retails for about $100 at the time

of this writing and will certainly fall dramatically in

price as production and demand ramp up and as

economies of scale come into play. You can mar-

vel that one of the three most momentous transi-

tions in horology over 2300 years occurred in your

lifetime.

12.7.3 Nonsequenced Modi�cations

As with constraints and queries, a nonsequenced modi�cation treats the period

timestamp (available via the VALIDTIME( ) function) identically to the other

columns.

Code Fragment 12.34 Delete Bob's records that include 1997 stating that he was asso-

ciate director of the Computer Center.

NONSEQUENCED VALIDTIME DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND VALIDTIME(INCUMBENTS) CONTAINS DATE �1997-12-31�

The CONTAINS predicate is particularly useful here.

Code Fragment 12.35 Extend Bob's position as associate director of the Computer Cen-

ter for an additional year.

NONSEQUENCED VALIDTIME UPDATE INCUMBENTS

SET VALIDTIME = PERIOD(BEGIN(VALIDTIME(INCUMBENTS)),

END(VALIDTIME(INCUMBENTS)) + INTERVAL �1� YEAR]

WHERE SSN = 111223333

AND PCN = 999071

The SQL-92 and SQL3 versions of

nonsequenced modi�cations are

quite similar.

In comparison with CF-7.20, this is one of the few situations in

which the SQL3 version is longer (in this case, by one line) than

the SQL-92 version. Except for details of syntax, though, the two

versions are very similar.

12.7.4 Modi�cations That Mention Other Tables

When one or more tables are rendered temporal, existing constraints, queries, and

modi�cations still apply over the period of applicability of �now� to �forever.�
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Code Fragment 12.36 Bob is promoted to director of the Computer Center (current

version).

UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB TITLES

WHERE POSITIONS.JOB TITLE CODE1 = JOB TITLE CODE

AND JOB TITLE = �DIRECTOR, COMPUTER CENTER�)

WHERE SSN = 111223333

Even complex sequenced

modi�cations over several tables

can be easily expressed in SQL3

via the VALIDTIME construct.

It is perhaps no longer surprising that this requires some 30 lines

of SQL-92 code (CF-7.22).

You will also be able to easily express this update as a

sequenced update, over a period of validity of the year 1997.

Code Fragment 12.37 Bob was promoted to director of the Computer Center for 1997

(sequenced version).

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� UPDATE INCUMBENTS

SET PCN = (SELECT PCN

FROM POSITIONS, JOB TITLES

WHERE POSITIONS.JOB TITLE CODE1 = JOB TITLE CODE

AND JOB TITLE = �DIRECTOR, COMPUTER CENTER�)

WHERE SSN = 111223333

(Compare with CF-7.24, requiring eight SQL-92 statements and 77 lines.)

12.7.5 Temporal Partitioning*

Temporal partitioning is an

aspect of physical design.

Temporal partitioning is effectively a physical design aspect, and

as such should not impact the expression of queries or modi�ca-

tions on the partitioned table. Of course, as SQL-92 does not in-

clude the notion of tables with valid-time support, the partition-

ing must be implemented manually by the application programmer. As an analogy,

if a DBMS didn't implement indexes, then they might be simulated by the appli-

cation programmer via additional tables, which would dramatically complicate the

SQL code.

In SQL3, temporal partitioning

has no impact on queries.

As SQL3 does support tables with valid-time support, it en-

ables the underlying DBMS to include partitioning. A speci�c

syntax for specifying temporal partitioning is not included in

SQL3 for the same reason that syntax to specify indexing is not

included in SQL-92.

In the following, we assume that temporal partitioning of the INCUMBENTS table

has been speci�ed in some DBMS-speci�c manner.
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Code Fragment 12.38 What is Bob's current position (partitioned)?

SELECT JOB TITLE CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

This is similar to CF-7.25, with the exception that the original table, INCUMBENTS, is

mentioned, rather than the current store, INCUMBENTS CURRENT.

Code Fragment 12.39 Provide the salary and department history for all employees

(partitioned).

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

Incredibly, this requires 50 lines in SQL-92 (CF-7.26).

Current modi�cations work as before.

Code Fragment 12.40 Bob was assigned the position of associate director of the Com-

puter Center (partitioned).

INSERT INTO INCUMBENTS

VALUES (111223333, 6201945234)

This is quite similar to the SQL-92 version (CF-7.27). The SQL3 version will also

ensure that no current or sequenced integrity constraints are violated.

Code Fragment 12.41 Bob was �red as associate director of the Computer Center

(partitioned).

DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

SQL3 really shines in sequenced operations.

Code Fragment 12.42 Bob was removed as associate director of the Computer Center

for 1997 (partitioned).

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

(Compare with the eight statements of CF-7.30.) Note that the core of the mod-

i�cation in SQL3 is unaffected by either the modi�cation being sequenced or an

underlying table being temporally partitioned.
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Code Fragment 12.43 Bob was promoted to director of the Computer Center for 1997

(partitioned).

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

(Compare with CF-7.31 at 57 lines.)

12.8 RETAINING A TRACKING LOG

The previous sections concerned tables with valid-Time support, capturing the his-

tory of the modeled reality. A tracking log is a quite different animal, as it captures

the history of the table itself, allowing prior states to be retrieved. The states of the

database at all previous points of time are retained, and modi�cations are append-

only. Changes are not allowed on the past states, as that would prevent secure

auditing. Instead, compensating transactions are used to correct errors.

SQL3 supports transaction time in a fashion parallel to valid time, utilizing the

TRANSACTIONTIME reserved word.

12.8.1 De�ning Transaction-Time Tables

The simplest way to implement a tracking log is to add transaction-time support

to the monitored table. Transaction-time support may be speci�ed in SQL3 with a

simple ADD TRANSACTIONTIME.

Code Fragment 12.44 Add transaction-time support to the PROJECTIONS table.

ALTER TABLE PROJECTIONS ADD TRANSACTIONTIME

Unlike valid-time support, the granularity is not speci�ed, but instead is provided

by the DBMS. Previously de�ned integrity constraints, such as PROJECTION ID being

a primary key, are retained, interpreted as current constraints. Accomplishing this

in SQL-92 required a set of triggers (CF-8.2).

The representation of a table

with transaction-time support in

SQL3 is speci�ed with physical

design statements supported by

the DBMS.

The DBMS is now responsible for maintaining transaction time for us. In partic-

ular, we don't have to worry about an application inadvertently

corrupting past states (say, by incorrectly altering the timestamp

columns), or a white-collar criminal intentionally �changing

history� to cover up his tracks. The DBMS simply does not per-

mit past states to be modi�ed.

The DBMS controls the representation of a table with

transaction-time support. It might utilize a single instant time-

stamp, termed a tracking log on page 220, a pair of instants or
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a period as a timestamp, an instant timestamp coupled with an operation code,

termed a backlog on page 233, or a backlog with after-images. The DBMS may

provide syntax to choose among several representations; such physical design

statements are not included in SQL3.

12.8.2 Queries

A query on the current state of a table with transaction-time support is trivial:

simply omit any mention of time.

Code Fragment 12.45 List the information on projection 5.

SELECT *

FROM PROJECTIONS

WHERE PROJECTION ID = 5

To reconstruct the table as of some point in the past, a transaction-time

nonsequenced query is required.

Code Fragment 12.46 Reconstruct the PROJECTIONS table as of April 1, 1996.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION TYPE, SPHEROID CODE, PROJECTION UOM, ZONE CODE

FROM PROJECTIONS AS P

WHERE TRANSACTIONTIME(P) OVERLAPS DATE �1996-04-01�

Here we use the TRANSACTIONTIME( ) function to access the transaction time-

stamp associated with each row. Compare with CF-8.3.

This can also be de�ned as a view.

Code Fragment 12.47 Reconstruct the PROJECTIONS table as of April 1, 1996, as a view.

CREATE VIEW April PROJECTIONS

( PROJECTION ID, PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE)

AS (NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION TYPE, SPHEROID CODE, PROJECTION UOM, ZONE CODE

FROM PROJECTIONS AS P

WHERE TRANSACTIONTIME(P) OVERLAPS DATE �1996-04-01�)

CF-8.5 showed how to convert P Log to a transaction-time state table. Here, PRO-

JECTIONS is already a state table. So perhaps an analogous operation would be to

convert the PROJECTIONS table to one containing a When Changed column.
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More on the Second Hand

Another way to have a watch accurate to a sec-

ond is to frequently synchronize it with a known

source of that accuracy. To do so, you can call by

phone various national time services, such as the

one in Boulder, Colorado. Often such services also

broadcast the current time by radio, which can be

listened to manually, or automatically, by the clock

itself. Such radio-controlled clocks and watches be-

came suf�ciently inexpensive for wide distribution

only in 1998.

I have such a clock in my bedroom. It cost $79

and is accurate to within a second, resynchroniz-

ing itself each night, by tuning into the appropriate

frequency. With such a handy comparison, I �nd

it easy to keep my watch to within a second or

two of the correct time, and can thus con�dently

provide a highly accurate answer to the question

�What time is it?�

With such an accurate chronometer, I have dis-

covered that the Public Broadcasting Service starts

its news service right on the half-hour, to the sec-

ond, as does Headline News on the Cable News

Network (CNN). However, the digital clock display

in the lower right of the picture of CNN's Head-

line News is inexplicably off: tonight it is some 24

seconds behind, and I've seen it wrong by several

minutes.

Code Fragment 12.48 Convert PROJECTIONS to an instant-stamped table.

CREATE VIEW P Log

(PROJECTION ID, PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

When Changed)

AS ( NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

END(TRANSACTIONTIME(PROJECTIONS)) )

FROM PROJECTIONS

WHERE END(TRANSACTIONTIME(PROJECTIONS)) < CURRENT TIMESTAMP

Transaction-time sequenced

queries are signaled in SQL3

with the TRANSACTIONTIME

pre�x.

Since all currently active rows have a transaction timestamp

ending at �now,� we eliminate those in the WHERE clause, since

they haven't been previously changed.

Transaction-time sequenced queries (�when was it recorded�)

are easy on tables with transaction-time support: just prepend

TRANSACTIONTIME.

Code Fragment 12.49 Whenwas it recorded that a projection had a type of 17?

TRANSACTIONTIME SELECT PROJECTION ID, PROJECTION TYPE

FROM PROJECTIONS State

WHERE PROJECTION TYPE = 17
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Code Fragment 12.50 List the projections recorded as having the same USGS zone code

as the projection with ID 13447.

TRANSACTIONTIME SELECT S1.PROJECTION NAME

FROM PROJECTIONS state AS S1, PROJECTIONS state AS S2

WHERE S1.ZONE CODE = S1.ZONE CODE

AND S2.PROJECTION ID = 13447

AND S1.PROJECTION ID <> 13447

(Compare with CF-8.18.)

Another kind of nonsequenced query is the conversion to a tracking log (com-

pare with CF-9.12�9.14), containing before-images, containing after-images, or as a

backlog, respectively.

Code Fragment 12.51 Extract before -images from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

END(TRANSACTIONTIME(PROJECTIONS)) AS When Changed

FROM PROJECTIONS

WHERE END(TRANSACTIONTIME(PROJECTIONS)) <> CURRENT TIMESTAMP

Code Fragment 12.52 Extract after-images from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

BEGIN(TRANSACTIONTIME(PROJECTIONS)) AS When Changed

FROM PROJECTIONS

Code Fragment 12.53 Extract a backlog from a transaction-time state table.

NONSEQUENCED TRANSACTIONTIME SELECT PROJECTION ID,

PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

BEGIN(TRANSACTIONTIME(P1)) AS When Changed, �I� AS Operation

FROM PROJECTIONS AS P1

WHERE NOT EXISTS ( SELECT *

FROM PROJECTIONS AS P2

WHERE P1.PROJECTION ID = P2.PROJECTION ID

AND TRANSACTIONTIME(P2) MEETS TRANSACTIONTIME(P1))

UNION

SELECT PROJECTION ID, PROJECTION NAME, PROJECTION TYPE,

SPHEROID CODE, PROJECTION UOM, ZONE CODE,

END(TRANSACTIONTIME(P1)) AS When Changed, �D� AS Operation
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FROM PROJECTIONS AS P1

WHERE END(TRANSACTIONTIME(P1)) <> CURRENT TIMESTAMP

AND NOT EXISTS ( SELECT *

FROM PROJECTIONS AS P2

WHERE P1.PROJECTION ID = P2.PROJECTION ID

AND TRANSACTIONTIME(P1) MEETS TRANSACTIONTIME(P2))

UNION

SELECT P1.PROJECTION ID, P1.PROJECTION NAME,

P1.PROJECTION TYPE, P1.SPHEROID CODE,

P1.PROJECTION UOM, P1.ZONE CODE,

BEGIN(TRANSACTION(P2)) AS When Changed, �U� AS Operation

FROM PROJECTIONS AS P1, PROJECTIONS AS P2

WHERE P1.PROJECTION ID = P2.PROJECTION ID

AND TRANSACTIONTIME(P1) MEETS TRANSACTIONTIME(P2)

Here again MEETS turns out to be quite useful.

12.8.3 Modi�cations

Sequenced and nonsequenced modi�cations are not permitted on tables with

transaction-time support, as suchmodi�cations would violate the semantics of such

tables. Instead, only current modi�cations are allowed. Such modi�cations in SQL3

are expressed on tables with transaction-time support without mention of time.

Code Fragment 12.54 Insert a projection with an ID of 6.

INSERT INTO PROJECTIONS (PROJECTION ID, PROJECTION NAME,

PROJECTION TYPE, SPHEROID CODE, PROJECTION UOM,

ZONE CODE)

VALUES (6, �New Projection�, 22, 14, 93, 4)

(Compare with CF-9.4.)

Code Fragment 12.55 Delete projection 2.

DELETE FROM PROJECTIONS

WHERE PROJECTION ID = 2

Code Fragment 12.56 Change the type of projection 1 to 43.

UPDATE PROJECTIONS

SET PROJECTION TYPE = 43

WHERE PROJECTION ID = 1

Temporal upward compatibility ensures that such modi�cations, which don't

mention time, maintain the prior states.
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12.9 TRANSACTION-TIME STATE TABLES

As mentioned previously, the representation of a table with temporal support is a

physical design concern. The DBMS may provide syntax to choose among several

representations; such physical design statements are not included in SQL3. Hence,

the queries and modi�cations presented above are still appropriate for a period-

stamped representation. Here, we present the remaining queries.

12.9.1 Queries

As with valid time, a sequenced transaction-time pre�x applies to the entire query,

in the following case, to the UNION.

Code Fragment 12.57 Give the change history for projections having a type of 12 or 18.

TRANSACTIONTIME SELECT PROJECTION ID

FROM P TT

WHERE PROJECTION TYPE = 12

UNION

SELECT PROJECTION ID

FROM P TT

WHERE PROJECTION TYPE = 18

(Compare with CF-9.9.)

Code Fragment 12.58 When was it recorded that two projections had the same type?

TRANSACTIONTIME SELECT P1.PROJECTION ID, P2.PROJECTION ID,

P1.PROJECTION TYPE

FROM PROJECTIONS AS P1, PROJECTIONS AS P2

WHERE P1.PROJECTION ID <> P2.PROJECTION ID

AND P1.PROJECTION TYPE = P2.PROJECTION TYPE

Auditing queries are often transaction-time nonsequenced queries.

Code Fragment 12.59 When was the type of a projection erroneously changed to be

identical to that of an existing projection?

NONSEQUENCED TRANSACTIONTIME SELECT P1.PROJECTION ID,

P1.PROJECTION TYPE AS Identical TYPE,

P3.PROJECTION TYPE AS Prior TYPE,

BEGIN(TRANSACTIONTIME(P2)) AS When Changed

FROM P TT AS P1, P TT AS P2, P TT AS P3

WHERE P1.PROJECTION ID <> P2.PROJECTION ID

AND P2.PROJECTION ID = P3.PROJECTION ID

AND P1.PROJECTION TYPE = P2.PROJECTION TYPE

AND P2.PROJECTION TYPE <> P3.PROJECTION TYPE

AND TRANSACTIONTIME(P3) MEETS TRANSACTIONTIME(P2)
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The MEETS predicate is quite handy for �change� queries. Compare with CF-9.11.

12.9.2 Temporal Partitioning and Vacuuming

Temporal partitioning is representational, and thus in the domain of physical de-

sign. You could envision the DBMS providing an ADD PARTITIONING clause to the

ALTER TABLE statement.

As with all physical design decisions, such a statement would not impact the

speci�cation of queries or modi�cations. Hence, the code fragments given above

work perfectly �ne with a temporally partitioned representation.

Vacuuming is not yet supported in SQL3.

12.10 BITEMPORAL TABLES

Valid-time support and

transaction-time support in

concert result in a bitemporal

table.

Valid-time support and transaction-time support are orthogonal

in SQL3. They can be used separately, as above, or together, re-

sulting in a table with both kinds of support, termed a bitemporal

table.

Code Fragment 12.60 Create the Prop Owner table.

CREATE TABLE Prop Owner (

customer number INT,

property number INT)

AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME

While the granularity of the valid timestamp is speci�ed by the user (here, to a

granularity of day), the granularity of the transaction timestamp is supplied by the

DBMS.

As before, nontemporal queries, views, constraints, assertions, and modi�ca-

tions are interpreted as current (in both valid time and transaction time) when

applied to a bitemporal table. The concepts of temporal upward compatibility, se-

quenced semantics, and nonsequenced semantics apply orthogonally to valid time

and transaction time.

The semantics is dictated by three simple rules:

� The absence of VALIDTIME (respectively, TRANSACTIONTIME) indicates valid-

time (transaction-time) upward compatibility. The result of such a query does

not include valid-time (transaction-time) support.

� VALIDTIME (respectively, TRANSACTIONTIME) indicates sequenced valid (trans-

action) semantics. An optional period expression temporally scopes the result.

The result of such a query includes valid-time (transaction-time) support.
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� NONSEQUENCED denotes nonsequenced valid (respectively transaction) se-

mantics. An optional period expression after NONSEQUENCED VALIDTIME

(TRANSACTIONTIME) provides a valid-time (transaction-time) timestamp, yield-

ing valid-time (transaction-time) support in the result.

The valid-time and transaction-time clauses can be used together in assertions

and constraints.

Code Fragment 12.61 property number is a (valid-time sequenced, transaction-time se-

quenced) primary key for Prop Owner.

CREATE ASSERTION P O seq primary key

VALIDTIME AND TRANSACTIONTIME PRIMARY KEY (property number)

(Compare with CF-10.2.)

Code Fragment 12.62 The customer number in Prop Owner is a foreign key referenc-

ing the Customer table (valid-time sequenced/transaction-time

current version).

ALTER TABLE Prop Owner ADD

VALIDTIME FOREIGN KEY (customer number) REFERENCES Customer

(Compare with CF-10.49, at 48 lines, and CF-10.50, 18 lines.)

12.10.1 Queries

We start with time-slice queries, which are generally nonsequenced in one dimen-

sion. The �rst is a transaction time-slice query, resulting in a table with valid-time

support (as such, it is sequenced in valid time).

Code Fragment 12.63 Give the history of owners of the �at at Skovvej 30 in Aalborg as

of January 1, 1998.

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT customer number

FROM Prop Owner

WHERE property number = 7797

AND TRANSACTIONTIME(Prop Owner) OVERLAPS DATE �1998-01-01�

The result is a table with one column, customer number, and one (valid) period

timestamp. Here we again use the TRANSACTIONTIME function to extract the

transaction timestamp. Compare with CF-10.19.

The OVERLAPS predicate is not required for a current transaction time-slice.

Code Fragment 12.64 Give the history of owners of the �at at Skovvej 30 in Aalborg as

best known.

VALIDTIME SELECT customer number

FROM Prop Owner

WHERE property number = 7797
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The valid time-slice results in a transaction-time state table; it is nonsequenced

in valid time but sequenced in transaction time.

Code Fragment 12.65 Whenwas the information about the owners of the �at at Skovvej

30 in Aalborg on January 4, 1998, recorded in the Prop Owner

table?

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME

SELECT customer number FROM Prop Owner

WHERE property number = 7797

AND VALIDTIME(Prop Owner) OVERLAPS DATE �1998-01-04�

Here, the result has a transaction timestamp.

A bitemporal time-slice takes as input two instants, a valid-time and a

transaction-time instant, and results in a snapshot state of the information regard-

ing the enterprise at that valid time, as recorded in the database at that transaction

time. It is nonsequenced in both valid and transaction time.

Code Fragment 12.66 Give the owner of the �at at Skovvej 30 in Aalborg on January 13

as stored in the Prop Owner table on January 18.

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT customer number

FROM Prop Owner

WHERE property number = 7797

AND VALIDTIME(Prop Owner) OVERLAPS DATE �1998-01-13�

AND TRANSACTIONTIME(Prop Owner) OVERLAPS DATE �1998-01-18�

The result includes no implicit timestamps.

The current bitemporal time-slice is particularly easy to write in SQL3.

Code Fragment 12.67 Give the owner of the �at at Skovvej 30 in Aalborg today as best

known.

SELECT customer number

FROM Prop Owner

WHERE property number = 7797

All combinations of current,

sequenced, and nonsequenced

queries over valid time and

transaction time are easily

expressed in SQL3.

Again, the result has but one column, and no implicit time-

stamps.

The orthogonality of valid-time and transaction-time support

enables us to combine in arbitrary ways current, sequenced, and

nonsequenced semantics for both kinds of time, resulting in

nine temporal variants of every nontemporal query. Current in

valid time translates in English to �at now�; sequenced trans-

lates to �at the same time�; and nonsequenced translates to �at

any time.� Current in transaction time translates to �as best known�; sequenced
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translates to �when did we think�; and nonsequenced translates to �when was it

recorded� or �when was it corrected.�

We illustrate this by providing all variants of the query �What properties are

owned by the customer who owns property 7797?�, repeating the nine cases

from Section 10.3.2. Unlike SQL-92, in which the variants can differ, sometimes

dramatically, in SQL3 all the variants are identical, save their pre�xes.

Case 1 Valid-time current and transaction-time current

Code Fragment 12.68 What properties are owned by the customer who owns property

7797, as best known?

SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

(Compare with CF-10.26.)

Case 2 Valid-time sequenced and transaction-time current

Code Fragment 12.69 What properties are or were owned by the customer who owned

at the same time property 7797, as best known?

VALIDTIME SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

Case 3 Valid-time nonsequenced and transaction-time current

Code Fragment 12.70 What properties were owned by the customer who owned at any

time property 7797, as best known?

NONSEQUENCED VALIDTIME SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner
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Case 4 Valid-time current and transaction-time sequenced

Code Fragment 12.71 What properties did we think are owned by the customer who

owns property 7797?

TRANSACTIONTIME SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

Case 5 Valid-time sequenced and transaction-time sequenced

Code Fragment 12.72 When did we think that some property, at some time, was owned

by the customer who owned at the same time property 7797?

VALIDTIME AND TRANSACTIONTIME SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

Case 6 Valid-time nonsequenced and transaction-time sequenced

Code Fragment 12.73 When did we think that some property, at some time, was owned

by the customer who owned at any time property 7797?

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME

SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

Case 7 Valid-time current and transaction-time nonsequenced

Code Fragment 12.74 When was it recorded that a property is owned by the customer

who owns property 7797, as best known?

NONSEQUENCED TRANSACTIONTIME SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner
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Case 8 Valid-time sequenced and transaction-time nonsequenced

Code Fragment 12.75 When was it recorded that a property is or was owned by the

customer who owned at the same time property 7797?

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

Case 9 Valid-time nonsequenced and transaction-time nonsequenced

Code Fragment 12.76 Whenwas it recorded that a propertywas owned by the customer

who owned at some time property 7797?

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT P2.property number, BEGIN(TRANSACTIONTIME(P2)) AS Recorded Start

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner

We end with the remaining bitemporal queries presented in the Nykredit chap-

ter, providing additional examples of combinations of valid and transaction time

with current, sequenced, and nonsequenced queries.

Code Fragment 12.77 What is the estimated value of the property at Bygaden 4

(current/current)?

SELECT estimated value

FROM Property AS P

WHERE P.address = �Bygaden 4�

Code Fragment 12.78 Who owns the property at Bygaden 4 (current/current)?

SELECT name

FROM Prop Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property number = PO.property number

AND C.customer number = PO.customer number

(Compare with CF-10.36, at 14 lines.)
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Code Fragment 12.79 How has the estimated value of the property at Bygaden 4 varied

over time (sequenced/current)?

VALIDTIME SELECT estimated value

FROM Property AS P

WHERE P.address = �Bygaden 4�

Code Fragment 12.80 Who has owned the property at Bygaden 4 (sequenced/current)?

VALIDTIME SELECT name

FROM Prop Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property number = PO.property number

AND C.customer number = PO.customer number

Code Fragment 12.81 When was the estimated value for the property at Bygaden 4

stored (current/nonsequenced)?

NONSEQUENCED TRANSACTIONTIME

SELECT estimated value, BEGIN(TRANSACTIONTIME(Property))

AS Recorded Start

FROM Property

WHERE address = �Bygaden 4�

Code Fragment 12.82 Who has owned the property at Bygaden 4, and when was this

information recorded (sequenced/nonsequenced)?

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT name, BEGIN(TRANSACTIONTIME(PO)) AS PO Recorded,

BEGIN(TRANSACTIONTIME(C)) AS C Recorded,

BEGIN(TRANSACTIONTIME(P)) AS P Recorded Start

FROM Prop Owner AS PO, Customer AS C, Property AS P

WHERE P.address = �Bygaden 4�

AND P.property number = PO.property number

AND C.customer number = PO.customer number

Code Fragment 12.83 List all retroactive changes made to the Prop Owner table

(nonsequenced/nonsequenced).

NONSEQUENCED VALIDTIME VALIDTIME(Prop Owner)

AND NONSEQUENCED TRANSACTIONTIME

SELECT customer number, property number,

BEGIN(TRANSACTIONTIME(Prop Owner)) AS Recorded Start

FROM Prop Owner

WHERE BEGIN(VALIDTIME(Prop Owner))

< BEGIN(TRANSACTIONTIME(Prop Owner))
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Following NONSEQUENCED

VALIDTIME with a period

expression in SQL3 renders the

result a table with valid-time

support.

Here we see an expression appearing after NONSEQUENCED

VALIDTIME. This renders the result a table with valid-time sup-

port, with the speci�ed period forming the period of valid-

ity of the row. The resulting table will have three columns,

customer number, property number, and Recorded Start; each

row will also be associated with a valid timestamp.

12.10.2 Integrity Constraints

The following assertion is nonsequenced in valid time and current in transaction

time:

Code Fragment 12.84 Prop Owner.property number de�nes a contiguous valid-time

history.

CREATE ASSERTION P O Contiguous History

NONSEQUENCED VALIDTIME CHECK (NOT EXISTS (SELECT *

FROM Prop Owner AS P, Prop Owner AS P2

WHERE END(VALIDTIME(P)) < BEGIN(VALIDTIME(P2)

AND P.property number = P2.property number

AND NOT EXISTS (

SELECT *

FROM Prop Owner AS P3

WHERE P3.property number = P.property number

AND ((BEGIN(VALIDTIME(P3)) <= END(VALIDTIME(P)))

AND (END(VALIDTIME(P) < END(VALIDTIME(P3))))

OR ((BEGIN(VALIDTIME(P3)) < BEGIN(VALIDTIME(P2)))

AND (BEGIN(VALIDTIME(P2)) <= END(VALIDTIME(P3)))))) )

))

SQL3 integrity constraints on

bitemporal tables can be any

combination of current,

sequenced, and nonsequenced.

(Compare with CF-10.3.)

As with queries, assertions (and constraints and views) can

also include with combinations of valid-time and transaction-

time sequenced and nonsequenced pre�xes. Compare with

CF-10.44�10.46.

Code Fragment 12.85 A customer who owns property 7797 shall own no other property

(current/current).

CREATE ASSERTION CHECK ( NOT EXISTS (

SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner))
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Code Fragment 12.86 A customer who owned property 7797 shall concurrently own no

other property (sequenced/current).

CREATE ASSERTION VALIDTIME CHECK ( NOT EXISTS (

SELECT *

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner))

Code Fragment 12.87 A customer who owned property 7797 shall own no other prop-

erty, even at a different time (nonsequenced/current).

CREATE ASSERTION NONSEQUENCED VALIDTIME CHECK ( NOT EXISTS (

SELECT P2.property number

FROM Prop Owner AS P1, Prop Owner AS P2

WHERE P1.property number = 7797

AND P2.property number <> P1.property number

AND P1.property owner = P2.property owner))

12.10.3 Modi�cations

Current modi�cations in SQL3 on

bitemporal tables are identical

to their nontemporal

counterparts.

During modi�cations the DBMS provides the transaction time

of facts, in contrast with the valid time, which is provided by

the user. This derives from the different semantics of trans-

action time and valid time. Speci�cally, when a fact is (logi-

cally) deleted from a table with transaction-time support, its

transaction-stop time is set automatically by the DBMS to the

current time, �now.� When a fact is inserted into the table, its transaction-start

time is set by the DBMS, again to the current time. An update is treated, con-

cerning the transaction timestamps, as a deletion followed by an insertion. The

transaction times that a set of modi�cation transactions give to the modi�ed rows

must be consistent with the serialization order of those transactions. Most impor-

tantly, though, the semantics of transaction time across modi�cation statements is

maintained automatically by the DBMS. No user intervention is required, and no

mention of transaction time is indicated, or is even possible, in modi�cations of

tables with transaction-time support, including bitemporal tables.

Current valid-time modi�cations are identical to their nontemporal versions.

Code Fragment 12.88 Eva Nielsen buys the �at at Skovvej 30 in Aalborg on January 10,

1998.

INSERT INTO Prop Owner (customer number, property number)

VALUES (145, 7797)

(Compare with CF-10.4.)
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Code Fragment 12.89 Peter Olsen sells the �at on January 20, 1998.

DELETE FROM Prop Owner

WHERE property number = 7797

Code Fragment 12.90 Peter Olsen buys the �at on January 15, 1998, a current update.

UPDATE Prop Owner

SET customer number = 827

WHERE property number = 7797

The period of applicability for

valid-time sequenced

modi�cations in SQL3 is

speci�ed immediately following

the VALIDTIME pre�x.

A current modi�cation carries with it an implied period of ap-

plicability of �now� to �forever.� Sequenced modi�cations have

an implied period of applicability of all of time: �beginning� to

�forever.� In the latter, though, the user can specify a different

period of applicability, right after the VALIDTIME reserved word.

Code Fragment 12.91 Eva actually purchased the �at on January 3, performed on Jan-

uary 23.

VALIDTIME PERIOD �[1998-01-03 - 1998-01-10)�

INSERT INTO Prop Owner (customer number, property number)

VALUES (145, 7797)

Code Fragment 12.92 Eva actually purchased the �at on January 5.

VALIDTIME PERIOD �[1998-01-02 - 1998-01-5)� DELETE FROM Prop Owner

WHERE property number = 7977

Code Fragment 12.93 Peter actually purchased the �at on January 12.

VALIDTIME PERIOD �[1998-01-12 - 1998-01-15)� UPDATE Prop Owner

SET customer number = 145

WHERE property number = 7797

AND customer number <> 145

Code Fragment 12.94 Delete all records with a valid-time duration of exactly one week.

NONSEQUENCED VALIDTIME DELETE Prop Owner

WHERE INTERVAL(PERIOD(Prop Owner)) = INTERVAL �7� DAY

12.10.4 Temporal Partitioning and Vacuuming

As has been emphasized before, temporal partitioning is a physical design deci-

sion, and as such has no impact on the expression of SQL3 queries, modi�cations,

integrity constraints, and so on.

Vacuuming hasn't yet been speci�ed for SQL3.
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Internet Time

New requirements inspire new clocks. Consider the

netizen, trying deep into the night to connect via

a chatroom with a correspondent halfway across

the world. Via email, he had suggested a ren-

dezvous time, expressed in her local time, but he

was off by an hour, and they miss their opportu-

nity. Swatch, the Swiss watch company, responded

with the Webmaster, a watch (retailing at 100. SFr)

that displays both the local time and Internet Time,

based on Biel Mean Time (BMT). Internet Time is

the same time the world over, so no conversions

are necessary. He tells his cyber partner to check in

at 750 BMT, or more colloquially, at 750 Swatch

Beats, which corresponds, on this crisp winter day,

to 6 P.M. in Biel, Switzerland (Central European

Wintertime), 10 A.M. in Tucson, Arizona (Mountain

Standard Time), and 4 A.M. (Eastern Summer Time)

in Sydney, Australia.

Each day contains 1000 Swatch Beats, each 1

minute and 26.4 seconds long. The BMT meridian

may be seen on the façade of the Swatch Inter-

national Headquarters on Jakob-Staemp�i Street in

Biel.

12.11 CAPSTONE CASE

In this last case, Brad's feed yard application, everything comes together. This is

actually the third time we're attacking this application. The �rst time was in Chap-

ter 2, where we surveyed the major concepts and expressed queries and modi�-

cations in prose. In Chapter 11 we showed how to design temporal applications,

using this case. Here, we reexpress the schema, queries, and modi�cations in SQL3,

as yet another example of how these constructs simplify development of temporal

applications.

12.11.1 Temporal Relational Schema

Section 11.1 emphasized a �ve-step methodology for database design: (1) perform

conceptual design ignoring time, yielding a conventional ER schema, (2) add tem-

poral annotations in prose, (3) map the conventional ER schema into a logical SQL

schema, (4) apply the temporal annotations, modifying the logical schema along

the way, and (5) �nish with physical design, including temporal partitioning.

When using SQL3, we retain the �rst three steps and greatly simplify the fourth

step. The �fth step is DBMS-dependent, as the SQL3 standard does not include

constructs for physical schema speci�cation.

We start with the output from the third step: the initial nontemporal logical

schema shown in Figure 11.2. We then apply the temporal annotations, paralleling

the material in Section 11.3.2.
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User-De�ned Time Attributes

Attributes whose type is period can use the SQL3 PERIOD type directly, rather than

simulating these with two instant columns.

Entity Lifespans

To each table corresponding to an entity type for which the lifespan or valid time

of an associated attribute is captured, we add an AS VALIDTIME clause. One entity

type has a recorded lifespan: LOT.

Code Fragment 12.95 LOT is a valid-time state table.

ALTER TABLE LOT ADD VALIDTIME PERIOD(DATE)

Relationship Valid Time

For tables corresponding to

entity and relationship types for

which valid time is to be

recorded, use an AS VALIDTIME

clause in SQL3.

To each table corresponding to a relationship type with a recorded valid-time ex-

tent, or having attribute(s) whose valid time is recorded, we add an AS VALIDTIME

clause.

As indicated in Table 11.1, the valid time of three relationship

types, LOCATION, MOVE, and MASS TRTMNT, is recorded. The

LOCATION relationship type has a temporal extent; the other

two are instantaneous relationship types. All three must use a

period timestamp because SQL3 does not (yet) support event ta-

bles, that is, tables with an instant timestamp. Instead, a period

of a single granule will be used.

For LOCATION and MOVE, the granularity is denoted as �Sub-DAY� in

Table 11.1. The MOVE ORDER column was used to differentiate multiple moves on

a single day. As this is not possible in SQL3, we specify a granularity of MINUTE for

the associated tables.

Code Fragment 12.96 LOT LOC, LOT MOVE, and MASS TRTMNT have valid-time support.

ALTER TABLE LOT LOC ADD VALIDTIME PERIOD(TIMESTAMP MINUTE)

ALTER TABLE LOT MOVE ADD VALIDTIME PERIOD(TIMESTAMP MINUTE)

ALTER TABLE MASS TRTMNT ADD VALIDTIME PERIOD(DATE)

Valid Time of Attributes

Tables should be decomposed so that all attributes in a table have identical temporal

support. No temporal decomposition is indicated here.
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Transaction Time

TRANSACTIONTIME without a

stated granularity may be used

in SQL3.

For each table associated with an entity or relationship type

for whose transaction-time periods are recorded, or that are

associated with attribute(s) whose transaction-time periods are

recorded, the AS TRANSACTIONTIME clause should be used.

SQL3 provides the granularity for transaction time; it may not be speci�ed by the

user.

Code Fragment 12.97 LOT, LOT MOVE, LOT LOC, and BKP are transaction-time tables.

ALTER TABLE LOT ADD TRANSACTIONTIME

ALTER TABLE LOT MOVE ADD TRANSACTIONTIME

ALTER TABLE LOT LOC ADD TRANSACTIONTIME

ALTER TABLE BKP ADD TRANSACTIONTIME

As the LOT, LOT MOVE, and LOT LOC tables already had valid timestamps, adding

transaction-time support renders them bitemporal.

Transaction-time support may

induce additional temporal

support decomposition.

As with valid time, we must also consider temporal support de-

composition. Most of the attributes in LOT are bitemporal, but

BKP ID, A NAME, DBF NAME, and DBF UPDATE RECNO, because they

were inherited from the CONTAINS relationship type, which

records only transaction time, do not vary in valid time, and

thus differ from the other attributes in that table in their temporal support.

We move those attributes to a separate transaction-time table, LOT CONTAINS, and

include the primary key of LOT.

Code Fragment 12.98 Move the BKP ID, A NAME, DBF NAME, and DBF UPDATE RECNO

columns into a separate transaction-time table.

ALTER TABLE LOT DROP COLUMN BKP ID

ALTER TABLE LOT DROP COLUMN A NAME

ALTER TABLE LOT DROP COLUMN DBF NAME

ALTER TABLE LOT DROP COLUMN DBF UPDATE RECNO

CREATE TABLE LOT CONTAINS (FDYD ID, LOT ID NUM, BKP ID, A NAME,

DBF NAME, DBF UPDATE RECNO,

PRIMARY KEY (FDYD ID, LOT ID NUM),

FOREIGN KEY (FDYD ID, LOT ID NUM) REFERENCES LOT

)

AS TRANSACTIONTIME
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Primary Keys

In SQL3, the primary key should

re�ect the temporal support

accorded the table.

For tables with valid-time support, the primary key should be valid-time sequenced;

for tables with transaction-time support, the primary key should

be transaction-time sequenced.

The original primary key for these tables, which is interpreted

as current/current, can be dropped if the table has some kind of

temporal support. The collected result of these changes is shown

in Figure 12.1.

Time-invariant primary keys are

inherently nonsequenced.

The primary key for the BACKUP entity type is transaction-

time invariant, which is translated into a NONSEQUENCED

TRANSACTIONTIME PRIMARY KEY.

Referential Integrity

Referential integrity constraints are inherently sequenced. The pre�x for FOREIGN

KEY depends on the temporal support of both participating tables:

� Both tables have valid-time support. The pre�x should be VALIDTIME, indicating a

valid-time sequenced foreign key.

� Only the referencing table has valid-time support. The pre�x should be NON-

SEQUENCED VALIDTIME, indicating a valid-time nonsequenced foreign key,

ignoring the timestamp of the referencing table.

� The referencing table does not have valid-time support. No pre�x should be used,

indicating a valid-time current foreign key, which applies to the current state of

the referenced table, should it have valid-time support, and to the table as it is,

should it not have valid-time support.

The same rules hold for transaction-time support. Generally, in SQL3, if both the

referencing table and the referenced table have valid-time support, then VALID-

TIME is indicated; if only the referencing table has valid-time support, then NON-

SEQUENCED VALIDTIME is indicated. Transaction-time support is analogously

handled.

Uniqueness Constraints

As with all integrity constraints, the presence of temporal support implies a se-

quenced constraint. The one exception is time-invariant integrity constraints,

which are inherently nonsequenced. This may be seen in the uniqueness clause

of the LOT table.

In SQL3, integrity constraints should re�ect the temporal support accorded the

table and be interpreted as sequenced. Time-invariant integrity constraints, which

hold over all time, correspond to nonsequenced integrity constraints.
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FDYD (FDYD ID, NAME, FDYD SHORT NAME, FDYD MNGR LNAME, . . .,

PRIMARY KEY (FDYD ID),

UNIQUE (FDYD SHORT NAME)

)

CREATE TABLE PEN (FDYD ID, PEN ID, PEN TYPE CODE, BUNK LENGTH,

APRON WIDTH, PEN AREA, WATER SPACE, BKP ID,

PRIMARY KEY (FDYD ID, PEN ID),

FOREIGN KEY (FDYD ID) REFERENCES FDYD,

FOREIGN KEY (FDYD ID, BKP ID) REFERENCES BKP

)

CREATE TABLE APPLICATION (A NAME, A DESCRIPTION, A DATA DIRECTORY,

PRIMARY KEY (A NAME)

)

CREATE TABLE DBF FILE (A NAME, DBF NAME, DBF DESCRIPTION, DBF USED,

PRIMARY KEY (A NAME, DBF NAME),

FOREIGN KEY (A NAME) REFERENCES APPLICATION

)

CREATE TABLE LOT (FDYD ID, NAME, LOT ID NUM, LOT ID, GNDR CODE,

PROJ CLOSEOUT, IN WEIGHT, VALID, OWNER, COMMENT, BKP ID,

A NAME, DBF NAME, DBF UPDATE RECNO,

VALIDTIME AND TRANSACTIONTIME PRIMARY KEY (FDYD ID, LOT ID NUM),

FOREIGN KEY (FDYD ID) NONSEQUENCED VALIDTIME

REFERENCES FDYD,

NONSEQUENCED VALIDTIME AND TRANSACTIONTIME

UNIQUE (FDYD ID, LOT ID NUM, LOT ID)

)

AS VALIDTIME PERIOD(DATE) AND TRANSACTIONTIME

CREATE TABLE LOT CONTAINS (FDYD ID, LOT ID NUM, BKP ID, A NAME,

DBF NAME, DBF UPDATE RECNO,

TRANSACTIONTIME PRIMARY KEY (FDYD ID, LOT ID NUM),

FOREIGN KEY (FDYD ID, LOT ID NUM) TRANSACTIONTIME REFERENCES LOT,

FOREIGN KEY (FDYD ID, BKP ID) REFERENCES BKP,

FOREIGN KEY (A NAME, DBF FILE) REFERENCES DBF FILE

)

AS TRANSACTIONTIME

CREATE TABLE BKP (FDYD ID, BKP ID, YEAR MONTH, DATE PROCESSED,

QUIRKS, VTRC LAST DATE MOD, BRDR LAST DATE MOD,

ARCH LAST DATE MOD,

Figure 12.1 SQL3 schema.
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NONSEQUENCED TRANSACTIONTIME PRIMARY KEY (FDYD ID, BKP ID),

FOREIGN KEY (FDYD ID) REFERENCES FDYD

)

AS TRANSACTIONTIME

CREATE TABLE LOT MOVE (FDYD ID, LOT ID NUM, FROM PEN ID, TO PEN ID,

HD CNT, BKP ID, A NAME, DBF NAME,

VALIDTIME AND TRANSACTIONTIME PRIMARY KEY

(FDYD ID, LOT ID NUM, FROM PEN ID, TO PEN ID),

FOREIGN KEY (FDYD ID, LOT ID NUM) VALIDTIME AND TRANSACTIONTIME

REFERENCES LOT,

FOREIGN KEY (FDYD ID, FROM PEN ID) NONSEQUENCED VALIDTIME

REFERENCES PEN (FDYD ID, PEN ID),

FOREIGN KEY (FDYD ID, TO PEN ID) NONSEQUENCED VALIDTIME

REFERENCES PEN (FDYD ID, PEN ID),

FOREIGN KEY (FDYD ID, BKP ID) NONSEQUENCED VALIDTIME

REFERENCES BKP,

FOREIGN KEY (A NAME, DBF FILE) NONSEQUENCED VALIDTIME

REFERENCES DBF FILE

)

VALIDTIME PERIOD(TIMESTAMP MINUTE) AND TRANSACTIONTIME

CREATE TABLE LOT LOC (FDYD ID, LOT ID NUM, PEN ID, HD CNT,

YEAR MONTH,

VALIDTIME AND TRANSACTIONTIME PRIMARY KEY

(FDYD ID, LOT ID NUM, PEN ID),

FOREIGN KEY (FDYD ID, LOT ID NUM) VALIDTIME AND TRANSACTIONTIME

REFERENCES LOT,

FOREIGN KEY (FDYD ID, PEN ID) NONSEQUENCED VALIDTIME

REFERENCES PEN

)

AS VALIDTIME PERIOD(TIMESTAMP MINUTE) AND TRANSACTIONTIME

CREATE TABLE MASS TRTMNT (FDYD ID, LOT ID NUM, PEN ID,

M TRTMNT AVG WGT,

VALIDTIME PRIMARY KEY (FDYD ID, LOT ID NUM, PEN ID),

FOREIGN KEY (FDYD ID, LOT ID NUM) VALIDTIME REFERENCES LOT,

FOREIGN KEY (FDYD ID, PEN ID) NONSEQUENCED VALIDTIME

REFERENCES PEN,

FOREIGN KEY (FDYD ID, BKP ID) NONSEQUENCED VALIDTIME

REFERENCES BKP

)

AS VALIDTIME PERIOD(DAY)

Figure 12.1 (continued)
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12.11.2 Queries

As we've seen from the previous case studies, queries on time-varying tables are

much easier to express in SQL3 than in SQL-92. We continue this comparison with

the queries in Section 11.7.1.

Code Fragment 12.99 How many head of cattle from lot 219 in yard 1 are (currently) in

each pen?

SELECT PEN ID, HD CNT

FROM LOT LOC

WHERE FDYD ID = 1 AND LOT ID NUM = 219

Code Fragment 12.100 Give the history of how many head of cattle from lot 219 in

yard 1were in each pen.

VALIDTIME SELECT PEN ID, HD CNT FROM LOT LOC

WHERE FDYD ID = 1 AND LOT ID NUM = 219

Code Fragment 12.101 How many head of cattle from lot 219 in yard 1 were, at

some time, in each pen?

NONSEQUENCED SELECT PEN ID, HD CNT

FROM LOT LOC

WHERE FDYD ID = 1 AND LOT ID NUM = 219

Temporal joins are handled in the same way.

Code Fragment 12.102 Which lots are currently coresident in a pen?

SELECT DISTINCT L1.LOT ID NUM, L2.LOT ID NUM, L1.PEN ID

FROM LOT LOC AS L1, LOT LOC AS L2

WHERE L1.LOT ID NUM < L2.LOT ID NUM

AND L1.FDYD ID = L2.FDYD ID

AND L1.PEN ID = L2.PEN ID

Code Fragment 12.103 Which lots were in the same pen, perhaps at different times?

NONSEQUENCED VALIDTIME

SELECT DISTINCT L1.LOT ID NUM, L2.LOT ID NUM, L1.PEN ID

FROM LOT LOC AS L1, LOT LOC AS L2

WHERE L1.LOT ID NUM < L2.LOT ID NUM

AND L1.FDYD ID = L2.FDYD ID

AND L1.PEN ID = L2.PEN ID
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Code Fragment 12.104 Give the history of lots being coresident in a pen.

VALIDTIME SELECT DISTINCT L1.LOT ID NUM, L2.LOT ID NUM, L1.PEN ID

FROM LOT LOC AS L1, LOT LOC AS L2

WHERE L1.LOT ID NUM < L2.LOT ID NUM

AND L1.FDYD ID = L2.FDYD ID

AND L1.PEN ID = L2.PEN ID

Code Fragment 12.105 Provide the state of the LOT CONTAINS table on January 12,

1998.

NONSEQUENCED TRANSACTIONTIME

SELECT LOT ID NUM, BKP ID, A NAME, DBF NAME, DBF UPDATE RECNO

FROM LOT CONTAINS AS L

WHERE TRANSACTIONTIME(L) OVERLAPS DATE �1998-01-12�

Code Fragment 12.106 Provide the history of the LOT table as best known on March 15,

1998.

VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT LOT ID NUM, GNDR CODE, PROJ CLOSEOUT, IN WEIGHT,

VALID, OWNER, COMMENT

FROM LOT

WHERE TRANSACTIONTIME(LOT) OVERLAPS DATE �1998-03-15�

Code Fragment 12.107 When were steerings scheduled (as opposed to being recorded

after the fact)?

NONSEQUENCED VALIDTIME AND NONSEQUENCED TRANSACTIONTIME

SELECT S.LOT ID NUM, BEGIN(VALIDTIME(S)) AS When Scheduled,

BEGIN(TRANSACTIONTIME(S)) AS When Recorded

FROM LOT AS C, LOT AS S

WHERE C.FDYD ID = S.FDYD ID

AND C.LOT ID NUM = S.LOT ID NUM

AND C.GNDR CODE = �c� AND S.GNDR CODE = �s�

AND VALIDTIME(C) MEETS VALIDTIME(S)

AND BEGIN(TRANSACTIONTIME(S)) < BEGIN(VALIDTIME(S))

12.11.3 Modi�cations

We start with current modi�cations, which are unchanged from their nontemporal

analogs.

Code Fragment 12.108 Lot 433 arrives today.

INSERT INTO LOT

VALUES (433, �h�)
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Code Fragment 12.109 Lot 101 leaves the feed yard.

DELETE FROM LOT

WHERE LOT ID NUM = 234

Code Fragment 12.110 The cattle in lot 799 are being steered today.

UPDATE LOT

SET GNDR CODE = �s�

WHERE LOT ID NUM = 799

We now consider sequenced modi�cations.

Code Fragment 12.111 Lot 426, a collection of heifers, was on the feed yard fromMarch

26 to April 14.

VALIDTIME INSERT INTO LOT

VALUES (426, �h�)

The following modi�cation will apply regardless of whether LOT has transaction-

time support.

Code Fragment 12.112 Lot 234will be absent fromthe feedyard for the�rst threeweeks

of October, when the steering will take place.

VALIDTIME PERIOD �[1998-10-01 - 1998-10-22)�

DELETE FROM LOT

WHERE LOT ID NUM = 234

Code Fragment 12.113 Lot 799was steered only for the month of March.

VALIDTIME PERIOD �[1998-03-01 - 1998-04-01)�

UPDATE LOT

SET GNDR CODE = �s�

WHERE LOT ID NUM = 799

This update when expressed in SQL-92 requires two INSERT statements and three

UPDATE statements, or some 29 lines of code.

Nonsequenced modi�cations are also straightforward.

Code Fragment 12.114 Delete the records of lot 234 that have duration greater than

threemonths.

NONSEQUENCED VALIDTIME DELETE FROM LOT

WHERE LOT ID NUM = 234

AND INTERVAL(VALIDTIME(LOT) AS MONTH) > INTERVAL �3� MONTH
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Code Fragment 12.115 Correct the backup identi�er for lot 433 to 37.

UPDATE LOT CONTAINS

SET BKP ID = 37

WHERE LOT ID = 433

12.12 MIGRATION

The potential users of the extensions to SQL3 just described are enterprises with

applications that need to manage potentially large amounts of time-varying infor-

mation. In the case studies we just covered, we tacitly assumed that we could code

these applications in SQL3 from scratch. In reality, it is probable that these enter-

prises are already managing time-varying data using SQL-92 (more speci�cally, a

particular variant provided by the DBMS vendor) and that the temporal applica-

tions are already in place and working. Indeed, the uninterrupted functioning of

applications is likely to be of vital importance. The question then becomes how

to recast the application to use the new SQL3 constructs. We provide an effective

migration path by identifying four successively more general levels of queries and

modi�cations.

In this section, we differentiate the temporal constructs proposed for SQL3 from

the (massive) remainder of SQL3. To do so, we use the name of Part 7 of SQL3�

SQL/Temporal�to denote the temporal constructs, and we use the name of Part

2�SQL/Foundation�to denote the nontemporal portion.

12.12.1 Upward Compatibility

Perhaps the most important aspect of ensuring a smooth transition is to guaran-

tee that all application code without modi�cation will work with the new system

exactly with the same functionality as with the existing system.

To explore the relationship between nontemporal and temporal data and

queries, we employ a series of �gures that demonstrate increasing query and up-

date functionality. In Figure 12.2, a conventional table is denoted with a rectangle.

The current state of this table is the rectangle in the upper-right corner. Whenever

a modi�cation is made to this table, the previous state is discarded; hence, at any

time only the current state is available. The discarded prior states are denoted with

dashed rectangles; the right-pointing arrows denote the modi�cation that took the

table from one state to the next state.

When a query q is applied to the current state of a table, a resulting table is

computed, shown as the rectangle in the bottom-right corner. While this �gure

only concerns queries over single tables, the extension to queries over multiple

tables is clear.



12 . 12 M IGRAT ION 447

Time

q

Figure 12.2 Evaluating an SQL/Foundation query over a table without temporal
support, to return a table also without temporal support.

Upward compatibility states that (1) all instances of tables in SQL/Foundation are

instances of tables in SQL/Temporal, (2) all SQL/Foundation modi�cations to tables

in SQL/Foundation result in the same tables when the modi�cations are evaluated

according to SQL/Temporal semantics, and (3) all SQL/Foundation queries result in

the same tables when the queries are evaluated according to SQL/Temporal.

By requiring that the temporal constructs be a strict superset (i.e., only adding

language constructs), it is relatively easy to ensure that the temporal constructs are

upward compatible with SQL/Foundation.

12.12.2 Temporal Upward Compatibility

If an existing or new application needs support for the temporal dimension of the

data in one or more tables, the table can be de�ned with or altered to add tempo-

ral support (e.g., by using the CREATE TABLE . . . AS VALID or AS TRANSACTION

or ALTER . . . ADD VALID or ADD TRANSACTION statements). It is undesirable to

be forced to change the application code that accesses the table without temporal

support, when temporal support is added to that table. Previously we have men-

tioned a requirement that states that the existing applications on tables without

temporal support will continue to work with no changes in functionality when the

tables they access are altered to add temporal support. Speci�cally, temporal upward

compatibility requires that each query will return the same result on an associated
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Time

q

Figure 12.3 Evaluating an SQL/Foundation query over a table with temporal support,
to return a table without such support.

snapshot database as on the temporal counterpart of the database. Further, this

property applies to modi�cations to those tables with temporal support.

Temporal upward compatibility is illustrated in Figure 12.3. When temporal sup-

port is added to a table, the history is preserved, and modi�cations over time are

retained. In this �gure, the state to the far left was the current state when the table

was made temporal. All subsequent modi�cations, denoted by the arrows, result in

states that are retained, and thus are solid rectangles. Temporal upward compatibil-

ity ensures that the states will have identical contents to those states resulting from

modi�cations of the table without temporal support.

The query q is an SQL/Foundation query. Due to temporal upward compatibility,

the semantics of this query must not change if it is applied to a table with temporal

support. Hence, the query only applies to the current state, and a table without

temporal support results.

As an example from the University Information System, take the following SQL-

92 query on a nontemporal INCUMBENTS table:

Code Fragment 12.116 What is Bob's position?

SELECT JOB TITLE CODE1

FROM EMPLOYEES, INCUMBENTS, POSITIONS

WHERE FIRST NAME = �Bob�

AND EMPLOYEES.SSN = INCUMBENTS.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN
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After adding valid-time support to INCUMBENTS, this query is interpreted as a current

query, returning Bob's current position (which is, after all, what the query did when

evaluated on the nontemporal version of the INCUMBENTS table).

Temporal upward compatibility applies to all SQL/Foundation statements.

Consider the following SQL-92 modi�cation on a nontemporal table:

Code Fragment 12.117 Bobwas promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Temporal upward compatibility demands that this modi�cation, when applied to a

table with valid-time support, be interpreted as impacting the current state of that

table, that is, that it be interpreted as a current modi�cation, and so it is.

The same holds for tables with transaction-time support and for bitemporal

tables.

Temporal upward compatibility at its core says this: Take an application that

doesn't involve time, that concerns only the current reality. An example is an ap-

plication storing the current job assignments of employees. Alter one or more of

the tables so that they now have temporal support (valid-time, transaction-time, or

both). The application should run as before, without changing a single line of code.

This is an extremely powerful notion.

It is instructive to consider temporal upward compatibility in more detail. When

designing information systems, two general approaches have been advocated. In

the �rst approach, the system design is based on the function of the enterprise that

the system is intended for (the �Yourdon� approach); in the second, the design

is based on the structure of the reality that the system is about (the �Jackson� ap-

proach). It has been argued that the latter approach is superior because structure

may remain stable when the function changes, but the opposite is generally not

possible. Thus, a more stable system design, needing less maintenance, is achieved

when adopting the second design principle. This suggests that the data needs of

an enterprise are relatively stable and only change when the actual business of the

enterprise changes.

When replacing a nontemporal system with a temporal system, that is, to uti-

lize the constructs in SQL/Temporal, the enterprise is not changing its business, but

wants the extra support offered by the temporal system for managing its temporal

data. Thus, it is atypical for an enterprise to suddenly desire to record temporal in-

formation where it previously recorded only snapshot information. Such a change

would be motivated by a change in the business.

The typical situation is rather more complicated. The nontemporal database

system is likely to already manage temporal data, which is encoded using tables

without temporal support, perhaps using the techniques discussed in early chap-
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ters. When adopting the SQL/Temporal constructs, upward compatibility guaran-

tees that it is not necessary to change the database schema or application programs.

However, without changes, the bene�ts of the added temporal support are also lim-

ited. Only when de�ning new tables or modifying existing applications can the

new temporal support be exploited. The enterprise then gradually bene�ts from

the temporal support available in the system.

Nevertheless, the concept of temporal upward compatibility is still relevant for

several reasons. First, it provides an appealing intuitive notion of a table with tem-

poral support: the semantics of queries and modi�cation are retained from tables

without such support; the only difference is that intermediate states are also re-

tained. Second, in those cases where the original table contained no historical in-

formation, temporal upward compatibility affords a natural means of migrating

to temporal support. In such cases, not a single line of the application need be

changed when the table is altered to be temporal. Third, conventional tables that

do contain temporal information and for which temporal support has been added

can still be queried and modi�ed by conventional SQL/Foundation statements in a

consistent manner.

12.12.3 Sequenced Extensions

The requirements covered so far have been aimed at protecting investments in

legacy code and at ensuring uninterrupted operation of existing applications when

achieving substantially increased temporal support. Upward compatibility guaran-

tees that (nontemporal) legacy application code will continue to work without

change when migrating, and temporal upward compatibility in addition allows

legacy code to coexist with new temporal applications following the migration.

The requirement introduced in this section aims at protecting investment in

programmer training and at ensuring continued ef�cient, cost-effective applica-

tion development upon migration. This is achieved by exploiting the fact that

programmers are likely to be comfortable with SQL.

Sequenced semantics states that SQL/Temporal must offer, for each query in SQL/

Foundation, a temporal query that �naturally� generalizes this query, in a spe-

ci�c technical sense. In addition, we require that the SQL/Temporal query be

syntactically similar to the SQL/Foundation query that it generalizes.

With this requirement satis�ed, SQL/Foundation queries on tables with tempo-

ral support have semantics that are easily (�naturally�) understood in terms of the

semantics of the SQL/Foundation queries on tables without temporal support. The

familiarity of the similar syntax and the corresponding, naturally extended seman-

tics make it possible for programmers to immediately and easily write a wide range

of temporal queries, with little need for expensive training.

Figure 12.4 illustrates this property. We have already seen that an SQL/Founda-

tion query q on a table with temporal support applies the standard SQL3 semantics
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qqqqqq' =

Figure 12.4 Evaluating a sequenced query over a table with valid-time support, to
return a table with similar support.

on the current state of that table, resulting in a table without temporal support.

This �gure illustrates a new query, q0, which is an SQL/Temporal sequenced query.

Query q0 is applied to the table with temporal support (the sequence of states across

the top of the �gure), and results in a table also with temporal support, which is

the sequence of states across the bottom.

We would like the meaning of q0 to be easily understood by the SQL/Foundation

programmer. Satisfying sequenced semantics along with the syntactical similarity

requirement makes this possible. Speci�cally, the meaning of q0 is precisely that of

applying SQL3 query q on each state of the input table (which must have tempo-

ral support), producing a state of the output table for each such application. And

when q0 also closely resembles q syntactically, temporal queries are easily formu-

lated and understood. To generate query q0, we need only prepend the reserved

word VALIDTIME or TRANSACTIONTIME to query q.

As an example, let q be the following nontemporal query,

Code Fragment 12.118 Provide the salary and department for all employees.

SELECT S.SSN, AMOUNT, PCN

FROM SAL HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

and q0 be the sequenced variant of q.
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m' = m m m m m

Figure 12.5 Evaluating an SQL/Temporal modi�cation on a table with valid-time
support.

Code Fragment 12.119 Provide the salary and department history for all employees.

VALIDTIME SELECT S.SSN, AMOUNT, PCN

FROM SAL HISTORY AS S, INCUMBENTS

WHERE S.SSN = INCUMBENTS.SSN

One small addition was made to the English statement, �history,� and one small

addition was made to the SQL/Temporal statement, VALIDTIME.

These concepts also apply to sequenced modi�cations, illustrated in Figure 12.5.

A valid-time modi�cation destructively modi�es states as illustrated by the curved

arrows. As with queries, the modi�cation is applied on a state-by-state basis. Hence,

the semantics of the SQL/Temporal modi�cation is a natural extension of the SQL/

Foundation modi�cation statement that it generalizes.

Elaborating on the example, the following nontemporal modi�cation m,

CF-12.120, can modify all times with a sequenced version, m0 = VALIDTIME m,

CF-12.121, or with a sequenced version with a speci�ed period of applicability,

CF-12.122.

Code Fragment 12.120 Bobwas promoted to director of the Computer Center.

UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

Code Fragment 12.121 Bob was promoted to director of the Computer Center for all

time.

VALIDTIME UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333
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q

Figure 12.6 Evaluating a nonsequenced query over a table with valid-time support,
to return a table with similar support.

Code Fragment 12.122 Bobwas promoted to director of the Computer Center for 1997.

VALIDTIME PERIOD �[1997-01-01 - 1997-12-31]� UPDATE INCUMBENTS

SET PCN = 908739

WHERE SSN = 111223333

12.12.4 Nonsequenced Queries andModi�cations

In a sequenced query, the information in a particular state of the resulting table

with temporal support is derived solely from information in the state at that same

time of the source table(s). However, there are many reasonable queries that require

other states to be examined. Such queries are illustrated in Figure 12.6, in which

each state of the resulting table requires information from possibly all states of the

source table.

In this �gure, two tables with temporal support are shown, one consisting of the

states across the top of the �gure, and the other, the result of the query, consisting

of the states across the bottom of the �gure. A single query q performs the possibly

complex computation, with the information usage illustrated by the downward-

pointing arrows. Whenever the computation of a single state of the result table may

utilize information from a state at a different time, that query is nonsequenced.

Such queries are more complex than sequenced queries, and they require a new

construct in the query language, speci�cally, the NONSEQUENCED reserved word.
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Figure 12.7 Evaluating a nonsequenced modi�cation on a table with valid-time
support.

Code Fragment 12.123 List all the salaries, past and present, of employees who had

been hazardous waste specialists at some time.

NONSEQUENCED VALIDTIME SELECT AMOUNT

FROM INCUMBENTS, POSITIONS, SAL HISTORY

WHERE INCUMBENTS.SSN = SAL HISTORY.SSN

AND INCUMBENTS.PCN = POSITIONS.PCN

AND JOB TITLE CODE1 = 20730

The phrases �past and present� and �at some time� indicate that the query is a

nonsequenced one.

It is important to note that nonsequenced queries are very different from se-

quenced queries. In the latter, the query language is providing a temporal seman-

tics; in the former, the query language interprets the timestamp as simply another

column. For the user, this means that in nonsequenced queries (modi�cations, as-

sertions, etc.) the period timestamps must be manipulated explicitly. The opera-

tions, such as join and relational difference, are performed with respect to the pe-

riods themselves, rather than on the individual states of the tables with temporal

support. Reserved words are used to syntactically differentiate temporally upward

compatible queries, sequenced queries, and nonsequenced queries, each of which

applies a distinct semantics.

The concept of nonsequenced queries naturally generalizes to modi�cations.

Nonsequenced modi�cations destructively change states, with information retrieved

from possibly all states of the original table. In Figure 12.7, each state of the table

with valid-time support is possibly modi�ed, using information from possibly all

states of the table before the modi�cation. Nonsequenced modi�cations include

future modi�cations. (We note in passing that nonsequenced modi�cations are

only permitted on tables with valid-time support; all modi�cations are current in

transaction time.)

In the nonsequenced modi�cation of CF-12.124, the deletion of a particular state

is dependent on the PCN being in the state on December 31, 1997.
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Result of NORMALIZE:

Figure 12.8 The NORMALIZE operator.

Code Fragment 12.124 Delete Bob's records that include 1997 stating that he was asso-

ciate director of the Computer Center.

NONSEQUENCED VALIDTIME DELETE FROM INCUMBENTS

WHERE SSN = 111223333

AND PCN = 999071

AND VALIDTIME(INCUMBENTS) CONTAINS DATE �1997-12-31�

12.13 ADDITIONAL CONSTRUCTS OF SQL3*

A few additional constructs are de�ned in SQL/Temporal and are mentioned here

for completeness.

A set constructor specialized to periods is included. The NORMALIZE(pset) opera-

tor, where pset is a set of periods, yields a potentially smaller set of periods that are

disjoint, that is, they do not meet or overlap. Figure 12.8 illustrates the result of this

operator on a set of periods. The six periods at the top comprise the input to the

operator; the two periods at the bottom comprise the result. Effectively, the periods

are coalesced with duplicate elimination. The parallel operation of coalescing while

retaining duplicates is not provided.

An EXPAND operator, which converts a period into a SET of the period's ele-

ment type, is also provided. EXPAND(PERIOD �[1997-01-01 00:00:00 - 1997-12-31

00:00:00]�) would result in a value of type SET(TIMESTAMP(0)) (i.e., to the granu-

larity of second), with 31,536,000 elements (!). This set can be converted back to the

original period via a new NORMALIZE ON construct of the select statement. This
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construct is best explained with an example. The following statement EXPANDs a

period column (ATable.APeriod), then normalizes it back into the original period.

Code Fragment 12.125 Expanding each period into a set of granules, then normalizing

back to a period.

SELECT A, B, C, PERIOD[E3, E3] AS P

FROM (SELECT A, B, C, EXPAND(APeriod) AS E FROM ATable) AS E1,

TABLE(E1.E) AS E2(E3)

NORMALIZE ON P

This rather complex query expands the APeriod column of ATable; the resulting

table E1 has a single timestamp column, E, of type SET(TIMESTAMP(0)). The sec-

ond expression in the FROM clause makes a table out of each set; the value of the

E3 column for each row of E2 is a particular timestamp value, such as TIMESTAMP

�1997-10-21 17:05:30�. The SELECT clause converts each of these times into a

period of duration one second. The NORMALIZE ON clause then normalizes the

result by collecting the values of P for rows with identical values for the remaining

columns (A, B, and C), applying NORMALIZE to this set of periods, then associating

a copy of the row with each of the resulting periods. (Whew!) As we'll see later, this

idiom can be used to implement certain types of temporal queries.

If the original table ATable contained duplicate rows, then this statement will

normalize the periods associated with those rows, thereby removing sequenced du-

plicates. Say table ATable contained six rows with identical values for A, B, and C and

with the periods shown in the top portion of Figure 12.8 as the value of the APeriod

column. The result of the above statement would contain two rows, associated with

the periods in the bottom portion of Figure 12.8.

Finally, an EXPANDING clause is added to UNION, EXCEPT, and INTERSECT, but

only if ALL is not speci�ed. This clause provides another way to effect a sequenced

query. Thus, the following query, on a table without temporal support, rather with an

explicit When column of type PERIOD, implements a sequenced EXCEPT (compare

with CF-12.22, which replaces the EXPANDING(When) with the pre�x VALIDTIME).

Code Fragment 12.126 List the employees who are department heads but are not also

professors (using EXPANDING).

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 455332

EXCEPT EXPANDING (When)

SELECT SSN

FROM INCUMBENTS

WHERE PCN = 821197
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This is syntactic sugar for three steps: applying EXPAND to the timestamp,

performing the operation, then normalizing the result.

Code Fragment 12.127 List the employees who are department heads but are not also

professors (using EXPAND andNORMALIZE).

SELECT SSN, PERIOD[W2, W2] AS When

FROM (SELECT SSN, W2

FROM (SELECT SSN, EXPAND(When) AS W

FROM INCUMBENTS

WHERE PCN = 455332) AS E1,

TABLE(E1.W) AS E2(W2)

EXCEPT

SELECT SSN, W2

FROM (SELECT SSN, EXPAND(When) AS W

FROM INCUMBENTS

WHERE PCN = 821197) AS E1,

TABLE(E1.W) AS E2(W2)

) AS E3

NORMALIZE ON When

While this query, at 14 lines, is certainly shorter than CF-6.18, at 45 lines, it is highly

inef�cient as stated. Each row of INCUMBENTS is expanded into potentially millions

of rows of E3, then normalized back to the result. And because NORMALIZE is used,

duplicates are automatically removed. There is no parallel to EXCEPT EXPANDING

ALL; instead, VALIDTIME . . . EXCEPT ALL . . . should be used. VALIDTIME lends a

sequenced semantics to any query, and as such is preferred over the EXPANDING

option, which is constrained to some uses of UNION, EXCEPT, and INTERSECT.

In summary, many uses of EXPAND and NORMALIZE are more easily performed

by sequenced queries using VALIDTIME or TRANSACTIONTIME, which provides a

sequenced semantics to any nontemporal query, view, modi�cation, assertion, and

cursor.

12.14 IMPLEMENTATION CONSIDERATIONS

SQL3 is in draft form, and vendors are still adding support for the SQL-92 standard;

there is currently available (early 1999) no DBMS compliant at the Full SQL level.

So understandably no DBMS yet supports the constructs just described.

An alternative strategy is to implement temporal support outside the DBMS, as

middleware imposed between the application and the DBMS. The user issues tem-

poral statements, which are translated into the variant of SQL supported by the

underlying DBMS. This strategy has been employed in several research prototypes,

as well as one commercially available product.
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12.14.1 TIMEDB

TIMEDB is middleware that supports the constructs proposed for SQL3, including

valid time, transaction time, queries, modi�cations, views, assertions, and con-

straints. It also supports user-speci�ed valid-time coalescing. It doesn't support

the EXPAND, EXCEPT EXPANDING, and NORMALIZE constructs described in Sec-

tion 12.13, though as we saw there, those constructs can often be simulated in a

more natural fashion with sequenced statements.

There are two quite separate versions of TIMEDB. Both accept the same language,

but are distinct code bases.

� TIMEDB 1: This system runs as a front end to Oracle, accepts textual input, and

utilizes the Oracle Call Interface (OCI) to evaluate the user requests. The system

is implemented in Prolog. Three versions are available, running under SICStus

Prolog, Macintosh SICStus Prolog, and SWI Prolog. The TIMEDB 1 source (about

10,000 lines of Prolog) is public domain and is included in the distribution. A

main-memory emulator of OCI, also implemented in Prolog, allows the system

to be used even if Oracle is not available. As SWI Prolog is available free for

noncommercial use, TIMEDB 1 allows exploration of the SQL3 constructs at no

cost.

� TIMEDB 2: This system is implemented in Java, provides a graphical user in-

terface, and uses JDBC to communicate with the underlying DBMS. It has

been tested with Oracle8 Server, Sybase's Adaptive Server Enterprise (Version

11.5), and Cloudscape's JBMS (Version 1.1). It is a commercial product from

TimeConsult.

Both versions of TIMEDB were developed by Andreas Steiner.

12.14.2 TIGER

TIGER is another front end to Oracle supporting the SQL3 temporal constructs. The

TIGER source (about 4000 lines of SWI Prolog code) is freely usable for educational

and research purposes. The language supported is ATSQL, which is similar to that

proposed for SQL3, including valid time, transaction time, queries, modi�cations,

views, assertions, and constraints, with the following differences:

� The reserved words VALID and TRANSACTION replace VALIDTIME and TRANS-

ACTIONTIME, respectively. The functions VTIME( ) and TTIME( ) replace

VALIDTIME( ) and TRANSACTIONTIME( ).

� The INTERVAL( ) function is replaced with the DURATION( ) function.

� SEQUENCED is a new reserved word. If VALID is used as a pre�x, either

SEQUENCED or NONSEQUENCED is required in TIGER.

� There is a new SET VALID clause, permitting a wider range of expressions than

that allowed in SQL3's VALIDTIME <expression> clause.
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� User-speci�able coalescing, either on valid time, transaction time, or both, in

either order, is supported.

� EXPAND, EXCEPT EXPANDING, and NORMALIZE are not supported.

TIGER was developed by a team directed by Michael Böhlen.

12.14.3 Synchrony

Synchrony is a data warehouse query tool developed by the if. . . software company.

A data warehouse is a collection of information, often extracted from multiple

production databases, that supports sophisticated dimensional analysis tools. Data

warehouses are always temporal: the fact table has a time attribute that is a foreign

key to a time dimension table.

As an example, a data warehouse supporting sales information might have time,

store, product, and customer dimension tables in a star schema, in which the fact

table has a foreign key to each dimension table.

In a conventional data warehouse, the dimensions are themselves nontemporal,

which limits their functionality. Suppose an unmarried customer buys a toaster in

January. This would cause a row to be inserted into the fact table. If that customer

later marries, her marital status would be updated in the customer dimension table.

Since the customer table is nontemporal, the previous marital status is lost, and the

information about the toaster sale is incorrect, as the warehouse implies that the

toaster was bought by a married person.

Synchrony is notable in that it supports in a comprehensive fashion time-varying

dimension tables. Synchrony provides powerful data loading and query facilities for

such tables. Queries such as �What percentage of customers have lived in the same

home for over three years, and what percentage of overall sales do they account

for?� can be easily expressed.

Synchrony differs from the other systems described here in that it doesn't offer

a temporal extension of SQL based on the relational model. Rather, Synchrony's

query language is graphical and based on a star schema data model. However, Syn-

chrony is similar to the other systems in that it extends a query language and data

model to make it easier to express temporal queries, and it generates conventional

SQL for evaluation by an underlying DBMS, thereby freeing the user from having

to write these complex statements manually.

12.14.4 CD-ROMMaterials

A wealth of material is available on the CD-ROM:

� Some 25 change proposals and expert contributions that have been submitted

to the ANSI or ISO SQL3 committees are included. Of particular interest are the

valid-time and transaction-time change proposals [92, 93].
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� The full distribution of TIMEDB 1 is included, along with all source code and

over 30 demos.

� A demonstration version of TIMEDB 2 is included as Java class �les. The

features missing in the demo version are views, assertions, constraints, up-

date statements, delete statements, subqueries, and transaction-time support. A

comprehensive manual is provided, as are over a dozen demos.

� Information, a thorough manual, and white papers on TIGER are included. TIGER

may be run through a web browser at cs.auc.dk/�tigeradm/.

� A white paper and a guide containing several demos of Synchrony are available

on the CD-ROM.

� Several reports discuss the technical challenges of implementing the SQL3

temporal constructs and provide some solutions.

12.15 SUMMARY

In SQL-92, users must �roll their own� temporal support in the application code.

SQL3 instead provides explicit support for periods and valid and transaction time,

thereby dramatically simplifying the code that must be written.

We �rst examined the PERIOD data type, introduced in SQL/Temporal. We then

looked at the valid-time support available, speci�cally the VALIDTIME and NONSE-

QUENCED reserved words and the VALIDTIME function. Transaction-time support

was introduced via the TRANSACTIONTIME reserved word and function. Bitem-

poral support is afforded by combining the orthogonal support for valid time and

transaction time.

These minimal constructs were illustrated by rephrasing the code fragments of

the previous case studies in SQL3. Table 12.2 compares the SQL/Temporal code

fragments of this chapter with the analogous SQL-92 code fragments for four major

case studies: Brad De Groot's feed yard application, Cheryl Bach's University Infor-

mation System, Nigel Corbin's oil �eld application, and Jens Gadgaard's property

ownership application. The code fragments in SQL-92 for these four applications to-

taled 1848 lines; only 520 lines of SQL3 were required to do exactly the same thing.

These tables show that, over a wide range of data de�nition, query, and modi�ca-

tion fragments, the SQL-92 version is three times longer in number of lines than

the SQL3 version, and many times more complex. In fact, very few SQL3 fragments

were more than 10 lines long; some fragments in SQL-92 comprised literally dozens

of lines of highly complex code.
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Table 12.2 Application development in SQL-92 and SQL3.

SQL-92 Lines SQL3 Lines

Operation Fragment(s) of Code Fragment of Code

Valid-Time State Tables:

adding valid-time support 5.4 2 12.3 1

sequenced primary key constraint 5.8 10 12.4 1

current uniqueness constraint 5.12 9 12.5 1

sequenced uniqueness constraints 5.14 7 12.6 1

referential integrity

(referencing table is temporal)

5.19 1 12.7 2

current referential integrity

(both tables are temporal)

5.20 12 12.7 2

current referential integrity

(referenced table is temporal)

5.24 10 12.7 2

sequenced referential integrity

(both tables are temporal)

5.21 32 12.9 2

nonsequenced referential integrity

(both tables are temporal)

5.19 1 12.10 2

current join queries 6.2, 6.3 17 12.12, 12.13 11

current not exists query 6.4 7 12.14 5

valid time-slice query 6.5 7 12.15 6

sequenced selection query 6.6 3 12.16 3

sequenced projection query 6.7 2 12.17 2

sequenced sort queries 6.8, 6.9 3 12.18 3

sequenced union query 6.10 7 12.19 7

sequenced join query 6.11�6.14 7�29 12.20 3

sequenced nested query 6.18 45 12.21 7

sequenced except queries 6.18 45 12.22, 12.126 7

nonsequenced join queries 6.19, 6.20 10 12.23, 12.24 11

remove current duplicates 6.23 3 12.25 2

remove sequenced duplicates 6.24�6.26 19�30 12.26 2

remove nonsequenced duplicates 6.21 2 12.27 2

current insertions 7.1�7.3, 2�9 12.28 2

7.5

current deletions 7.7, 7.8 5, 10 12.29 3

current updates 7.10, 7.11, 9�30 12.30, 12.36 3�6

7.22

sequenced insertion 7.12�7.14 2�28 12.31 2

sequenced deletion 7.16 24 12.32 3

sequenced updates 7.18, 7.24 27�77 12.33, 12.37 3�6

12.122

nonsequenced deletion 7.19 5 12.34 4

nonsequenced update 7.20 4 12.35 5

partitioned current join query 7.25 5 12.38 5
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Table 12.2 (continued)

SQL-92 Lines SQL3 Lines

Operation Fragment(s) of Code Fragment of Code

Valid-Time State Tables (continued):

partitioned sequenced join 7.26 50 12.39 3

partitioned current insertions 7.27, 7.28 2, 6 12.40 2

partitioned current deletion 7.29 8 12.41 3

partitioned sequenced deletion 7.30 44 12.42 3

partitioned sequenced update 7.31 57 12.43 3

Transaction-Time Tables:

adding transaction-time support 8.1+8.2, 17�44 12.44 1

8.12, 8.15,

9.1+9.2,

9.15+9.17,

9.20+9.21

current query 8.4 3 12.45 3

extracting a prior state 8.3, 8.13, 4�19 12.46 4

8.14, 8.16,

9.7, 9.18

prior state as a view 8.5, 8.17 17�27 12.47 7

current state as a view 8.20, 9.3 0�11 � 0

9.16, 9.19,

9.22

converting to a state table 8.7 38 � �

converting to an event table 9.12�9.14 4�26 12.48, 6�27

12.51�12.53

sequenced selection queries 8.8, 9.8 3�4 12.49 3

sequenced union query 9.9 8 12.57 7

sequenced join query 9.10 8 12.58 5

sequenced self-join query 8.18 13 12.50 5

nonsequenced query 9.11 10 12.59 10

current insertions 8.9, 9.4 4�6 12.54 4

current deletions 8.10, 9.5 2�4 12.55 2

current updates 8.11, 9.6 3�14 12.56 3

entity vacuum 9.23 4 � �

temporally vacuum 9.24�9.26, 2�6 � �

9.28

log the vacuuming operations 9.27 8 � �

Bitemporal State Tables:

adding bitemporal support 10.1, 10.52 7�17 12.60 4

sequenced/sequenced primary

key

10.2 13 12.61 2

current/current integrity

constraint

10.44 12 12.85 6
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Table 12.2 (continued)

SQL-92 Lines SQL3 Lines

Operation Fragment(s) of Code Fragment of Code

Bitemporal State Tables (continued):

sequenced/current integrity

constraint

10.45 10 12.86 6

nonsequenced/current integrity

constraint

10.46 8 12.87 6

sequenced/current referential

integrity

10.49, 10.50 18�48 12.62 2

contiguous history assertion 10.3 16 12.84 14

transaction time-slice 10.19 5 12.63 5

current transaction time-slice 10.20 4 12.64 3

valid time-slice 10.21 5 12.65 5

bitemporal time-slice 10.22 7 12.66 6

current bitemporal time-slice 10.23 6 12.67 3

current/current queries 10.26, 10.35 16 12.68, 12.77 8

sequenced/current queries 10.27, 10.37 16 12.69, 12.79 8

nonsequenced/current query 10.28 7 12.70 5

current/sequenced query 10.29 14 12.71 5

sequenced/sequenced query 10.30 15 12.72 5

nonsequenced/sequenced query 10.31 10 12.73 6

current/nonsequenced queries 10.32, 10.39 13 12.74, 12.81 9

sequenced/nonsequenced query 10.33 12 12.75 6

nonsequenced/nonsequenced

queries

10.31, 10.41 9 12.73, 12.83 13

current/current multiway

join query

10.36 14 12.78 1

sequenced/current join query 10.38 11 12.80 5

sequenced/nonsequenced

multiway join query

10.40 12 12.82 8

current insertion 10.4 4 12.88 2

current deletion 10.10, 10.11 13�19 12.89 2

current update 10.7 34 12.90 3

sequenced insertion 10.12, 10.13 4�36 12.91 3

sequenced deletion 10.15 42 12.92 2

sequenced update 10.17 58 12.93 3

nonsequenced deletion 10.18 4 12.94 2

reconstitute bitemporal state table

as a view

10.53�10.55 8�51 � 0

temporally vacuum 10.56 8 � �

Capstone Case:

schema de�nition Fig. 11.2, 245 Fig. 12.1 82

11.1�11.20,

11.22, 11.23
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Table 12.2 (continued)

SQL-92 Lines SQL3 Lines

Operation Fragment(s) of Code Fragment of Code

Capstone Case (continued):

current queries 11.24, 11.28 11 12.99, 12.102 8

sequenced queries 11.25, 20�36 12.100, 12.104 7

11.30 or 11.31

nonsequenced queries 11.26, 11.29 8 12.101, 12.103 8

nonsequenced/nonsequenced

query

11.34 9 12.107 9

extracting a prior state 11.32, 11.33 9 12.105, 12.106 15

current modi�cations 11.35, 11.37, 68 12.108�12.110, 10

11.42 12.115

sequenced modi�cations 11.38�11.40, 149 12.111�12.113, 12

11.43 12.112

nonsequenced modi�cation 11.41 10 12.114 3

To recap, �ve requirements must be satis�ed if a language or DBMS can be

claimed to provide temporal support:

1. Both valid time and transaction time are supported, in a compatible and orthog-

onal manner. In particular, the semantics of transaction time, where the state as

of a time in the past can be reconstructed, must be guaranteed by the DBMS.

2. Upward compatibility is ensured.

Existing constructs applied to nontemporal data should operate exactly as before.

This requirement is fairly easy to satisfy.

3. Temporal upward compatibility is ensured. This means that an existing nontem-

poral application will not be broken when temporal support is added to a table,

say, via an ALTER TABLE statement. No changes to application code should be re-

quired when the history of the enterprise (valid time) or the sequence of changes

to the data (transaction time), or both, are retained. This implies, for example,

that a conventional query on tables with temporal support should be interpreted

as a current query. Upward compatibility and temporal upward compatibility

guarantee that legacy application code needs no modi�cation when migrating

and that new temporal applications may coexist with existing applications. They

are thus aimed at protecting investments in legacy application code.

4. Sequenced variants should be easy to express for all constructs of the language,

including queries, modi�cations, views, assertions and constraints, and cursors.

This requirement ensures that the extended query language is easy to use for

programmers familiar with the existing query language, thus helping to protect

investments in programmer training. In particular, complex rewritings of the

statement should not be necessary.
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5. Nonsequenced variants should also be easy to express. In part, such variants

enable data with temporal support to be converted to and from data without

temporal support.

The SQL/Temporal constructs discussed here satisfy these requirements:

1. Valid time can be added to a table via AS VALIDTIME PERIOD; transaction time

can be added with AS TRANSACTIONTIME. Only current modi�cations are al-

lowed in transaction time to ensure that time-slices will be correct. Either kind

of time can be used individually or together, forming a bitemporal table.

2. The temporal constructs of SQL/Temporal are de�ned as an upward compatible

extension of the other parts of SQL3.

3. All conventional queries (modi�cations, views, assertions, constraints, cursors)

on tables with temporal support are interpreted as current queries (respectively,

modi�cations, etc.). As an example, when valid-time support was added to

the INCUMBENTS table, the existing code of this application, perhaps tens of

thousands of lines, did not require a single change.

4. An SQL/Foundation query can be converted to a sequenced query in

SQL/Temporal simply by prepending the keyword VALIDTIME. This also holds

for modi�cations (e.g., VALIDTIME UPDATE), views (e.g., CREATE VIEW AS

VALIDTIME SELECT), and constraints (e.g., VALIDTIME UNIQUE). And of course

this also applies to transaction time, via the TRANSACTIONTIME keyword.

5. Nonsequenced statements require the additional keyword NONSEQUENCED.

The valid timestamp associated with a row is accessible via the function

VALIDTIME( ), and the transaction timestamp, via TRANSACTIONTIME( ).

As we have shown with the case studies throughout this chapter, these proposed

constructs (three new reserved words, VALIDTIME, TRANSACTIONTIME, and NON-

SEQUENCED, in addition to those already in SQL/Temporal) can greatly simplify

application development, often reducing the amount of SQL code that needs to be

written by a factor of three or more, while improving the comprehensibility of that

code.

Finally, we examined two prototypes (TIMEDB 1 and TIGER) and a commer-

cial product (TIMEDB 2) that support these constructs, as well as another product,

Synchrony, which supports time-varying dimensions in a data warehouse.

12.16 READINGS

SQL-86 and SQL-89 had no notion of time. SQL-92 added datetime and interval

data types, though no product has yet been validated for conformance to this stan-

dard (some products have been validated at the Entry level, which does not include

the temporal data types). However, it has long been recognized in the temporal

database research community, and as the case studies in this special series have
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illustrated, that these data types alone are inadequate. Momentum for a temporal

extension to SQL designed by that community �rst became evident at the Work-

shop on an Infrastructure for Temporal Databases, held in Arlington, Texas, in June

1993 [87].

The TSQL2 committee was subsequently formed, producing a preliminary lan-

guage speci�cation the following January. The �nal version was completed in

September 1994, and a book describing the language and examining in detail its

underlying design decisions was released at the VLDB International Workshop on

Temporal Databases in Zurich in September 1995 [91].

The ANSI and ISO SQL3 committees became involved in late 1994. A new

part to SQL3, termed SQL/Temporal, was proposed and formally approved by

the SQL3 International Organization for Standardization in Ottawa in July 1995

as Part 7 of the SQL3 draft standard. Jim Melton agreed to edit this new

part [69]. There is presently a two-year experiment (ending in 2000) to al-

low drafts to be visible to the public. Hence, this draft may be viewed at

ftp://jerry.ece.umassd.edu/isowg3/dbl/BASEdocs/public/sqltmprl.ps. PDF and ASCII text

versions are also available.

The �rst task was to de�ne a PERIOD data type, which is now included in

Part 7. Discussions then commenced on adding further temporal support. Two

change proposals resulted, one on valid-time support and one on transaction-

time support [92, 93]. These change proposals have been unanimously ap-

proved by the ANSI SQL3 committee (ANSI X3H2) for consideration by the ISO

SQL3 committee (ISO/IEC JTC 1/SC 32/WG 3). The full story may be found at

www.cs.arizona.edu/people/rts/tsql2.html.

In the meantime, the SQL committees decided to focus on Parts 1, 2, 4, and 5 of

the SQL3 draft standard. These parts are expected to be �nalized as an international

standard in 1999 [30]. At that time, the committees will revisit the other parts and

move them through the exhaustive process towards standardization.

Michael Böhlen and Robert Marti introduced the notion of temporal semicom-

pleteness as a (highly desirable) property of a temporal query language [14]. Trans-

lated into our terminology, temporal semicompleteness says that a sequenced

query should be a syntactic augmentation of the associated nontemporal query,

with the augmentation consisting solely of constructs added before and after the

query. SQL3 is thus temporally semicomplete because a nontemporal query can be

rendered sequenced by simply prepending VALIDTIME. The initial design of this

construct appeared in 1995 [15].

Transitioning from SQL-92 to SQL3 is covered in depth by John Bair et al. [3] and

by the author and others [94]. System design based on the function of the enterprise

is advocated by Edward Yourdon [106]; system design based on the structure of the

reality that the system is about has been elaborated by Michael Jackson [46].
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TIMEDB was developed by the TimeConsult software company under the di-

rection of Andreas Steiner. TimeConsult provides consulting in handling temporal

data in relational, object-relational, and object-oriented DBMSs; implements tem-

poral database applications; and supports their TIMEDB 2 product. For more in-

formation, see their Web site at www.timeconsult.com or contact Andreas Steiner at

steiner@timeconsult.com.

TIGER was developed by a team directed by Michael Böhlen at the Depart-

ment of Computer Science, Aalborg University, Denmark. He can be reached at

boehlen@cs.auc.dk; his Web page is www.cs.auc.dk/�boehlen/. The TIGER Web page

is cs.auc.dk/�tigeradm/, which includes an online demo. The Prolog code for both

TIGER and TIMEDB1 resembles that developed in the early 1990s to support

ChronoLog [10]. TIGER supports the ATSQL language [12].

Synchrony is analytic software developed by the if. . . software company.

if. . . develops analytic software designed for business analysts and decision mak-

ers to examine in-depth relationships across multiple aspects of their businesses.

For more information, contact if. . . at 510-864-3480 or www.iftime.com.

The Swatch Webmaster and BMT are described at www.swatch.ch, clicking on

�.beat�.
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Prospects

S
o we see that development of time-varying database applications in SQL

is possible, but is devilishly dif�cult. There are proposals before the SQL3

committee for new language constructs that help immensely. How long will

we have to wait until such facilities are widely available?

In the near term, developers of time-oriented applications have three choices.

The easiest option is to minimize the use of time in the application, reducing the

complexity of the SQL needed, as well as the functionality of the delivered ap-

plication. The second option is to use the concepts and techniques introduced in

this book to develop powerful and correct time-oriented applications. Of course,

the SQL code required will often be daunting. The last option is to use third-party

software to translate temporal queries (expressed in the SQL/Temporal syntax, or

a related syntax) into SQL-92. Such translators are already available commercially,

and as the market for such middleware matures, their number and sophistication

will grow.

In the longer term, vendors will start integrating temporal support into the

DBMS itself. Initially, this will be done by simply imposing a middleware trans-

lator between the application and the DBMS. While this is architecturally identical

to the third option just described, the perception will be that the DBMS itself has

temporal support, an important marketing distinction. The vendor can then gradu-

ally move the functionality from the middleware component to the internals of the

DBMS, retaining the temporal language but gaining in ef�ciency, with the timing

of this transfer from middleware to DBMS internals based on market demand.

Unlike other constructs, such as triggers and object-relational extensions that

are now de rigueur for commercial DBMS offerings, a standard for temporal sup-

port was proposed before such support was implemented in a product. When a mid-

dleware or DBMS vendor decides to implement temporal support, the language of

choice should be something similar to what has been proposed (and summarized

in the previous chapter). The ever-present danger, existing in previous extensions
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and to which temporal extensions are susceptible, is that vendors will attempt to

impose proprietary language constructs. We've already seen that occur with the ba-

sic temporal types, with many vendors basically ignoring the SQL-92 standard data

types of DATE, TIME, and TIMESTAMP. We can only hope that when support for

valid time and transaction time is added, the vendors utilize the mature language

constructs already designed and re�ned by the SQL3 standards committees.

Temporal extensions will not occur in a vacuum�they must be integrated with

other facilities now being added or considered for the future. Fortunately, the

requirements of upward compatibility, temporal upward compatibility, and

sequenced support ensure that whatever constructs are later added will be usable

in current, sequenced, and nonsequenced queries, views, modi�cations, assertions,

and cursors over tables with temporal support.

Predicting when the transition from third-party middleware solutions to inte-

grated temporal DBMS offerings will occur is dif�cult. I estimate that the �rst will

appear by the year 2000. As the bene�ts of such support become clear and ac-

knowledged (the readers of this chapter are already aware of these advantages),

pressure will mount on the remaining DBMS vendors to follow suit. Very quickly

thereafter, a phase shift will occur, with temporal support along the lines proposed

for SQL3 appearing in all DBMS offerings, as such support becomes a mandatory

requirement.



Glossary

This glossary is an extension of the of�cial one, which is in two parts, general concepts [49]

and time granularity concepts [7].

The page in which the term is de�ned is indicated in parentheses.

A.D. anno Domini, �in the year of our Lord�.

after-image The new value of a modi�ed row or column.

A.H. anno Hegirae, the �rst year of the Hijri (Islamic) calendar.

A.M. (1) annus mundi, or �year of the world�. 6000 A.M. started October 27, 1997. (2) ante meridiem, or

�before noon.�

append-only A property of tables with transaction-time support, in which changes are imple-

mented only as insertions, or changing the transaction-stop time to �now,� so that the changes always

accummulate in the table.

archival store The component of a temporally partitioned transaction-time state table containing

rows that have been corrected, that is, rows with a transaction-time stop date before �now�.

as-of date The (transaction-time) date for which a prior state of a monitored table is to be

reconstructed.

atom There are 22,500 atoms in an hour, so a second is exactly 6 1/4 atoms.

atomic second 9,192,631,770 periods of the radiation emitted by the transition between two

particular hyper�ne states of the cesium 133 atom in the ground state.

A.U.C. ab urbe condita, or �from the foundation of the city�. A.U.C. was the prevailing year numbering

system before the use of B.C.�A.D. 1 A.D. is 754 A.U.C.

backlog A tracking log with the modi�cation operation explicitly identi�ed.

B.C. An acronym for �before Christ�.

B.C.E. The preferred term for B.C.; an acroymn for �before the Christian Era� or �before the Common

Era�.

before-image The previous value of a modi�ed row or column.

bitemporal table Having support for both valid time and transaction time.
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bitemporal time diagram A two-dimensional graphical notation of the information content of a

bitemporal table.

bitemporal time-slice A query or view that selects the snapshot state of a bitemporal table at

speci�ed valid-time and speci�ed transaction-time instants.

BMT Biel Mean Time, based on the meridian for Internet Time in Biel, Switzerland.

B.P. An acronym for �before the present�.

C.E. The preferred term for A.D.; an acronym for �Common Era�.

chronology The science of timekeeping. See also horology.

clepsydra A clock powered by the �ow of water.

coalesce Reduce the number of rows in a table by merging the periods of validity of value-equivalent

rows.

comparable In SQL-92, indicates whether values of two types can be compared.

current duplicate Two rows that are sequenced duplicates in the current state.

current insertion A row that became valid now.

current integrity constraint Must hold only for the current state.

current join A join over the current states of the two argument tables.

current modi�cation Concerns a change that occurred now.

current store The component of a temporally partitioned state table containing rows that are still

current, that is, rows with a stop date of �now�.

current time-slice query Expressed on the current state of the table or database.

current update Changes a fact now.

current valid time-slice query Expressed on the current valid-time state of the table or database.

DATE An SQL-92 data type, with a granularity of day. Supported by IBM DB2 UDB; by Informix�

Universal Server; by Oracle8 Server, with a granularity of second; and by UniSQL, also with a granularity

of second.

datetime An SQL-92 instant data type or value.

DATETIME A data type supported by Informix�Universal Server, with a speci�able precision; by Micro-

soft Access, with a granularity of slightly less than one millisecond; by Microsoft SQL Server, with a

granularity of 1/300 of a second; and by Sybase SQLServer, also with a granularity of 1/300 of a second.

day-time interval An SQL-92 interval data type containing only the day, hour, minute, and second

�elds, with an optional fractional seconds.

degenerate specialization A bitemporal entity type, relationship type, or table in which the be-

ginning of the valid-time extent (the entity's lifespan) exactly corresponds to the beginning of the

transaction time.

dirty read An isolation level that allows transactions to read uncommitted values.

entity vacuuming Purging entities that are judged to be less interesting from the archival store.

ephemeris second 1/31,556,925.9747 of the period of the tropical year between the vernal equinoxes

of 1899 and 1900.
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equation of time The difference between mean solar time and true solar time.

equinoctial day A day for which the daylight is equal in duration to the night, that is, March 21 or

September 21.

escapement The mechanism within a mechanical clock that regulates the advancement of the hands,

while subtly imparting energy to the oscillator, to keep the clock running.

event An instantaneous fact, that is, something occurring at an instant in the modeled reality.

fully general A bitemporal entity type, relationship type, or table that exhibits no coupling between

its valid and transaction timestamps.

gnomon The pointer portion of a sundial.

gnomonics The science of sundials. See also chronology.

granularity A partitioning of the time line, for example, years, days, microseconds.

granule A speci�c unit element of a granularity.

heliochronometer A sundial.

hemicyclium A truncated, and thus lighter, hemispherium.

hemispherium Berossos's sundial, made by hollowing out a half-sphere in a rectangular block of

stone.

history store The component of a temporally partitioned state table containing rows that were valid

in the past, that is, rows with a stop date before �now�.

horology The science of time measurement, and the art of constructing instruments that indicate

time.

hour 1/24 th of a mean solar day.

instant A time point on an underlying time axis, or equivalently, an anchored location on that axis.

Internet Time A day in Internet Time starts at midnight BMT and contains 1000 Swatch Beats.

interstate integrity constraint A constraint applied across states of the table. See also nonse-

quenced integrity constraint.

interval An unanchored contiguous portion of the time line.

INTERVAL An SQL-92 data type, with a user-speci�able granularity. See also day-time interval and

year-month interval. Supported by Informix�Universal Server.

intrastate integrity constraint A constraint applied independently to each state of the table. See

also sequenced integrity constraint.

jiffy In the United States and Canada, 1/60th of a second; in most other places, 1/50th of a second,

though 10-millisecond jif�es (1/100th of a second) are becoming more common.

k'o Roughly a quarter hour, indicated by Chinese clepsydrae: each 14 minutes and 24 seconds long.

labeled duration An IBM DB2 UDB construct consisting of a numeric expression followed by a time

unit, singular or plural.

lifespan The valid-time extent of an entity or of a relationship in the ER model.

lunar day The average interval between successive moonrises.

mean time The time calculated by a �ctitious earth traversing at a constant speed around the sun.
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millennium bug A catch phrase for the year 2000 problem.

monitored table A table for which a tracking log is maintained.

monotonic vacuuming speci�cation Repeated application of the vacuuming does not violate the

speci�cation.

nonsequenced duplicate Rows with identical values for their timestamp and nontimestamp

columns.

nonsequenced integrity constraint Treats the timestamp as just another column.

nonsequenced modi�cation Treats the row's timestamp as just another column.

nonspecialized See fully general.

nontemporal entity type An entity type for which the lifespan is not recorded.

nontemporal relationship type A relationship type for which the valid time is not captured.

ost There are 60 osts (ostenta) to the hour, so an ost is equivalent to a minute.

period The time between two instants, or equivalently, an anchored duration of the time line.

PERIOD An SQL3 data type constructor, with a user-speci�ed granularity.

period of applicability The period over which a sequenced modi�cation applies.

period of presence The (transaction-time) period for which a row was logically resident in the table.

period of validity The period for which a fact represented by a row is valid in the modeled reality.

P.M. post meridiem, or �after noon.�

point There are �ve points (puncta) to the hour.

position In SQL-92, the number of characters from the character set SQL TEXT that it would take to

represent any value of that type.

postactive modi�cation A modi�cation in which the period of applicability is after the transaction-

start time.

postactive specialization A bitemporal entity type, relationship type, or table in which the

beginning of the valid timestamp is always after or equal to the beginning of the transaction timestamp.

precision In SQL-92, the number of fractional digits allowed in the value of the associated data type.

precision decomposition Columns with a �ner granularity than that of the table they are associated

with are placed in a separate table, with a timestamp of that �ner granularity.

proleptic Gregorian calendar The Gregorian calendar extrapolated backwards to 1 C.E.; used in

SQL-92.

reconstruct Retrieve a prior state of a monitored table, as of a speci�ed date.

retroactive modi�cation A modi�cation in which the period of applicability is before the

transaction-start time.

retroactive specialization A bitemporal entity type, relationship type, or table in which the

beginning of the valid timestamp is equal to or before the beginning of the transaction timestamp.

sequenced deletion Removes rows that became invalid now.

sequenced duplicate Rows that are duplicates at some instant.

sequenced integrity constraint Is applied independently at each point in time.
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sequenced join Join two tables by joining, at each point in time, the corresponding states of the

argument tables.

sequenced primary key A constraint stating that the speci�ed columns constitute a primary key in

every state.

sequenced update Occurred independently in each state, over the period of applicability of the

update.

serialization An isolation level in which only committed values may be read.

sidereal day The time between two meridian transits of a star, 23 hours and 56 minutes of true solar

time.

sidereal second 1/86,400th of a sidereal day.

SMALLDATETIME A Microsoft SQL Server data type, with a granularity of minute, and a Sybase

SQLServer data type, also with a granularity of minute.

snapshot equivalent Two rows or tables in which all of their snapshots, resulting from a time-slice

at an instant of time, are identical.

snapshot of a table The rows of that table valid at (or within the period of presence of, for a

transaction-time table) a speci�ed instant.

snapshot table A table that is not timestamped with either valid time or transaction time.

solar day See true day.

Sothic cycle When the lunar New Year coincides with the solar New Year in the Egyptian calendar,

once every 1460 years.

Swatch Beat One-thousandth of a solar day, of length 1 minute 26.4 seconds.

temporal As a modi�er, used to indicate that the modi�ed concept concerns some aspect of time.

temporal constructor An expression that returns a temporal value.

temporal specialization Denotes the coupling of the valid and transaction timestamps of a

bitemporal entity type, relationship type, or table.

temporal support decomposition Columns that differ in their temporal support from the enclos-

ing table are placed in a separate table.

temporal table A table supporting valid time or transaction time.

temporal upward compatibility An SQL-92 statement (query, modi�cation, view, assertion, con-

straint) will have the same effect on an associated snapshot database as on the temporal counterpart of

the database.

temporal vacuuming Purging old information from the archival store.

temporally partitioned table A state table that is represented physically as two or more tables, with

the criterion of which underlying table a row resides based on the temporal extent of that row.

TIME An SQL-92 data type, with a default granularity of second. Supported by IBM DB2 UDB and by

UniSQL, with a granularity of second.

time-dependent assumption An often implicit assumption that will be invalidated purely by the

course of time. The year 2000 problem is a speci�c instance.

time-invariant Data or a table that doesn't vary over time.
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time-invariant key A key that identi�es a particular entity over its entire lifespan.

time-invariant participation constraint A participation constraint that holds over the entire

valid time of the relationship.

time-invariant unique Attribute(s) that are unique for a particular entity or relationship over its

entire lifespan or valid time.

time-sequence Of an object, the sequence (ordered by time) of pairs of a data object and an instant.

time-slice Of a row or a table: the value(s) at a speci�ed instant of time.

time-slice query A query applied to a particular state of a table or database.

timestamp Of a row, either the period of validity or the period of presence of that row. Of a table, the

table's timestamp column(s).

TIMESTAMP An SQL-92 data type, with a default granularity of microsecond. Supported by IBM DB2

UDB and UniSQL, with a granularity of second.

timestamp column The column(s) of the table denoting the timestamp.

tracking log Records the past states of the monitored table.

transaction time Of a fact, the time when the fact is current in the database and may be retrieved.

This time is a period delimited by when the fact was inserted into the database and when it was modi�ed

or logically deleted.

transaction time-invariant participation constraint A participation constraint that holds over

the entire transaction-time period of the relationship.

transaction time-invariant unique Attribute(s) that are unique for a particular entity or relation-

ship over its entire transaction-time period.

transaction time-slice A query or view that selects the snapshot state of a transaction-time table at

a speci�ed transaction time, or a valid-time state of a bitemporal table.

transaction-time splitting A method of partitioning a region of a bitemporal time diagram into

rectangles by inserting vertical splits, resulting in contiguous bands in transaction time.

transaction-time state table One with facts timestamped with their transaction time.

tropical year The time interval between two consecutive passages of the earth across a given point of

its orbit.

true day The time between two consecutive noons, 24 hours.

true time The hour-angle of the sun starting from noon.

user-de�ned time An uninterpreted datetime. Contrast with valid time and transaction time.

vacuum Remove less desired information, for example, from an archival or history store.

vacuuming criteria Additional predicates that characterize the rows to be purged from a temporal

table.

valid time Of a fact, when the fact was true in the modeled reality.

valid time-slice A query or view that selects the snapshot state of a valid-time table at a speci�ed valid

time, or a transaction-time state of a bitemporal table.

valid-time splitting A method of partitioning a region of a bitemporal time diagram into rectangles

by inserting horizontal splits, resulting in contiguous bands in valid time.
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valid-time state table One that records the history of the modeled reality by timestamping facts

with periods denoting when they were valid.

valid-time support A row with an associated valid time, which is a value of the period data type. An

SQL3 table is one in which each row is a row with valid-time support.

value-equivalent Rows on the same schema with identical values for their nontimestamp columns.

year-month interval An SQL-92 interval data type containing only the year and month �elds.

year 2000 problem A hardware or software bug arising from using just two digits to record the year.

Y2K is the acronym for the year 2000 problem.
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F. Grandi, C. S. Jensen, W. Käfer, N. Kline, K. Kulkanri, T. Y. C. Leung, N. Lorentzos, J. F. Rod-

dick, A. Segev, M. D. Soo, and S. M. Sripada. The TSQL2 Temporal Query Language. Kluwer

Academic, Norwell, MA, 1995.
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See also queries

bitemporal table partitioning,
330�337

See also temporal partitioning
bitemporal table, 20, 276�341,

427, 471
append-only, 285
component sizes, 337
corresponding time diagram,
330

current deletions, 292�294
current modi�cations,
283�294

current update, 284�291
deletions, 292�294
expressed as view, 333
feed yard case study, 20�21
foreign keys, 279, 374
implementation, 278, 339
insertions, 283�284
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bitemporal table (continued)
integrity constraints, 323�329,
339�340

modi�cations, 276, 282�307,
339, 387

nonsequenced modi�cations,
305�307

nontemporal modi�cation on,
286

overview, 276
primary keys, 366�367
query spectrum, 312�323
reconstituting, as view,
335�336

referential integrity con-
straints, 329

reinstating, as view, 334, 336
sequenced modi�cations,
294�305

SQL3, 427�436
state/event, 335
summary, 339�340
temporal partitioning,
329�337, 340

time-slice query, 307�312
timestamp columns, 279
translating modi�cations on,
282

update, 284�291
usefulness of, 276
vacuuming, 337�339
valid time and, 285
valid time-slice of, 309
valid-time sequenced primary
key, 281

valid-time state capture, 279
bitemporal time diagram, 283,

472
corresponding bitemporal
table, 330

horizontal slice, 309
illustrated, 284
introduction of, 340
regions, 287
update impact on, 284, 285
variation, 340
vertical slice, 307
See also bitemporal table

bitemporal time-slice, 311�312,
429, 472

current, 312
illustrated, 312
input, 311

BKP table, 362, 376
contiguous primary key, 380
nonsequenced/current foreign
key for, 368, 369�370

primary key, 365

transaction-time current, 369,
372�373, 396�397

BMT (Biel Mean Time), 437, 472
Böhlen's classes of integrity

constraints, 341
Bulova Accutron, 364

C.E., 75, 472
calendars, 6
Gregorian, 37, 75, 76
Hijri, 49
Julian, 75
proleptic Gregorian calendar,
76, 474

candidate keys, 115
CASE expression, 152, 153, 298
CAST constructor, 40, 83
CD-ROM materials, 8
instants/intervals, 84
modifying state table, 215
periods, 108
querying, 173
SQL3, 459�460
state table de�nition, 138
Synchrony, 460
temporal database design, 396
TIGER, 460
TIMEDB, 460
tracking log, 247�248
transaction-time state table,
272

character constructors, 97
CHARACTER type
as cast source for year-month
intervals, 40

converted to datetime value,
38

chronology, 472
circadian clocks, 224
clepsydra, 115, 472

See also water clocks
clocks
accuracy of, 405, 409, 414
atomic, 382, 402
circadian, 224
clepsydra, 115, 472
components, 281
crown wheel, 201
crystal, 376
hairspring, 288
Harrison's marine, 351, 398
hour hand, 405
minute hand, 409
oscillator, 281
pendulum, 257, 281, 288
periodic, 281
resonator, 281
second hand, 414, 418, 423
transmission, 281

water, 115, 131, 181
closed-closed representation, 89
for period of validity, 119

closed-open representation,
89�90, 92, 358

COALESCE expression, 214
coalesced table, 161, 162
coalescing, 159�162, 174, 472
entirely in SQL, 165�166
entirely in SQL using COUNT,
166�167

IBM DB2 UDB, 169�170
reducing number of rows and,
160

variants, 160
via cursor, 167�168
while removing duplicates,
161, 162�169

while retaining duplicates,
161, 169

comparable values, 34, 472
complex modi�cations, 198�205
converting, 198
current, 199�200
sequenced, 200�205
SQL3, 418�419
See alsomodi�cations

composite sort key, 148
conceptual design, 345�355
nontemporal ER schema,
345�348

temporal annotations,
348�355

See also temporal database
design

conceptual keys, 363
concurrency control system, 240
conformance testing, NSTL,

85�86
constraints
attributes, 131�132
DEFERRABLE, 131
DEFERRABLE INITIALLY

DEFERRED, 132, 140
expressed as nontemporal
table, 408

foreign key, 327, 368
integrity, 323�329
key, 378
nontemporal, 326
participation, 348, 378�379
primary key, 117, 121�122,
124

referential integrity, 110,
126�131

types of, 139
uniqueness, 122, 124, 139,
375, 378
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constructors, 36�42
CAST, 40, 83
character, 97
datetime, 37�39, 93�94
IBM DB2 UDB, 45�46
Informix�Universal Server,
47�48

interval, 39�40, 94�95
Microsoft Access 2000, 51�52
Microsoft SQL Server, 53�54
Oracle8 Server, 60�61
period, 95�97
periods and, 93�97
SQL3, 405�406
Sybase SQLServer, 56�57
temporal, 36
UniSQL, 64�65

CONTAINS predicate, 418, 439
contiguous histories, 129, 130
Coordinated Universal Time

(UTC), 28, 77
See also UTC; seconds

CREATE TRIGGER statement,
245, 246

crown wheel, 201
crystal clocks, 376
current deletions, 183�184
on bitemporal table, 291�294
cases, 190, 191
in general case, 183�184, 190
logical, 387
nonpartitioned, 209
on partitioned table, 209�210
period of applicability, 191
period of validity, 191
process, 190
in restricted case, 183
result of, 294
splitting into rectangles, 292
SQL3, 425
See also current modi�cations;
deletions

current duplicates, 121, 472
assuming no further data,
123�124

removing, 159
removing (SQL3), 415
See also duplicates

current insertions, 178�183, 472
on bitemporal table, 283�284
coding, in SQL, 387
ensuring referential integrity
with, 180

ensuring uniqueness with, 179
in general case, 181
on partitioned table, 208
results, 291
speci�cation, 178
SQL3, 425

See also current modi�cations;
insertions

current integrity constraints,
123, 325, 472

current joins, 144, 472
current key constraint, 254
current modi�cations, 16, 18, 19,

177�187, 444�445, 472
bitemporal, 283�294
complex, 199�200
deletions, 183�184
insertions, 178�183
mentioning other table,
199�200

on monitored table, 229
SQL3, 416�417
SQL3 bitemporal table, 435,
436

on transaction-time state
table, 257

update, 184�187
See alsomodi�cations

current query, 142
bitemporal, 314�320
conventional query conver-
sion to, 158

converting, 174
expressed against monitored
table, 268

on tracking logs, 226, 250
temporal partitioning and, 206
temporally upward compati-
ble, 174

time-slice, 145
transaction-time state table,
259

valid time-slice, 145
WHERE clause and, 383
See also queries

current referential integrity
constraints, 127�128, 130

current state
extracting, 143�145
queries on, 265

current store, 206, 263�265, 330,
472

contents, 268
current/current query applied
to, 331

disadvantage, 331
maintaining, 332
partitioned table, 208
tripartitioned state table, 266
truncated, 267

current time-slice query, 145, 472
current update, 176, 184�187,

472
on bitemporal table, 284�291
cases, 157, 187
of future row, 289

in general case, 186�187
logical, 388
partitioned table, 209
with period of validity, 187
in restricted case, 184�185
SQL3, 425
on transaction-time table, 394
See also current modi�cations;
updates

current valid time-slice query,
145, 472

current/current constraint, 326,
369

current/current query, 320, 321
applied to current store, 331
ef�ciency/ease of, 332

current/nonsequenced con-
straint, 326

current/nonsequenced query,
322

CURRENT DATE, 206
cursor-based coalescing, 167�168
Microsoft SQL Server, 171�172
See also coalescing

date duration, 43
DATE type, 27, 28, 79, 401, 470,

472
B.C.E. and, 27
converted to datetime value,
39

IBM DB2 UDB, 68
Informix, 69
length, 27
Oracle8 Server, 73
year digits, 67

dates
as-of, 224
coalescing in SQL and, 165
end, 120
literals, 27
NULL, 120
Oracle8 Server, 58�59
parsing of, 71
time-dependent assumptions,
66

datetime constructors, 37�39
IBM DB2 UDB equivalent, 45
Informix�Universal Server, 47
list of, 37�38
Microsoft Access, 51
Microsoft SQL Server, 53�54
Oracle8 Server, 60�61
periods and, 93�94
SQL3, 405
Sybase SQLServer, 56�57
types converted to, 38�39
UniSQL, 64
See also constructors
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DATETIME type, 44, 472
Informix, 69
Microsoft SQL Server, 72

datetimes, 27, 74�80, 472
closed-open pair of, 92
containing time �elds, 78
delimiting, 90
�eld extraction from, 41
period comparison with, 92

day
lunar, 224, 473
sidereal, 95, 475
solar, 95, 475
true, 95, 476

day-time intervals, 31, 32�33, 84,
472

casts resulting in, 40
�elds, 32
leap seconds and, 81
literals, 33
types, 32�33
See also intervals

DB2 Universal Database. See IBM
DB2 UDB

DECIMAL type, 43
decomposition
precision, 361
temporal support, 362

degenerate entity type, 380, 472
degenerate specialization, 380,

472
DELETE statement, 176, 254, 416
states becoming true in future
and, 184

See also UPDATE statement
deletions
on bitemporal table, 291�294,
299�302

current, 183�184, 258,
291�294

duplicates and, 184
monitored table, 269
nonsequenced, 306
nontemporal, 190, 215
period of applicability and,
417

projection, 229
sequenced, 190�193
SQL3, 425
transaction-time state table,
258

See also modi�cations
diffraction patterns, 1�2
digital perception of time, 217
dirty read, 242, 243, 472
duplicates
current, 121, 123, 159
deletions and, 184
elimination, easy, 159

elimination (SQL3), 415�416
nonsequenced, 122, 159
period of applicability and,
188, 190

prevent, in INCUMBENTS table,
409

retaining, while coalescing,
160

sequenced, 121, 124
sequenced join, eliminating,
158�169

table containing, 121, 160
durations, 43
computing, 94
date, 43
entity lifespan, 364
instants and, 75
labeled, 43, 473
time, 43
timestamp, 43
valid-time, 306

EMPLOYEES table, 207
END DATE, 25, 159
ending instant, 93
entity lifespan, 348�349,

360�361
duration, 364
recorded, 364�365
SQL3, 438

entity types
classifying, 379
degenerate, 380
implied lifespan, 349
instantaneous, 363
instantaneous and valid-time
instant is recorded, 364

key, 378
key attributes, 347
lifespan with duration,
and lifespan is recorded,
364�365

nontemporal, 474
postactive, 380
primary keys, 364
strong, 345
time-varying key association
with, 351�353

transaction-time extent and,
354

valid time and, 349
weak, 345
See also relationship types

entity vacuuming, 269, 472
archival store, 269
See also vacuuming

ephemeris second, 402, 472
See also seconds

equality predicates, 33�34

on periods, 91
types of, 33
See also predicates

equation of time, 149, 473
equinoctial day, 115, 473
ER schema, 345�348
attributes, 347
entity type key attributes, 347
illustrated, 346
participation constraints, 348
relationship types, 347�348
strong entity types, 345
weak entity types, 345
See also feed yard case study

escape wheel, 6
escapements, 6, 201, 473
tasks, 201

events, 74, 473
instantaneous, 349

EXCEPT statement, 175, 414
EXPAND operator, 455, 456, 457
EXPANDING clause, 456�457
extracting
backlog from transaction-time
state table, 262, 424�425

current state, 143�145
prior states, 145, 223�225
states (SQL3), 412

feed yard case study, 11�23,
342�398

bene�ts, 382�383
bitemporal table, 20�21
ER schema, 345�348
gender transitions, 16
LOT bitemporal table, 20
LOT table, 16, 17, 20
LOT CONTAINS table, 19
LOT LOC table, 13
modi�cations, 444�446
queries, 13�14, 15, 443�444
temporal annotations,
348�355

temporal relational schema,
437�442

transaction-time state table,
18�20

valid-time state table, 12�18
FINDER data model, 25�26
dates, 25
duration data, 26
Fac Daily Prod table, 25
intervals, 30
periods, 89
Seis Survey Hdr table, 30
Stage Flowback table, 30
Well Core Hdr table, 26
Well Log Service table, 30
Well Test Period table, 30
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first instant function, 153,
170�171

foreign key constraints
nontemporal referenced table
and, 368

sequenced/current, 327
foreign keys, 126
bitemporal table, 279, 374
current/current, 372
nonsequenced/current, 368,
369�370, 370�371

sequenced, 128, 134
sequenced/current, 370�371,
373�374

transaction-time current, 369,
372�373, 396�397

valid-time sequenced, 374
violation, 193

FROM clause, 5, 145
FRS (Financial Records System),

111
fully general relationship type,

379, 473
future query, 226

gaps
�lling, 180, 182, 188
sequenced deletion, 193
See also modi�cations

geocentric coordinate (TCG)
second, 78

See also seconds
gnomonics, 7, 473
gnomon's shadow, 181
granularities, 74, 473
temporal, 12
timestamp, 427
valid time, 332

granules, 31, 473
GREATEST function, 322
Greenwich Mean Time (G.M.T.),

29
Gregorian calendar, 37, 75, 76
adoption of, 84
proleptic, 76, 474

H-4 (fourth Harrison), 351
hairspring, 288
heliochronometer, 31, 473
hemicyclium, 7, 473
hemispherium, 7, 473
Hijri calendar, 49
historical table, 23
history store, 332, 473
future valid times in, 332
maintaining, 332
rectangles, 332
size, 338

timestamp columns, 332
transaction-time current query
applied to, 334

See also bitemporal table
horology, 473
hours, 22, 473
sidereal, 402

IBM DB2 UDB, 8
assertions and, 132
CD-ROM materials, 84, 108,
138, 173, 215, 247

coalescing with duplicate
elimination, 169�170

DATE, TIME, TIMESTAMP type
support, 43

datetime constructors, 45
duration support, 43
implementation considera-
tions, 83

interval constructors, 46
literals, 45
modifying state table and, 213
other operators, 46
period operations in, 97, 98�99
predicates, 45
prevent value-equivalent rows,
132

recursive query, 169
sequenced primary key in, 133
SQL-92 operations in, 44,
45�46

tracking logs, 244�245
triggers, 244
types, 45
year 2000 problem and, 68�69

implied century rule, 66
INCUMBENTS.SSN, 125�126
current unique, 126
nonsequenced unique, 125
sequenced unique, 125

INCUMBENTS table, 112
adding period timestamp to,
114

arbitrary modi�cations, 186
coalesce, while removing
duplicates, 162�168

coalesce, while removing
duplicates (in Microsoft
Server),

171�172
current state, 144
excerpts, 115, 147, 178
partitioning, 207
prevent current duplicates in,
123

prevent duplicates in, 409
prevent nonsequenced
duplicates in, 123

prevent sequenced duplicates
in, 124, 409

prevent value-equivalent rows
in, 122

prevent value-equivalent rows
in (DB2 UDB), 132

primary key, 117
remove duplicates from, 159
remove value-equivalent rows
from, 159

sequenced join applied to, 151
sequenced primary key, 118,
119, 408

sequenced primary key, in DB2
UDB, 133

sequenced sort, on position
code, 148

temporal partitioning of,
419�420

valid-time support, 408
See alsoUniversity Information
System (UIS)

inequality predicates
on periods, 93
sequenced join, 150
See also predicates

Informix�Universal Server, 8,
44�48

CD-ROM materials, 84, 108
DATE type, 69
datetime constructors, 47
DATETIME type, 44, 69
first instant support,
170�171

formatting/converting date
utilities, 44

instant type support, 44
interval constructors, 48
INTERVAL type, 44�46
last instant support,
170�171

literals, 47
other constructors, 48
partial interval support, 43
period operations in, 97, 100
predicates, 47
SQL-92 operations in, 47�48
types, 47
year 2000 compliance
de�nition, 69

year 2000 problem and, 69�71
Ingres, 84, 108
INSERT statement, 176, 254
on bitemporal table, 289, 290,
293

sequenced update, 195
sequenced update mentioning
other table, 205
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insertions
arbitrary, 232
on bitemporal table, 283�284,
295�299

current, 178�183, 257�258,
283�284

permitting, 230�233
projection, 229
in referencing table, 179
sequenced, 188�190
SQL3, 425
on tracking log, 230�233, 248
on transaction-time state
table, 257�258

See also modi�cations
instant extractors, 93
instants, 3, 26�29, 84, 473
absolute nature of, 30
adding intervals to, 30
beginning, 93
calendar independence, 75
DATE, 12
distance between, 30
duration and, 75
ending, 93
last, 93
previous, 93
starting, 12
support for, 3�4
TIME, 12
TIMESTAMP, 12

instant-stamped table, 361
integrity constraints, 323�329,

339�340
application after modi�cation
statements, 326

Böhlen's classes of, 341
current/current, 326, 369
current/nonsequenced, 326
implementation, 323, 324
interstate, 473
intrastate, 141, 473
nonsequenced/current, 325,
326

nonsequenced/nonsequenced,
326

nontemporal variants, 326
query connection to, 323
sequenced/current, 325, 326,
328

sequenced/nonsequenced, 326
SQL3, 406, 434�435
temporal, 328
for valid-time table, 363

Internet Time, 437, 473
interstate integrity constraints,

473
interval constructors, 39�40
duration, 94

IBM DB2 UDB equivalent, 46
Informix�Universal Server, 48
list of, 39�40
Microsoft Access, 52
Microsoft SQL Server, 54
Oracle8 Server, 61
periods and, 94�95
SQL3, 405
Sybase SQLServer, 57
time zone extraction, 95
UniSQL, 64�65
See also constructors

INTERVAL type, 30�31, 473
Informix�Universal Server,
44�46

intervals, 3, 30�33, 84, 473
adding, to instants, 30
characteristics of, 30
day-time, 31, 32�33, 84
direction, 30
�eld extraction from, 41
�elds, 31
Microsoft Access, 50
Microsoft SQL Server, 50
natural rules for, 81
Oracle8 Server, 62
quali�er, 31
relative nature of, 30
spatial, 30
SQL handling of, 81
support for, 3�4
temporal, 30
year-month, 31�32, 84

intrastate integrity constraints,
141, 473

isolation levels
dirty read, 242, 243, 472
serialization, 242

jiffy, 321, 473
joins
current, 144, 472
nonsequenced, 384
sequenced, 148�153, 384,
385�386, 413

temporal, 384, 443
Julian calendar, 75

key constraints, 379
keys
composite sort, 148
conceptual, 363

k'o, 131, 473

labeled durations, 43, 473
last instant function, 153,

170�171
leap seconds, 77, 81
LEAST function, 322

less-than predicate, 34�35
lifespan, 348, 473
entity, 348�349, 360�361,
364�365, 438

introduction of, 398
literals
day-time interval, 33
IBM DB2 UDB, 45
Informix�Universal Server, 47
Microsoft Access, 48�49, 51
Microsoft SQL Server, 53
Oracle8 Server, 60
period, 90
Sybase SQLServer, 56
UniSQL, 64

local time, 78
logical design, 344, 355�375
initial nontemporal, 357
mapping to relational schema,
356�357

stages, 344
temporal annotations,
357�375

See also temporal database
design

logical keys, 364
LOT table, 16, 17, 20, 360, 362,

376
current/current foreign key
for, 372

excerpt, 381
partitioning, 376, 377
primary key, 363, 364, 366
sequenced/current foreign key,
370�371, 373�374

valid-time sequenced foreign
key, 374

LOT Archive table, 376
LOT CONTAINS table, 363, 376
foreign key, 37
primary key, 365
state, 386

LOT LOC table, 360, 362, 376
implemented as backlog, 367
instant transaction time-
stamps, 377

primary key, 367
LOT MOVE table, 361, 362, 376
instant transaction time-
stamps, 377

primary key, 366
lunar day, 224, 473

MASS TRTMNT table, 361
instantaneous relationship,
376

primary key, 365
mean solar second, 78

See also seconds
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mean time, 149, 473
MEETS predicate, 427
Microsoft Access, 8
assertions and, 133
CD-ROM materials, 84, 108,
138, 173, 215

datetime constructors, 51
implementation considera-
tions, 83

interval constructors, 52
intervals, 50
literals, 48�49, 51
modifying state table and, 213
other operators, 52
period operations, 101, 102
predicates, 49, 51
sequenced foreign key in, 134
SQL-92 operations in, 51�52
types, 48, 51
year 2000 compliance
de�nition, 71

Microsoft SQL Server, 8
assertions and, 135
CD-ROM materials, 84, 108,
138, 173, 215, 247, 272

cursor-based coalescing,
171�172

data type conversions, 50
datetime constructors, 53�54
interval constructors, 54
intervals, 50
literals, 53
modifying state table and, 213
other operators, 54�55
period operations, 101,
103�104

predicates, 53
sequenced primary key in,
135�136

SQL-92 operations in, 53�55
temporal types, 50, 53
tracking logs, 245�246
transaction-time state table,
272

triggers for maintaining P Log

table in, 245�246
year 2000 problem and, 72

migration, 446�455
nonsequenced
query/modi�cations,
453�455

sequenced extensions,
450�453

temporal upward compatibil-
ity, 447�450

upward compatibility,
446�447

millennium, 63
bug, 474
start of, 79

See also year 2000 problem
minutes, 321, 402
modi�cations, 14, 176
arbitrary, 186
on backlogs, 394
on bitemporal table, 276,
282�307, 339, 387

complex, 198�205, 418�419
current, 16, 18, 19, 177�187,
416�417, 444�445

expression of, 17
feed yard case study, 444�446
implementing, 216
mentioning other table,
198�205, 216, 418�419

nonsequenced, 17, 18, 197�
198, 305�307, 393, 418,
445�446

nontemporal, 452
in nontemporal applications,
216

operation code indication, 394
period of applicability for, 21
postactive, 295, 331
retroactive, 295, 324, 474
rewritten, 257�259
sequenced, 18, 188�197,
294�305, 417, 445

SQL3, 416�421, 425
SQL3 bitemporal table,
435�436

SQL/Temporal, 452
temporal database design and,
387�396

temporal partitioning and,
208�212

on tracking log, 229�230
on transaction-time state
table, 19

unrestricted, 182
in valid time, 332
on valid-time state table,
14�18

monitored table, 220, 223, 474
columns, 254
contents, 225
current modi�cations on, 229
current query expressed
against, 268

de�ned as views, 266
deletions, 269
past query on, 226
period-stamped table aug-
menting, 273

previous state reconstruction,
224

primary key, 254
state of, 241
triggers, 256
volatility of, 269

See also tracking logs
monotonic vacuuming, 272, 474

nested query, 414
nonsequenced deletion
on bitemporal table, 306
results, 307
See also deletions

nonsequenced duplicates, 122,
474

removing, 159
removing (SQL3), 416
See also duplicates

nonsequenced integrity con-
straints, 474

nonsequenced joins, 384
nonsequenced modi�cations, 17,

18, 197�198, 445�446, 454,
474

on bitemporal table, 305�307
deletion, 306
in English, 197
evaluating, on table with
valid-time support, 454

expression, 198
implementation, 198, 393
on partitioned table, 212
period timestamp manipula-
tion, 454

rami�cations, 198
rarity, 198, 393
timestamp treatment, 197, 393
tracking logs and, 230
See also modi�cations

nonsequenced query, 156�158,
174

bitemporal, 314�320
evaluating, over table with
valid-time support, 453

example, 158
expression of, 383�384
SQL3, 415�416
temporal partitioning and, 208
timestamps and, 158
on tracking logs, 229, 250
transaction-time state table
and, 238

valid-time sequenced and, 319
WHERE clause and, 320
See also bitemporal query;
queries

nonsequenced referential in-
tegrity constraints, 128,
131

requiring contiguous history,
130

See also referential integrity
constraints
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NONSEQUENCED reserved
word, 410, 428, 453, 465

nonsequenced query, 412, 415
with VALIDTIME clause, 428

nonsequenced valid-time
assertions, 281

nonsequenced/current con-
straint, 325, 326

nonsequenced/nonsequenced
constraint, 326

nonsequenced/nonsequenced
query, 323

nonspecialized. See fully general
relationship

nontemporal crow's-feet schema,
359

nontemporal entity type, 347,
474

nontemporal ER schema,
345�348

nontemporal keys, 351
nontemporal query, 12, 13, 313
nontemporal relationship type,

347, 474
nontemporal update, 17
NORMALIZE operator, 455, 456,

457
NOT EXISTS construct, 154, 155,

166, 324, 337
nested, 165, 166
SELECT statements, 155
subqueries, 156

�now,� 119�120
NULL dates, 120
NULL predicate, 35
between period information,
36

values, 35
See also predicates

open-closed representation, 90
open-open representation, 90
Oracle8 Server, 8, 55�62
assertions and, 137
CD-ROM materials, 84, 108,
138, 173, 215, 247, 396

date functions, 59
dates, 58�59
datetime constructors, 60�61
�elds, 55
GREATEST function support,
173

implementation considera-
tions, 83

interval constructors, 61
interval type and, 30
intervals, 62
LEAST function support, 173
literals, 60

modifying state table and,
213�214

other operators, 61�62
period operations, 101, 106
predicates, 60
sequenced primary key in, 137
SQL-92 operations in, 60�62
TO DATE function, 73
tracking logs, 246
types, 55, 60
year 2000 problem and, 73�74

Oracle PL/SQL, 167�168
ORDER BY clause, 148

See also clocks
oscillator, 281

See also clocks
ost, 349, 474
ostenta, 349
OVERLAPS predicate, 35�36, 82,

91
current transaction time-slice
and, 428

format, 35
period information values, 82
returns, 35�36
See also predicates

P.M. (post meridiem), 474
participation constraints, 348
minimum, 348
specifying, 348
time-invariant, 378�379, 476

partitioned table
current deletions, 209
current insertion, 208
current query, 206�212, 216
current store of, 208
current update, 209
nonsequenced modi�cations,
212

queries, 206�207
sequenced deletions, 209�210
sequenced insertions, 209
sequenced modi�cations,
209�212

sequenced update, 211�212
past query, 226
pendulums, 257, 281, 288
PERIOD abstract type, 170, 171
period constructors, 95�97
list of, 95�97
SQL3, 88, 405
See also constructors

period data types (SQL3), 403
period literals, 404
period of applicability, 188, 390,

474
deletions and, 417
duplicates and, 188, 190

periods outside of, 201
sequenced deletion, 191, 193
sequenced insertion, 390
sequenced modi�cation, 417
sequenced update, 194, 196,
304

start of, 190
valid-time sequenced modi�-
cations (SQL3), 436

period of presence, 254, 474
period of validity, 12, 110, 474
closed-closed representation
for, 119

computing with CASE
statement, 298

insertion, 296
merging value-equivalent rows
and, 169

sequenced deletion, 191
sequenced update, 196
SET clause for, 201
specifying, 114
termination in the past, 186
WHERE clause for, 201

periods, 3, 88�108, 474
character constructors, 97
closed-closed representation,
89

closed-open representation,
89�90

constructors, 93�97
datetime comparison with, 92
datetime constructors, 93�94
deleting, 215�216
delimiting datetimes of, 90
equality predicates on, 91
FINDER schema and, 89
IBM DB2 UDB, 97, 98�99
implementation considera-
tions, 97�108

inequality predicates on, 93
Informix�Universal Server, 97,
100

instant-pair representation, 89
interval constructors, 94�95
literals, 90
Microsoft Access, 101, 102
Microsoft SQL Server, 101,
103�104

no gaps within, 167
open-closed representation, 90
open-open representation, 90
operations in SQL3, 407
Oracle8 Server, 101, 106
order, 91
outside period of applicability,
201

overview, 88
period constructors, 95�97
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predicates, 90�93
relationships between, 92
representations of, 88
SQL3 and, 88, 108
starting in future, 184
Sybase SQLServer, 101, 105
time zones of, 90
transaction-time, 361
UniSQL, 101, 107�108
value-equivalent, 163

period-stamped table, 273
physical design, 375�377
speci�cation, 375
temporal partitioning as, 419
transaction-time support, 421
See also temporal database
design

PL/SQL, 167�168
P Log table, 220
backlog, 234
contents, 223
conversion to transaction-time
state table, 227�228, 422

de�ning PROJECTIONS on a
view on, 239

insert trigger for maintaining,
230

insertions in, 231
separate, 221
triggers for maintaining, 221,
235, 244�245

PO Archive table, 333
PO Current table, 331
points, 349, 474
polygonal region, splitting, 288
position, 27, 474
POSITIONS table, 149
�ll gap in, 180, 182, 213, 214,
215

no gaps in, 182
period of validity for, 202

postactive entity/relationship
type, 380

postactive modi�cations, 295,
331, 474

example, 295
See also modi�cations

postactive specialization, 380,
474

See also temporal specialization
precision, 28, 474
precision decomposition, 361,

474
predicates, 33�36, 82
BETWEEN, 35, 92
CONTAINS, 418, 439
equality, 33, 90�91
IBM DB2 UDB, 45
inequality, 93

Informix�Universal Server, 47
is null, 35
less-than, 34�35
MEETS, 427
Microsoft Access, 49, 51
Microsoft SQL Server, 53
Oracle8 Server, 60
OVERLAPS, 35�36, 91
SQL3, 404�405
Sybase SQLServer, 56
UniSQL, 64

previous instant, 93
primary key constraints, 117, 121
on monitored table, 254
sequenced, 124
uniqueness, 121
value-equivalent, 122
violation of, 185
See also constraints

primary keys, 363�367
bitemporal table, 366�367
BKP table, 365, 380
construct,
entity/relationship type
capturing, 364

INCUMBENTS table, 117
LOT table, 363, 364, 366
LOT CONTAINS table, 365
LOT LOC table, 367
LOT MOVE table, 366
MASS TRTMNT table, 365
monitored table, 254
PRIMARY KEY construct, 13,
364

Prop Owner table, 280
sequenced, 110, 118, 475
specifying, at any point in
time, 118

SQL3, 440
temporal, 110
temporally partitioned
transaction-time state table,
266�268

transaction-time table, 365
UIS, 112

projections
change history for, 260
changing type of, 230,
258�259

currently present, 270
deleting, 229, 258
history of, 426
inserting, 229, 257�258
time sequence of, 231

PROJECTIONS table, 220
code modifying, 221
contents, 223
conversion to instant-stamped
table, 423

de�ning, as view on P Log, 239
reconstruction, 223, 225, 226,
231, 422

spurious changes in, 253
transactions, 222�223
transaction-time support, 421

proleptic Gregorian calendar. See
Gregorian calendar

property owner relationship,
278, 279

Prop Owner table, 278, 313
contiguous valid-time history,
282, 434

creation, 279, 427
current update change in, 285
evolving information content
of, 284

foreign key, 428
number of rows in, 299
primary key, 280
retroactive changes made to,
324

P TT table, 268
contents, 256
as replacement for PROJEC-

TIONS table, 259
triggers for maintaining,
255�256, 264

P TT CURRENT table, 263
contents, 265
mirroring changes to moni-
tored table, 268

P TT PAST table, 263, 265
puncta, 349

queries
auditing, 261, 426
on bitemporal table, 276,
307�323, 339

current, 142, 145, 226
on current state, 265
current/current, 320, 321, 332
current/nonsequenced, 322
feed yard case study, 13�14,
15, 443�444

future, 226
integrity constraint connec-
tion to, 323

on isolated temporal columns,
113

multiple temporal table, 145
nested, 414
nonsequenced, 156�158, 174,
229

nonsequenced, results of, 15
nonsequenced/nonsequenced,
323

queries (continued)
nontemporal, 12, 13, 313
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past, 226
sequenced, 145�156, 174, 229
sequenced/current, 321
sequenced/nonsequenced, 322
SQL3, 411�416, 422�425
SQL3 bitemporal table,
428�434

temporal database design and,
383�387

temporal partitioning and,
206�208

temporally partitioned
transaction-time state table,
265�266

temporally upward compati-
ble, 174

time-slice, 142, 145, 173, 259,
307�312

on tracking log, 222�229
on transaction-time state
table, 19, 259�262

on valid-time state table,
12�13

reconstruction, 474
after-image and, 236, 237
process, 225
queries, 259
on state table, 259
transactions, 243

reconstruction algorithms, 218,
232, 234�235

commit time approximation,
244

with serialization isolation
level, 243

states inconsistent with
serializability, 242

reconstruction table, 218, 220
transaction semantics, 244
See also tracking logs

rectangles
alternate splitting into, 297
encoding bitemporal regions,
311

history store, 332
splitting into, 292, 296

referenced table, 127
contiguous histories in, 130
�lling gap in, 180
foreign key constraints and,
368

update on, 187
referencing table, 126
insertions in, 179
instant timestamps, 373
nontemporal, 131

referential integrity, 126�131,
368�374

code fragments, 140
ensuring, with current
insertion, 180

preserving, 188
in restricted case, 179
sequenced insertion ensuring,
189

sequenced/current, 328
SQL3, 409�411, 440
on valid-time table, 368
violation of, 179, 180

referential integrity constraints,
110, 126

on bitemporal table, 329
current, 127�128, 130
expression of, 140
nonsequenced, 128, 131
nontemporal, 128
sequenced, 129�130
types of, 127
See also constraints

relationship types, 347�348
classifying, 379
fully general, 379, 473
instantaneous and valid-time
instant is recorded, 364

instantaneous events, 349
nontemporal, 349, 474
postactive, 380
primary keys, 364
retroactive, 379
transaction time of, 354
valid time, list of, 350
valid-time extent, which is
recorded, 365

See also entity types
relationship valid time, 349�350,

438
representations of periods, 88,

108
closed-closed, 89, 119
closed-open, 89�90, 92, 358
open-closed, 90
open-open, 90
preferred, 91
See also periods

resonator, 281
See also clocks

retroactive modi�cations, 295,
474

Prop Owner table, 324
See also modi�cations

retroactive relationship type, 379
retroactive specialization, 379,

474
See also temporal specialization

rows
archival, 338

current-duplicate, 121
future, 289
minimizing number of, 162
nonsequenced-duplicate, 122
sequenced-duplicate, 121
started in future, end in future,
181

started in past, end in future,
181

value-equivalent, 121, 122

SAL HISTORY table, 151, 207
current state, 144
excerpt, 152

seconds, 321
atomic (TAI), 78, 402, 471
barycentric coordinate (TCB),
78

barycentric dynamical (TDB),
78

ephemeris, 78, 472
geocentric coordinate (TCG),
78

sidereal, 78, 402, 475
terrestrial time (TT), 78
universal (UT0, UT1), 78

sequenced deletions, 190�193,
474

on bitemporal table, 299�302
converting to, 190
gaps, 193
implementation statements,
193

nonsequenced uniqueness
violation, 193

on partitioned table, 209
period of applicability, 193
physical modi�cations, 390
results, 302
valid-time, 300
See also deletions; sequenced
modi�cations

sequenced duplicates, 121, 474
assuming only current
modi�cations, 124�125

removing, 160
removing (SQL3), 416
retaining, 160
See also duplicates

sequenced extensions, 450�453
sequenced foreign keys, 128, 134
sequenced insertions, 188�190
on bitemporal table, 295�299
cases, 297
ensuring uniqueness and
referential integrity, 189

on partitioned table, 209
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period of applicability, 390
results of, 296, 299
See also insertions; sequenced
modi�cations

sequenced integrity constraints,
474

sequenced joins, 148�153, 384,
475

applied to INCUMBENTS, 151
with CASE, 385�386
duplicates, eliminating,
158�169

�rst case of, 150
inequality predicates, 150
second case of, 150
SELECT statements, 150, 174
SQL3, 413
See also joins; sequenced query

sequenced modi�cations, 18,
188�197, 445

on bitemporal table, 294�305
complex, 200�205
on partitioned table, 209�212
period of applicability, 417
SQL3, 417
tracking logs and, 230
See also modi�cations;
sequenced deletions;

sequenced insertions; se-
quenced update

sequenced primary key, 110, 475
constraint violation, 185
in DB2 UDB, 133
expressed as SQL assertion,
118

maintaining, 178
in Microsoft Access, 133
in Microsoft SQL Server,
135�136

in Oracle8 Server, 137
in restricted case, 179
in Sybase SQLServer, 136
in UniSQL, 138
valid-time, 281
See also primary keys

sequenced projection, 146
sequenced query, 145�156, 174
bitemporal, 314�320
SQL3, 412�414
temporal partitioning and, 208
on tracking logs, 229, 250
on transaction-time state
table, 238, 260

WHERE clause and, 320
See also queries

sequenced referential integrity
constraints, 129�130

sequenced semantics, 450
satisfying, 451
SQL/Temporal and, 450

sequenced sort, 148
sequenced update, 17, 194�197,

475
base cases, 202
on bitemporal table, 302�305
case analysis requirement, 211
cases, 194, 196
effecting result of, 197
implementation statements,
194

mentioning another temporal
table, 202

partitioned table, 211�212
period of applicability, 194,
196, 304

period of validity, 196
results of, 196, 303
two-stage transformation
process, 305

See also sequenced modi�ca-
tions; updates

sequenced/current constraint,
325, 326

foreign key, 327
referential integrity, 328

sequenced/current query, 321
sequenced/nonsequenced

constraint, 326
sequenced/nonsequenced query,

322
serialization order, 250, 475
SET clause, 198
mentioning another table, 200
for period of validity, 201

set date C function, 247
sidereal day, 95, 475
sidereal hour, 402
sidereal second, 78, 402, 475

See also seconds
SMALLDATETIME type, 72, 475
snapshot equivalence, 161, 475
snapshot reducibility, 174
snapshot table, 114�115, 311,

475
with additional timestamp
columns, 318

empty, 319
equivalent, 161, 475

solar day, 95, 475
solar time, 95
mean, 149
true, 95, 149

Sothic cycle, 231, 475
specialization. See temporal

specialization
SQL3, 5, 9, 400, 402�403
ANSI committee, 466
CD-ROM materials, 459�460
datetime constructors, 405
draft standard, 466

EXPAND operator, 455, 456,
457

EXPANDING clause, 456�457
ISO committee, 466
NORMALIZE operator, 455,
456, 457

period data types, 403
period literals, 404
period operations, 407
period support, 108

SQL-92, 87
application development in,
461�464

bitemporal state table,
462�463

Capstone case, 463�464
expressions involving tempo-
ral values, 42

instants/intervals support, 3,
24

interval type, 31
limitations, 401�402
operations in IBM DB2 UDB,
45�46

operations in Informix�
Universal Server, 47�48

operations in Microsoft Access
2000, 51�52

operations in Microsoft SQL
Server, 53�55

operations in Oracle8 Server,
60�62

operations in Sybase SQL-
Server, 56�58

operations in UniSQL, 64�65
support, at Full SQL level, 42
temporal data types, 5
temporal predicates, 33
time-varying data problems,
401

transaction-time table, 462
valid-time state table, 461�462
year 2000 problem and, 67�68

SQL
Entry level, 85
Full level, 85
Intermediate level, 85
SQL-86, 4, 8, 87
SQL-89, 4�5, 87
standard, 4�5
temporal types, 26
See also SQL3; SQL-92

SQL/Foundation, 447, 448
query evaluation, 447, 448
query requirements, 465
SQL/Temporal and, 450
temporal upward compatibil-
ity and, 449
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SQL/Temporal, 450
constructs, 449, 450
modi�cation evaluation, 452
query requirements, 450
requirements, 465

START DATE, 25, 159
state table
converting to, 226�229
converting, to backlog, 262
de�ning, 110�141
de�ning, as a view, 268
modifying, 177�217, 416�421
organizations for, 252
querying, 143�175, 411�416
See also transaction-time state
table; valid-time state table

strong entity types, 345
See also entity types

sundials, 31
Babylonian, 179
early, design of, 181
hemispherium, 7, 473
hemicyclium, 7, 473
See also heliochronometer

Swatch Beat, 475
Sybase SQLServer, 8, 55, 56�58
assertions and, 136
CD-ROM materials, 84, 108,
138, 173, 215, 247

datetime constructors, 56�57
interval constructors, 57
literals, 56
other operators, 57�58
period operations, 101, 105
predicates, 56
sequenced primary key in, 136
SQL-92 operations in, 56�58
tracking logs, 246
types, 56
user-de�ned functions and,
173

year 2000 compliance
de�nition, 73

year 2000 problem and, 73
Synchrony, 459
CD-ROM materials, 460
information on, 467

tables. See backlogs; bitemporal
table; temporal table;

tracking logs; transaction-time
state table;

valid-time state table
Technical Corrigendum 3, 80
temporal annotations, 348�355
additional, 377�380
entity lifespans, 348�349,
360�361

primary keys, 363�367

referential integrity, 368�374
relationship valid time,
349�350

temporal specialization,
379�380

time-invariant keys, 378
time-invariant participation
constraints, 378�379

time-invariant uniqueness
constraints, 378

transaction time, 353�355,
361�363

transaction time-invariant
constraints, 379

uniqueness constraints, 375
user-de�ned time attributes,
358�360

valid time of attributes,
350�353, 361

See also feed yard case study
temporal constructors, 36, 475
temporal data types, 3, 42
IBM DB2 UDB, 45
Informix�Universal Server, 47
instant, 3
interval, 3
Microsoft Access, 48, 51
Microsoft SQL Server, 50, 53
Oracle8 Server, 55, 60
period, 3
SQL-92, 5
Sybase SQLServer, 56
UniSQL, 62, 64

temporal database design,
343�398

advanced aspects, 377�382
application development,
383�396

bene�ts, 382�383
conceptual, 345�355
�ve-step methodology, 397
implementation considera-
tions, 396�397

logical, 355�375
modi�cations and, 387�396
physical, 375�377
properly sequenced, 343�344
queries and, 383�387
temporal upward compatibil-
ity and, 449

temporal extensions, 470
temporal granularity, 12
temporal keys, 117�119
uniqueness and, 408�409
See also primary keys

temporal partitioning, 206�212,
216

of bitemporal table, 329�337,
340

current, 331

current deletions and, 209

current query and, 206�207

current update and, 209

disadvantage of, 207

nonsequenced modi�cations
and, 212

nonsequenced query and, 208

as physical design, 419

sequenced deletions and,
209�210

sequenced insertions and, 209

sequenced modi�cations and,
209�212

sequenced query and, 208

sequenced update and,
211�212

SQL3, 419�421, 427, 436

of transaction-time state table,
262�268

using, 206

temporal relational schema,
437�442

entity lifespans, 438

primary keys, 440

referential integrity, 440

relationship valid time, 438

SQL3, 441�442

transaction time, 439

uniqueness constraints, 440

user-de�ned time attributes,
438

valid time of attributes, 438

temporal semicompleteness, 466

temporal specialization, 379�
380, 475

applying, 382

degenerate entity type, 380

fully general relationship type,
379

postactive, 380, 474

retroactive, 379, 474

See also speci�c types

temporal support

attributes, 361

decomposition, 362, 475

integration, 469

requirements, 464�465

SQL3, 403

standard, 469

temporal table, 23, 475

modi�cations mentioning,
198�205

multiple, 145

sequenced selection on, 146

UNION ALL over, 148

See also table
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temporal upward compatibility
(TUC), 408, 411, 447�450,
475

application, 411
ensuring, 464
illustrated, 448
modi�cation interpretation,
449

query semantics and, 448
SQL/Foundation statements,
449

state contents, 448
system design and, 449
See also migration

temporal vacuuming, 269, 475
archival store, 270
old unused entities from
archival store, 270�271

See also vacuuming
temporally partitioned

transaction-time state table,
206, 262�268,

475
archival stores, 263�265
current stores, 263�265
maintaining, 264
queries, 265�266
utilizing primary key, 266�268
See also transaction-time state
table

temporally upward compatible
query, 174

terrestrial time (TT) second, 78
See also seconds

tidal rhythms, 224
TIGER, 458�459
ATSQL and, 458�459
CD-ROM materials, 460
development, 459, 467
source, 458

time
as-of, 232, 242
digital perception of, 217
equation of, 149, 473
Internet, 437, 473
interval, 340
kinds of, 3
local, 78
mean, 149, 473
solar, 95, 149
transaction occurs, 340
true, 95, 476
user-de�ned, 4, 476
See also transaction time; valid
time

time diagram, 283, 472
corresponding bitemporal
table, 330

horizontal slice, 309

illustrated, 284
regions in, 287
update impact on, 284, 285
variation, 340
vertical slice, 307
See also bitemporal table

time duration, 43
Time Extended EER Model, 398
TIME type, 28�29, 401, 470, 475
converted to datetime value,
38

length, 28�29
TIME WITH TIME ZONE type, 29
using, 80
value safety, 80

time zones, 78, 80
displacement, 78
extraction of, 95
of periods, 90
using, 80
variants, 29

TIMEDB, 458
development, 467
TIMEDB 1, 458, 460
TIMEDB 2, 458, 460
versions, 458

time-dependent assumptions,
66, 475

time-invariant constraints, 379
applying, 381
participation, 378�379, 476
transaction, 379
uniqueness, 378
See also constraints

time-invariant data, 126
time-invariant keys, 378, 476
applying, 380�381
ensuring, 380

time-invariant unique, 378, 476
transaction, 476
valid, 381

time-sequence object, 231, 476
time-slice, 147, 476
bitemporal, 311�312, 429, 472
horizontal, 309, 310
rows resulting from, 310
transaction, 307, 308, 309, 476
valid, 309, 310, 429, 476
vertical, 308, 309

time-slice query, 142, 173, 259,
476

on bitemporal table, 307�312
current, 145, 472
current-valid, 145, 472
over previous state, 145
transaction, 428
valid, 309

timestamp columns, 114, 116,
476

appending, to end of
composite sort key, 148

in a bitemporal table, 279
history store, 332
instant, 360
nonsequenced modi�cations
and, 197, 393

nonsequenced query and, 158
snapshot table and, 318

timestamp duration, 43
TIMESTAMP type, 28, 401, 470,

476
converted to datetime value,
39

IBM DB2 UDB, 68
length, 28
year digits, 67

TIMESTAMP WITH TIME ZONE
type, 29, 79

timestamps, 116, 476
delimiting, 108
feed yard case study, 20�21
granularity, 427
instant, 373
literal, 28
period, 373
SQL, 77
of the table, 116
transaction, 429
See also timestamp columns

time-varying keys, 351
tracking logs, 218�251, 476
after-image, 218, 235
automatic maintenance of,
222

auxiliary columns, 221
backlogs, 233�235
before-image, 218, 235
CD-ROM materials, 247�248
IBM DB2 UDB, 244�245
implementation considera-
tions, 244�248

Microsoft SQL Server, 245�246
Oracle8 Server, 246
organizations, 218
reconstruction algorithms, 218
schema, 218, 221
SQL3, 421�425
Sybase SQLServer, 246
transaction semantics,
240�243

transaction time support, 249
as transaction-time state table,
227

UniSQL, 247
transaction time, 4, 353�355,

361�363, 476
application of, 20
of attributes, 355
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transaction time (continued)
nonsequenced in, 319
of relationship types, 354
sequenced in, 316, 317
SQL3, 439
support implementation, 274
valid time interactions, 21
See also valid time

transaction time-invariant
constraints, 379, 476

transaction time-slice, 307, 308,
309, 476

OVERLAPS predicate and, 428
transaction-stop time, 334
transaction-time current query
SQL3, 430
valid-time current and, 314,
430

valid-time nonsequenced and,
315�316, 430

valid-time sequenced and,
315, 430

See also bitemporal query
transaction-time nonsequenced

query
SQL3, 424, 431�432
valid-time current and,
318�319, 431

valid-time nonsequenced and,
319�320, 432

valid-time sequenced and,
319, 432

See also bitemporal query
TRANSACTIONTIME reserved

word, 423, 427, 451, 465
transaction-time sequenced

query
SQL3, 423, 431
valid-time current and, 316,
431

valid-time nonsequenced and,
318, 431

valid-time sequenced and,
316�318, 431

See also bitemporal query
transaction-time splitting, 296,

476
transaction-time state table,

252�274, 309, 476
after-image from, 261, 424
append-only, 249
backlog extraction from, 262,
424�425

before-image from, 261, 424
CD-ROM materials, 272
converting backlogs to,
237�238

converting tracking logs to,
226�229, 253

creating, 254
de�ned as views, 266
de�ning in SQL3, 421�422
feed yard case study, 18�20
implementation considera-
tions, 272

implemented as backlogs, 367
Microsoft SQL Server, 272
reconstructed state, 250
represented with two table,
264

schema, 254
SQL3, 426�427
tracking log as, 227
See also temporal table;
valid-time state table

transaction-time support, 421
current query and, 422
in SQL3, 421

triggers, 469
assertions implemented as,
135�136

de�ning, on current store, 265
DELETE, 235
IBM DB2 UDB, 244
INSERT, 138, 235
for maintaining P Log in IBM
DB2 UDB, 244�245

for maintaining P Log in
Microsoft SQL Server,
245�246

for maintaining P Log in
Sybase SQLServer, 246

for maintaining P Log table,
221, 230, 235

for maintaining PO Archive

table, 333
for maintaining P TT table,
255�256, 264

maintaining tracking log with,
218

for maintaining tripartitioned
state table, 267

monitored table, 256
UniSQL, 138
UPDATE, 138, 235

tripartitioned state table
current store, 266
triggers for maintaining, 267

tripartitioned store, 273
tropical year, 18, 476
true day, 95, 476
true time, 95, 476
TSQL2
committee, 466
temporal query language, 217

two-phase row-level locking, 240

UNION ALL clause, 148, 152

UNIQUE constraint, 124, 139
IBM DB2 UDB support,
132�133

nonsequenced duplicate
prevention, 122

uniqueness
in restricted case, 179
sequenced, 375
sequenced insertion ensuring,
189

temporal keys and, 408�409
time-invariant, 381

uniqueness constraints, 122, 124,
139, 375

sequenced/current, 375
SQL3, 440
time-invariant, 378

UniSQL, 8, 62�63, 64�65
assertions and, 138
CD-ROM materials, 84, 108,
138, 173, 215, 247

CURRENT DATE and, 173
datetime constructors, 64
insert trigger on tracking log,
247

interval constructors, 64�65
literals, 64
modifying state table and, 215
other operators, 65
period operations, 101,
107�108

predicates, 64
sequenced primary key in, 138
SQL-92 operations in, 64�65
tracking logs, 247
trigger support, 247
types, 62, 64

universal time (UT0, UT1)
second, 78

See also seconds
University Information System

(UIS), 111
client-server architecture, 112
EMPLOYEES table, 112, 116
history, adding, 113�119
INCUMBENTS.SSN, 125�126
INCUMBENTS table, 112, 113,
114, 115

initial schema, 112�113
POSITIONS table, 112
primary keys, 112
SSN, 114
timestamp columns, 114

UPDATE statement, 176, 254,
416

bitemporal table, 289, 290,
293

checking for sequenced
duplicates, 198
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in current update general case,
187

nontemporal, 185
sequenced update, 195
sequenced update mentioning
other table, 205

updates, 184, 391
on bitemporal table, 284�291,
302�305

current, 176, 184�187,
258�259, 284�291

implementation of, 391
nontemporal, 201�202, 215
on referenced table, 187
sequenced, 194�197
series of, 241
SQL3, 425
on transaction-time state
table, 258�259

See also modi�cations
upward compatibility, 446�447
ensuring, 464
temporal, 408, 411, 447�450,
464

See also migration
user-de�ned time, 4, 23, 476
attributes, 358�360, 438
columns, 114, 360

UTC. See Coordinated Universal
Time (UTC)

vacuuming, 268�272, 476
for ameliorating space
overhead, 274

archival store, 338
bitemporal table, 337�339
criteria, 476
entity vacuuming, 269
monotonic, 272, 474
operations log, 271
speci�cations, 271
SQL3, 427, 436
temporal, 269, 270�271, 475
types of, 269
violation, 270
See also transaction-time state
table

valid time, 4, 476
application of, 20
of attributes, 350�353, 361,
438

bitemporal table and, 285

current in, 314
duration, 306
future, 332
granularity, 332
relationship, 349�350, 438
transaction time interactions,
21

See also transaction time
valid time-slice, 309, 310, 476
valid-time current query
SQL3, 430, 431
transaction-time current and,
314, 430

transaction-time nonse-
quenced and, 318�319,
431

transaction-time sequenced
and, 316, 431

See also bitemporal query
valid-time nonsequenced query
SQL3, 430, 431, 432
transaction-time current and,
315�316, 430

transaction-time nonse-
quenced and, 319�320,
432

transaction-time sequenced
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Microsoft de�nition, 71
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