Mastering XML DB Queries in
Oracle Database 10g Release 2

An Oracle White Paper
March 2005

ORACLE

Mastering XML DB Queries in Oracle Database 10g Release 2

INtrOAUCHION.....eeieiieie e 1
XPath Rewrite with XML Schema-Based Structured Storage 2
Understanding XPath ReWT1tec..coovvveeiiiieiiiieeiieeieeeeeeeee 3
Using Indexes to Improve Performance of XPath-Based Functions 3
Oracle SQL/XML Based on XPath..........c..ccoovieeiiiiiiiieiiecieeceeee 4
Accessing XML Fragments or Nodes Using Extract...........ccccco.ee.. 4
Accessing Text Nodes and Attribute Values Using ExtractValue ... 5
Searching the XML Document Content Using ExistsNode 5
XPath Rewrite for SQL/XML Query Functions...........cccceevveenernnne. 6
Rewrite for EXISTSNODE..........cooiiiiiiiiiiiiieeeceecee 6
Rewrite for EXTRACT and EXTRACTVALUEccccceeveneee. 7
Rewrite for XMLSequence.......c..coceeuereeneiienienenieneeeeceenee 8
Using Explain Plan for Performance Tuning..........cccccecevveniennee 9
Usage Scenarios for XPath-Based SQL/XML Query Functions.... 10
Oracle Database-Native XQUETYcccueeeviieriiieeiieeenieeeieeeeiveeeieeenns 10
FLWOR Expressions in XQUETYcccceevuerienerieneenienieneenennens 10
XMLQuery SQL function..........cceeeeveeriieniienienieeiieeie e 11
XMLQuery EXamples.......c.cocverieeiiinieiiieiiecieeeeee e 11
XMLTable SQL CONStructcceevuviieeeiiiieeeeciiee e 13
Rewrite for XQUETY ...ccviiiiiiiieiieeeeeee et 14
Explain Plan Showing XQuery Rewritecccccevveverienienncnne. 15
Usage Scenarios for Database-Native XQuery.......ccccoeeveevcvveennnenn. 16

CONCIUSION et e e e e e e e e e e e e e e e 17

Mastering XML DB Queries in Oracle Database 10g Release 2

To find information in this rapidly growing
volume of XML data demands

unprecedented query technology.

INTRODUCTION

XML has become ubiquitous since W3C’s official recommendation of the XML
specification in 1998. As a format suitable for representing both structured data
and unstructured data, XML is unifying the two traditionally separate worlds of
data management and content management. Finding information hidden in this
rapidly growing volume of XML data demands unprecedented query
technology.

For decades, SQL has been the trusted query language for structured data. With
its solid foundation, SQL is also the industry standard for manipulating (i.e.,
inserting, updating, deleting) and managing (e.g., creating, altering, and deleting
of constraints, tables, views, etc.) structured data. As the volume of unstructured
data multiplied, SQL has kept ahead of this information revolution by defining
new features in new releases of the standard over the years. The Part 14
(SQL/XML) of the latest SQL 2003 and the upcoming SQL 2005 standard
defines a comprehensive and detailed specification of new SQL capabilities for
managing, querying, and manipulating XML data. SQL/XML has seamlessly
merged SQL and XML by building on both the industry’s most enduring SQL
standard and the W3C’s XML standards (e.g., XML, XML Schema, XPath,
XQuery, etc.).

In a parallel development, many of the same SQL committee members have
devoted their collective expertise to develop the XQuery specifications within
W3C since 1999. The mission of this XML Query language Working Group is
to provide flexible query facilities to extract data from real and virtual
documents on the World Wide Web, thereby providing the needed interaction
between the Web world and the database world. Ultimately, collections of XML
files will be accessed like databases using the upcoming XQuery language.
Toward this end, the XML Query Working Group has produced a number of
specifications, including XQuery 1.0, XML Query Use Cases, XQuery and
XPath Data Model, XML Query Requirements, etc. As XQuery is expected to
become a formal W3C recommendation in 2005, there is a strong demand for its
commercial implementation.

As the leader in information technology products, Oracle has been a major
driving force for both the SQL/XML and the XQuery standardization effort.
Coinciding with the standardization effort, Oracle has introduced increasingly

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 1

For complex-structured XML documents,
structured storage provides a number of
options for optimal storage of collections

according to actual usage scenarios

deeper and broader SQL/XML integration since Oracle 91 Release 2. In Oracle
Database 10g Release 2, database-native XQuery will be supported.

In the rest of the paper, we will first describe the XPath Rewrite technology for
XML Schema-Based structured storage. XPath Rewrite technology is the
cornerstone shared by both of Oracle’s SQL/XML and XQuery to achieve high
performance and scalability. In the third section, we will discuss Oracle’s
XPath-based SQL/XML query functions. In the fourth section, we will describe
Oracle’s database-native XQuery implementation based on the upcoming
standards of SQL 2005 SQL/XML and W3C XQuery. We will show that
Oracle’s SQL/XML and XQuery are complementary approaches for scalable
and high performance querying of XML data in all usage scenarios.

XPATH REWRITE WITH XML SCHEMA-BASED STRUCTURED
STORAGE

Structured storage has numerous advantages in managing XML documents,
including optimized memory management, reduced storage requirements, B-tree
indexing, and in-place updates. For complex-structured XML documents,
structured storage provides a number of options for optimal storage of
collections according to actual usage scenarios. Structured storage does require
somewhat increased processing of the corresponding XML schema during
ingestion and retrieval of entire documents.

Structured storage of XML documents is based on decomposing the content of
the document into a set of database-native objects. When an XML schema is
registered with Oracle XML DB, the required database-native type definitions
are automatically generated from the XML schema.

A database-native type definition is generated from each complexType
defined by the XML schema. Each element or attribute defined by the
complexType becomes amattribute in the corresponding database-native type.
Oracle XML DB automatically maps the scalar datatypes defined by the W3C
XML Schema Recommendation to the database-native scalar datatypes.

The generated database-native types allow XML content, compliant with the
XML schema, to be decomposed and stored in the database as a set of objects
without any loss of information. When the document is ingested, the constructs
defined by the XML schema are mapped directly to the equivalent database-
native types. This allows Oracle XML DB to leverage the full power of Oracle
Database when managing XML and can lead to significant reductions in the
amount of space required to store the document. It can also reduce the amount
of memory required to query and update XML content.

Furthermore, as you can learn more in a companion white paper titled,
“Mastering XML DB Storage in Oracle Database 10g”, it is important to ensure
that members of a collection are stored as rows in a nested table or an XMLType
table for efficient query operations on members of the collection.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 2

Understanding XPath Rewrite

XPath rewrite is the key to improving the performance of SQL statements
containing XPath expressions by converting the functions into conventional
relational SQL statements. This insulates the database optimizer from having to
understand the XPath notation and the XML data model. The database optimizer
processes the rewritten SQL statement in the same manner as any other SQL
statement. In this way, it can derive an execution plan based on conventional
relational algebra. This results in the execution of SQL statements with XPath
expressions with near relational performance. As a result, XML DB applications
can reach optimal scalability.

This enables the use of B-Tree or other indexes, if present on the column, to be
used in query evaluation by the Optimizer. This XPath rewrite mechanism is
used for XPaths in SQL functions such as existsNode, extract,
extractValue, and updateXML. This enables the XPath to be evaluated
against the XML document without having to ever construct the XML document
in memory.

The rewrite of XPath expressions happen under the following conditions:

e The XML function or method is rewritable: SQL functions extract,
existsNode, extractValue, updateXML, insertChildXML,
deleteXML, and XMLSequence are rewritten. Except method
existsNode (), none of the corresponding XML Type methods are
rewritten.

e The XPath construct is rewritable: XPath constructs such as simple
expressions, wildcards, and descendent axes get rewritten. The XPath may
select attributes, elements or text nodes. Predicates also get rewritten to
SQL predicates. Expressions involving parent axes, sibling axes, and so on
are not rewritten.

e The XMLSchema constructs for these paths are rewritable: XMLSchema
constructs such as complexTypes, enumerated values, lists, inherited types,
and substitution groups are rewritten.

e The storage structure chosen during the schema registration is rewritable:
Storage using the object-relational mechanism is rewritten. Storage of
complex types using CLOBs are not rewritten

Using Indexes to Improve Performance of XPath-Based Functions
For structured storage, Oracle XML DB supports the creation of three kinds of
index on XML content:

e B-Tree indexes. When the XMLType table or column is based on structured
storage techniques, conventional B-Tree indexes can be created on
underlying SQL types.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 3

e Function-based indexes. These can be created on any XMLType table or
column.

e Text-based indexes. These can be created on any XMLType table or column.

Indexes are typically created by using SQL function ExtractValue, although
it is also possible to create indexes based on other functions such as
existsNode. During the index creation process, Oracle XML DB uses XPath
rewrite to determine whether it is possible to map between the nodes referenced
in the XPath expression used in the CREATE INDEX statement and the
attributes of the underlying SQL types. If the nodes in the XPath expression can
be mapped to attributes of the SQL types, then the index is created as a
conventional B-Tree index on the underlying SQL objects. If the XPath
expression cannot be restated using object-relational SQL then a function-based
index is created.

ORACLE SQL/XML BASED ON XPATH

As the amount of data expressed in XML grows, it becomes necessary to store,
manage, and search that data in a robust, secure, and scalable environment, i.e.,
a database. With SQL/XML you can have all the benefits of a relational
database plus all the benefits of XML. New in SQL 2003 standard as Part 14,
SQL/XML defines how SQL can be used in conjunction with XML in a
database. Part 14 provides detailed definition of a new XML type, the values of
an XML type, mappings between SQL constructs and XML constructs, and
functions for generating XML from SQL data. Since Oracle Database 91 Release
2, SQL/XML features had been supported as an integral part of the XML DB.
XML DB also includes a number of additional XPath-based SQL extensions to
support querying, updating, and transformation of XML data. Oracle has been
working closely with the SQL standard committee to standardize these
extensions in the upcoming SQL 2005 standard.

With XPath-based SQL/XML functions, additional predicates can also be
included in the XPath expressions used with any SQL/XML functions. A rule of
thumb is to use a SQL/XML function in the WHERE clause to find the documents
for further extraction of node(s) by a SQL/XML function in the SELECT or the
FROM clause .

Accessing XML Fragments or Nodes Using Extract

The SQL function Extract returns the nodes that match an XPath expression.
Nodes are returned as an instance of XMLType. The result of extract can be
either a complete document or an XML fragment. The functionality of SQL
function extract is also available through XMLType method extract ().

The example below accesses XML Fragments Using the Extract function.
The query returns an XMLType value containing the Reference element that
matches the XPath expression.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 4

SELECT Extract (OBJECT VALUE, '/PurchaseOrder/Reference')
FROM purchaseorder;

EXTRACT (OBJECT VALUE, '/PURCHASEORDER/REFERENCE')

<Reference>SBELL-2002100912333601PDT</Reference>

1 row selected.

Accessing Text Nodes and Attribute Values Using ExtractValue

The SQL function ExtractValue returns the value of the text node or
attribute value that matches the supplied XPath expression. The value is
returned as a SQL scalar value. The XPath expression passed to
ExtractValue must uniquely identify a single text node or attribute value
within the document. This function supports strong typing by leveraging the
associated XML schema.

The example below accesses a Text Node Value Matching an XPath Expression
Using ExtractValue. The query returns the value of the text node
associated with the Reference element that matches the XPath expression.
The value is returned as a VARCHAR? value:

SELECT extractValue (OBJECT VALUE,

' /PurchaseOrder/Reference"')
FROM purchaseorder;

EXTRACTVALUE (OBJECT VALUE, '/PURCHASEORDER/REFERENCE)

SBELL-2002100912333601PDT
1 row selected.

Searching the XML Document Content Using ExistsNode

The SQL function ExistsNode evaluates whether or not a given document
contains a node that matches a W3C XPath expression. Function ExistsNode
returns true (1) if the document contains the node specified by the XPath
expression supplied to the function and false (0) if it does not. Since XPath
expressions can contain predicates, ExistsNode can determine whether or not
a given node exists in the document, and whether or not a node with the
specified value exists in the document. The functionality provided by SQL
function ExistsNode is also available through XMLType method
ExistsNode.

The example below searches XML Content Using ExistsNode. The query uses
SQL function ExistsNode to check if the XML document contains an element
named Reference that is a child of the root element PurchaseOrder:

SELECT COUNT (*) FROM purchaseorder WHERE ExistsNode (
OBJECT VALUE, '/PurchaseOrder/Reference') = 1;

COUNT (*)

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 5

1 row selected.

XPath Rewrite for SQL/XML Query Functions

When XMLType data is stored in structured storage using an XML schema and
XPath-based queries are used, they can potentially be rewritten directly to the
underlying object-relational columns. This rewrite of queries can also
potentially happen when queries using XPath are issued on certain non-schema-
based XMLType views.

This enables the use of B*Tree or other indexes, if present on the column, to be
used in query evaluation by the Optimizer. This XPath rewrite mechanism is
used for XPaths in SQL functions such as existsNode, extract,
extractValue, and updateXML. This enables the XPath to be evaluated
against the XML document without having to ever construct the XML document
in memory.

For example, a query such as the following tries to obtain the Company element
and compare it with the literal 'Oracle":
SELECT OBJECT VALUE FROM mypurchaseorders p

WHERE eXtraEtValue(OBJECT7VALUE,
' /PurchaseOrder/Company') = 'Oracle';

Because table mypurchaseorders was created with XML schema-based
structured storage, extractValue is rewritten to the underlying relational
column that stores the company information for the purchaseOrder. The
query is rewritten to the following:

SELECT VALUE (p) FROM mypurchaseorders p WHERE
p.xmldata.Company = 'Oracle';

Rewrite for EXISTSNODE

SQL function existsNode returns one (1) if the XPath argument targets a
nonempty sequence of nodes (text, element, or attribute); otherwise, it returns
zero (0). The value is determined differently, depending on the kind of node
targeted by the XPath argument:

e [fthe XPath argument targets a text node (using node test text ()) or a
complexType element node, Oracle XML DB simply checks whether
the database representation of the element content is NULL.

e Otherwise, the XPath argument targets a simpleType element node or
an attribute node.

In the example below, the query specifies an XPath expression with a predicate
to check whether purchase order number 1001 contains a part with price greater
than 2000:

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 6

SELECT count (*)
FROM purchaseorder
WHERE eXiStSNOde(OBJECT_VALUE,
' /PurchaseOrder [PONum=1001 and Item/Price > 2000]"') = 1;

This is rewritten as something like the following:

SELECT count (*)
FROM purchaseorder p
WHERE CASE WHEN p.XMLDATA."PONum" = 1001
AND exists (SELECT NULL FROM table (XMLDATA."Item") p
WHERE p."Price" > 2000)
THEN 1
ELSE O
END = 1;

This CASE expression is further optimized due to the constant relational equality
expressions. The query becomes:
SELECT count (*)

FROM purchaseorder p

WHERE p.XMLDATA."PONum"=1001

AND exists (SELECT NULL FROM table (p.XMLDATA."Item") x
WHERE x."Price" > 2000);

This rewritten query can be efficiently executed by the relational query engine.
If Btree indexes are present on the Price and PONum columns, the query
engine will can takes advantage of them during query execution.

Rewrite for EXTRACT and EXTRACTVALUE

SQL function extractValue is a shortcut for extracting text nodes and
attributes using function extract and then using method getStringval ()
or getNumberVal () to obtain the scalar content. Function extractvValue
returns the values of attribute nodes or the text nodes of elements with scalar
values. Function extractvalue cannot handle XPath expressions that return
multiple values or complexType elements. If an XPath expression targets an
element, then extractValue retrieves the text node of the element. For
example, /PurchaseOrder/PONum and
/PurchaseOrder/PONum/text () are handled identically by
extractValue: both retrieve the scalar content of PONum.

In the example below, the XPath expression ni the extract function specifies
a predicate to return PONum of purchase orders with Part greater than 2000.
SELECT extract (OBJECT VALUE,

' /PurchaseOrder [Item/Part > 2000]/PONum')
FROM purchaseorder table;

This query would be rewritten to the following for execution:

SELECT (SELECT CASE WHEN
node exists (p.XMLDATA.SYS XDBPDS$, 'PONum')
THEN XMLElement ("PONum", p.XMLDATA."PONum")
ELSE NULL END

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 7

FROM DUAL
WHERE exists (SELECT NULL FROM
table (XMLDATA."Item") p WHERE p."Part" > 2000))
FROM purchaseorder table p;

Rewrite for XMLSequence

SQL function XMLSequence expose the members of a collection as a virtual
table. You can use SQL function XMLSequence in conjunction with SQL
functions extract and table to unnest XML collection values. When used
with schema-based storage, these functions also get rewritten to access the
underlying relational collection storage.

For example, the query below retrieves the price and part numbers of all items in
a relational form:

SELECT eXtractValue(OBJECT7VALUE,
'/PurchaseOrder/PONum') AS ponum,
extractValue (value (it), '/Item/Part') AS part,
extractValue (value (it), '/Item/Price') AS price
FROM purchaseorder,
table (XMLSequence (extract (OBJECT VALUE,

' /PurchaseOrder/Item'))) 1it;

PONUM PART PRICE
1001 9i Doc Set 2550
1001 8i Doc Set 350

In this example, SQL function extract returns a fragment containing the list
of Ttem elements. Function XMLSequence converts the fragment into a
collection of XML Type values one for each Ttem element. Function table
converts the elements of the collection into rows of XMLType. The XML data
returned from table is used to extract the Part and the Price elements.

As shown in the explain plan below, during query processing, the functions
extract and XMLSeqguence are rewritten to a simple SELECT operation from
the item nested nested table.

EXPLAIN PLAN
FOR SELECT extraCtValue(OBJECT_VALUE,
' /PurchaseOrder/PONum') AS ponum,
extractValue (value (it) , '/Item/Part') AS part,
extractValue (value (it), '/Item/Price') AS price
FROM purchaseorder,
table (XMLSequence (extract (OBJECT VALUE,
' /PurchaseOrder/Item'))) 1it;

Explained

PLAN TABLE OUTPUT

| Id | Operation | Name |
\ 0 | SELECT STATEMENT | |
\ 1 | NESTED LOOPS | |
| 2 TABLE ACCESS FULL | ITEM_NESTED |

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 8

\ 3 | TABLE ACCESS BY INDEX ROWID | PURCHASEORDER |
4 | INDEX UNIQUE SCAN | SYS C002973 |

Predicate Information (identified by operation id)

access ("NESTED TABLE ID"="SYS ALIAS 1"."SYS NC0001100012
$")

The EXPLAIN PLAN output shows that the optimizer is able to use a simple
nested-loops join between nested table item nested and table
purchaseorder.

Using Explain Plan for Performance Tuning

With Oracle’s XPath rewrite implementation, XPath-based SQL/XML
operations are rewritten to equivalent relational queries. This approach allows
XML application developers and DBAs to use the same set of powerful tools
they have been using for relational applications.

For performance tuning, the EXPLAIN PLAN statement displays execution plans
chosen by the Oracle optimizer for SELECT, UPDATE, INSERT, and DELETE
statements. A statement's execution plan is the sequence of operations Oracle
performs to run the statement. The EXPLAIN PLAN results allow application
developers and DBAs to determine whether the optimizer selects a particular
execution plan, such as, nested loops join. It also helps you to understand the
optimizer decisions, such as why the optimizer chose a nested loops join instead
of a hash join, and lets you understand the performance of a query.

In the previous example, you can also query the Item values further and create
appropriate indexes on the nested table to speed up such queries. For example,
to search on the price to get all the expensive items, we could create an index on
the Price column of the nested table. The following EXPLAIN PLAN confirms
that the price index is used to obtain the list of items and then joins with
table purchaseorder to obtain the PONum value.

CREATE INDEX price index ON item nested ("Price");
Index created.

EXPLAIN PLAN FOR
SELECT extractValue (OBJECT_VALUE,

' /PurchaseOrder/PONum') AS ponum,
extractValue (value (it), '/Item/Part') AS part,
extractValue (value (it), '/Item/Price') AS price

FROM purchaseorder,
table (XMLSequence (extract (OBJECT VALUE,
' /PurchaseOrder/Item'))) it
WHERE extractValue (value(it), '/Item/Price') > 2000;

Explained.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 9

PLAN TABLE OUTPUT

| Id | Operation | Name |
\ 0 | SELECT STATEMENT | |
\ 1 | NESTED LOOPS |

\ 2 TABLE ACCESS BY INDEX ROWID | ITEM_NESTED |
| * 3 INDEX RANGE SCAN | PRICE_INDEX |
\ 4 | TABLE ACCESS BY INDEX ROWID | PURCHASEORDER |
| * 5 | INDEX UNIQUE SCAN | SY87C002973 |

Predicate Information (identified by operation id):

3 - access ("ITEM NESTED"."Price">2000)

5 —
access ("NESTED TABLE ID"="SYS ALIAS 1"."SYS NC0001100012
s$™)

Usage Scenarios for XPath-Based SQL/XML Query Functions

With XPath-rewrites, query functions based on XPath can efficiently process
simple path-oriented XML queries. As an extension to SQL, SQL/XML query
functions can be used in conjunction with relational SQL queries to extract
XML values and fragments in a complex query involving both XML and
relational data.

ORACLE DATABASE-NATIVE XQUERY

XQuery 1.0 is an XML Query Language developed by W3C that will become
the recommended query language to query XML from a variety of data sources.
Various companies are adopting XQuery as the way to query XML stored in
database rows or from WebServices and to construct new XML values.

On the SQL side, the XML datatype was introduced in SQL 2003 as a way to
encapsulate XML in SQL. The SQL committee is now working to integrate the
querying of XML using XQuery. This is being accomplished by introducing a
new SQL function: XMLQuery, and a new construct: XMLTable both of which
operate on XML and SQL values using XQuery. The former is known as
XQuery-centric approach as it allows querying and constructing XML using
XQuery. The latter is known as SQL-centric approach as it allows breaking
apart the XQuery values into relational values.

Oracle Database 10g Release2 enables XQuery support in the database server
through these SQL standard functions.

FLWOR Expressions in XQuery

At the heart of XQuery is the FLWOR expression that supports iteration and
binding of variables to intermediate results. This kind of expression is often
useful for computing joins between two or more documents and for restructuring

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 10

data. The name FLWOR, pronounced "flower", reflects the keywords for, let,
where, order by, and return.

Similar to the FROM clause in SQL, the for and 1et clauses in a FLWOR
expression generate a sequence of tuples of bound variables called the tuple
stream. Performing the same function as the WHERE clause in SQL, the where
clause serves to filter the tuple stream, retaining some tuples and discarding
others. The order by clause mimics the ORDER BY clause in SQL to impose
an ordering on the tuple stream. Finally, the return clause works like the
SELECT clause in SQL to construct the result of the FLWOR expression. The
return clause is evaluated once for every tuple in the tuple stream, after
filtering by the where clause, using the variable bindings in the respective
tuples. The result of the FLWOR expression is an ordered sequence containing
the concatenated results of these evaluations.

XMLQuery SQL function

The XMLQuery function takes an XQuery expression as a string literal, an
optional context item and other bind variables and returns the result of
evaluating the XQuery expression using these input values.

Below is the syntax that will be supported in Oracle Database 10g Release 2:
XMLQUERY (<XQuery-string-literal>
[PASSING [BY VALUE] <expression-returning-XMLType>]
RETURNING CONTENT)

The XQuery string literal is a complete XQuery expression including the prolog
etc. The PASSING clause must be followed by an expression returning an
XMLType that is used as the context for evaluating the XQuery expression.

To run XQuery on XMLType columns, tables, views, or expressions generated
by SQL/XML functions, it is recommended that users pass the value as an
argument to the XMLQuery function. However, to query any relational table or
view as XML without having to first create SQL/XML views on top of them,
users can use Oracle provided XQuery function: ora:view() within an XQuery
expression.

XMLQuery Examples

Query on XMLType Column

You can also query on an XMLType column using the XMLQuery function.
The XML column can be passed in through the PASSING clause as a context
item. In this example, we are checking for the warehouses whose building area
is greater than 100K. Note that since the XMLQuery function is applied to all
rows in the FROM clause, we only get results for those rows where the XQuery
expression matches the value.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 11

SQL> connect oe/oe;
Connected
SQL> select warehouse name,
XMLQuery (
'for $i1i in /Warehouse
where $i/Area > 10000
return <Details>
<Docks num="{$i/Docks}"/>
<Rail>
{
if ($i/RailAccess = "Y")
then "true" else "false"
}
</Rail>
</Details>' passing
warehouse_ spec returning content) big warehouses
from warehouses;

WAREHOUSE NAME

Southlake, Texas
<Details>
<Docks num="2"/>
<Rail>false</Rail>
</Details>

San Francisco
<Details>
<Docks num="1"/>
<Rail>false</Rail>
</Details>

New Jersey
<Details>
<Docks num=""/>
<Rail>false</Rail>
</Details>
Seattle, Washington
<Details>
<Docks num="3"/>
<Rail>true</Rail>
</Details>
Toronto
Sydney
Mexico City
Beijing

Bombay

9 rows selected.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 12

Query XDB Repository
Assume that the XMLDB repository contains the items.xm! XML document -

SQL> select any path from resource view where
equals path(res, '/public/items.xml') = 1;

ANY PATH

/public/items.xml

1 row selected.

Then the doc() function can be used inside XQuery to query this XML file.
Assuming that items.xml contains information about some items that are being
bid on, the following XQuery extracts out the various item tuples and orders
them by their i temno and returns a new XML element containing the item
number and it’s description.

SQL> select XMLQuery (
'<result> {
for $i in doc ("/public/items.xml")//item tuple
order by $i/itemno
return

<item tuple>
{ S$i/itemno }
{ $i/description }

</item tuple>

}

</result>" returning content) as xml from dual;

<result>
<item tuple>
<itemno>1001</itemno>
<description>Red Bicycle</description>
</item tuple>
<item tuple>
<itemno>1003</itemno>
<description>0ld Bicycle</description>
</item tuple>
<item tuple>
<itemno>1007</itemno>
<description>Racing Bicycle</description>
</item tuple>
<item tuple>
<itemno>1008</itemno>
<description>Broken Bicycle</description>
</item tuple>
</result>

1 row selected.

XMLTable SQL Construct

The XMLTable construct is used to map the result of an XQuery evaluation
into relational rows and columns so that the user can query the XQuery result as

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 13

a virtual relational table using SQL. The XMLTable construct can only be used
in the from clause of SQL queries.

Below is the syntax that will be supported in Oracle Database 10g Release 2:

<XML table> ::=
“XMLTable” “(“ <XQuery-string-literal>
[WPASSING” [“BY” “WALUE”] <xml-value-expression>]
[WCOLUMNS” <XML-table-columns>]

\\) ’”

<XML-table-columns> ::= <XML-table-column>
[V, <XML-table-column>]..

<XML-table-column> ::= <column-name> [<data-type>]
[PATH <string-literal>][“DEFAULT” <value-expression>]

In the example below, an XML Table function is used to query a PurchaseOrder

XMLType table. The parameter of the XMLTable function is an XQuery

expression that finds XML documents with a specific Reference number and

then returns the text values of the Description nodes.

SQL> SELECT x.column value FROM purchaseorder, XMLTable

('for $i in $po where
$i/PurchaseOrder/Reference="SBELL-2003030912333601PDT"
return

$i/PurchaseOrder/Lineltems/Lineltem/Description/text ()"
passing OBJECT VALUE as "po") x

COLUMN_ VALUE

A Night to Remember

The Unbearable Lightness Of Being
Sisters

A Night to Remember

The Unbearable Lightness Of Being
Sisters

6 rows selected.

Rewrite for XQuery

Similar to XPath-rewrite for XPath-based SQL/XML functions, Oracle’s
database-native XQuery implementation excels with extensive XQuery rewrites.
XQuery rewrite allows Oracle’s XQuery implementation to take full advantage
of Oracle’s high performance relational query engine. With XML documents
stored using the structured storage approach, XQuery can be rewritten into pure
relational queries to completely avoid building DOM trees of XML documents
in memory. Query performance can be orders of magnitude faster with rewrites
applied.

In the example below, the XQuery can be rewritten into an equivalent relational
query to attain the same performance level as pure relational queries.

SELECT XMLQuery (

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 14

"for $b in ora:view("SITE TAB")/site/people/person
where $b/@id = "person0"
return $b/name' returning content)

FROM dual;

SELECT (SELECT XMLAgg (XMLElement ("name", p.name))
FROM SITE TAB s, PERSON TAB p
WHERE p.id ='person(O' AND

p.NESTED TABLE ID = s."SYS NC0004700048$"

)
FROM dual;

Explain Plan Showing XQuery Rewrite

Similar to the benefits of rewrites for XPath-based SQL/XML functions,
XQuery rewrites also allow application developers and DBAs to use the same
set of powerful tools for relational application development. For XQuery
performance tuning, the EXPLATN PLAN statement can be used to display
execution plans chosen by the Oracle optimizer for a rewritten XQuery
statements.

In the example below, the XQuery uses a FLWOR construct to join the results
from the ora:view() functions on the REGIONS and the COUNTRIES tables
based on their REGION_ID element values.
SQL> SELECT XMLQuery (

'for Si in ora:view ("REGIONS") /ROW

$J in ora:view ("COUNTRIES") /ROW
where $i/REGION ID = $j/REGIONiID and

$i/REGION NAME = "Asia"
return $j' returning content) as asian countries
FROM DUAL;

ASIAN_COUNTRIES

<ROW>
<COUNTRY ID>AU</COUNTRY ID>
<COUNTRY_NAME>Australia</COUNTRY_NAME>
<REGIONiID>3</REGIONiID>

</ROW>

<ROW>
<COUNTRY_ID>CN</COUNTRY_ID>
<COUNTRY7NAME>China</COUNTRYiNAME>
<REGION ID>3</REGION ID>

</ROW>

<ROW>
<COUNTRY ID>HK</COUNTRY ID>
<COUNTRY NAME>HongKong</COUNTRY NAME>
<REGION ID>3</REGION ID>

</ROW>

<ROW>
<COUNTRY ID>IN</COUNTRY ID>
<COUNTRY NAME>India</COUNTRY NAME>
<REGION_ID>3</REGION_ID>

</ROW>

<ROW>

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 15

<COUNTRY_ID>JP</COUNTRY_ID>
<COUNTRY_NAME>Japan</COUNTRY_NAME>
<REGION ID>3</REGION ID>

</ROW>

<ROW>
<COUNTRYiID>SG</COUNTRYiID>
<COUNTRY NAME>Singapore</COUNTRY NAME>
<REGION ID>3</REGION ID>

</ROW>

Since the XQuery really queries XML constructed from the underlying
relational tables, this will get internally rewritten so that the entire XQuery
becomes a simpler relational query (with some XML construction functions)
with the XQuery predicates transformed into joins on the underlying tables. The
simpler relational query is executed according to the optimal plan chosen by the
cost-based optimizer. As shown below, the cost-based optimizer can take
advantage of column indexes on the underlying tables.

Here is the result of using an explain plan:

SQL> explain plan for

select XMLQuery (

'"for $1i in ora:view ("REGIONS"),

$J in ora:view ("COUNTRIES")
where $i/REGIONiID = $j/REGION71D and
$1/REGION NAME = "Asia"

return $3j' returning content) as asian countries

from dual;

Explained
SQL> @?/rdbms/admin/utlxpls

PLAN TABLE OUTPUT

| Id | Operation | Name | Rows | Cost]|
| 0 | SELECT STATEMENT | | 1 2
| 1 | SORT AGGREGATE | | 1]

| 2 | NESTED LOOPS | | 6 | 6|
| 3 MERGE JOIN CARTESIAN | | 25 | 5]
| 4 | MERGE JOIN CARTESIAN | | 1| 4
| 5 | FAST DUAL | | 1] 2
| 6 | FAST DUAL | | 1] 2]
| 7| INDEX FULL SCAN | COUNTRY C ID PK | 25 | 1]
[* 8 | TABLE ACCESS BY INDEX ROWID| REGIONS | 1| 1]
[* 9 | INDEX UNIQUE SCAN | REG_ID PK | 1| 0]
|10 | FAST DUAL | | 1] 2

Predicate Information (identified by operation id):

8 - filter ("REGION NAME"='Asia')
9 - access ("REGION_ID"="REGION_ ID")

Usage Scenarios for Database-Native XQuery

Comparing with XPath-based query functions, XQuery-based queries can use
FLWOR expressions to perform complex joins between XML documents and to
transform the structure of XML data. With Oracle’s implementation of the

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 16

XML DB query capabilities in Oracle
Database 10g Release 2 provide the most
comprehensive and efficient functionality

for versatile, scalable, concurrent, and
high performance XML applications.

XMLQuery SQL function and the XMLTable SQL construct based on the
upcoming SQL 2005 standard, complex XQuery can join force with relational
SQL to optimally perform complex queries over both XML and relational data.

CONCLUSION

With rapidly multiplying volumes of XML data, XML queries can no longer be
carried out by building resource-hungry DOM trees in memory for functional
evaluation of XML documents. Oracle has made a major breakthrough in its
XML DB product to holistically process XML data with higher efficiency in
both space and time.

Using structured storage of XML documents along with XPath- and XQuery-
rewrite of SQL/XML query functions, XML DB can handle both simple XPath-
based queries and complex XQuery-based queries with orders of magnitude
performance improvement over functional evaluation of XML queries.
Furthermore, XML queries can be seamlessly merged with SQL relational
queries to handle all query scenarios. Finally, the XML query capabilities of
Oracle XML DB are built on the solid foundation of industry’s best object-
relational database that is highly reliable, available, scalable, and secure. In
short, the XML DB query capabilities in Oracle Database 10g Release 2 provide
the most comprehensive and efficient functionality for versatile, scalable,
concurrent, and high performance XML applications.

Mastering XML DB Queries in Oracle Database 10g Release 2 Page 17

ORACLE

Mastering XML DB Queries in Oracle Database 10g Release 2
March 2005
Author: Geoff Lee

Oracle Corporation

World Headquarters

500 Oracle Parkway
Redwood Shores, CA 94065
U.S.A.

Worldwide Inquiries:
Phone: +1.650.506.7000
Fax: +1.650.506.7200
www.oracle.com

Oracle Corporation provides the software
that powers the internet.

Oracle is a registered trademark of Oracle Corporation. Various
product and service names referenced herein may be trademarks
of Oracle Corporation. All other product and service names
mentioned may be trademarks of their respective owners.

Copyright © 2005 Oracle Corporation
All rights reserved.

